首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elastin is the polymeric protein responsible for the properties of extensibility and elastic recoil of the extracellular matrix in a variety of tissues. Although proper assembly of the elastic matrix is crucial for its durability, the process by which this assembly takes place is not well-understood. Recent data suggest the complex interaction of tropoelastin, the monomeric form of elastin, with a number of other elastic matrix-associated proteins, including fibrillins, fibulins, and matrix-associated glycoprotein (MAGP), is important to achieve the proper architecture of the elastic matrix. At the same time, it is becoming clear that self-assembly properties intrinsic to tropoelastin itself, reflected in a temperature-induced phase separation known as coacervation, are also important in this assembly process. In this study, using a well-characterized elastin-like polypeptide that mimics the self-assembly properties of full-length tropoelastin, the process of self-assembly is deconstructed into "coacervation" and "maturation" stages that can be distinguished kinetically by different parameters. Members of the fibrillin, fibulin, and MAGP families of proteins are shown to profoundly affect both the kinetics of self-assembly and the morphology of the maturing coacervate, restricting the growth of coacervate droplets and, in some cases, causing clustering of droplets into fibrillar structures.  相似文献   

2.
3.
Elastin and collagen are the principal scleroproteins of the aortic wall, and they largely determine its physical and mechanical properties. During perinatal development of the aorta, elastin and collagen accumulate rapidly, being present as inverse gradients by the time of birth. Elastin is most prevalent in the thoracic aorta, decreasing distally, while collagen shows the opposite trend. The present studies have determined the relative and absolute rates of collagen and elastin synthesis in the porcine aorta between 60 days of fetal development (mid-gestation) and 110 days after birth. Although there was measurable elastin synthesis in the upper thoracic aorta at the earliest time evaluated, there was a fourfold increase in relative elastin synthesis (from 4 to 16% of total protein synthesis) between 60 fetal days and birth. Elastin synthesis was maximal in successively distal segments between 1 and 3 weeks after birth. Relative collagen synthesis progressively increased in distal aortic regions between 90 fetal days and 60 days postpartum. Greater than twofold increases over thoracic levels were measured. Both elastin and collagen synthesis largely subsided by 110 days of development. When expressed as absolute rates of protein synthesis, these scleroproteins were maximally expressed in the first 3 postnatal weeks. Elastin mRNA levels were determined with a cloned sheep gene fragment by molecular hybridization. Gradients of elastin message were present at 60 fetal days and at 4 and 14 days after birth, elastin mRNA levels being maximal in the upper thoracic aorta at 14 days after birth. The differentiation of the aortic wall thus follows discrete patterns of phenotypic change which may be coupled to the rheologic stresses accompanying development of the circulatory system.  相似文献   

4.
5.
Elastin is an extracellular matrix protein found in adult and neonatal vasculature, lung, skin and connective tissue. It is secreted as tropoelastin, a soluble protein that is cross-linked in the tissue space to form an insoluble elastin matrix. Cross-linked elastin can be found in association with several microfibril-associated proteins including fibrillin-1, fibrillin-2 and fibulin-1 suggesting that these proteins contribute to elastic fiber assembly, structure or function. To date, the earliest reported elastin expression was in the conotruncal region of the developing avian heart at 3.5 days of gestation. Here we report that elastin expression begins at significantly earlier developmental stages. Using a novel immunolabeling method, the deposition of elastin, fibrillin-1 and -2 and fibulin-1 was analyzed in avian embryos at several time points during the first 2 days of development. Elastin was found at the midline associated with axial structures such as the notochord and somites at 23 h of development. Fibrillin-1 and -2 and fibulin-1 were also expressed at the embryonic midline at this stage with fibrillin-1 and fibulin-1 showing a high degree of colocalization with elastin in fibers surrounding midline structures. The expression of these genes was confirmed by conventional immunoblotting and mRNA detection methods. Our results demonstrate that elastin polypeptide deposition occurs much earlier than was previously appreciated. Furthermore, the results suggest that elastin deposition at the early embryonic midline is accompanied by the deposition and organization of a number of extracellular matrix polypeptides. These filamentous extracellular matrix structures may act to transduce or otherwise stabilize dynamic forces generated during embryogenesis.  相似文献   

6.
The physical and chemical properties of the mammalian aorta are known to vary as a function of distance from the heart. These properties are highly dependent collagen and elastic fibers. In order to evaluate the mechanisms which regulate the accumulation of these two connective tissue proteins, gene expression was evaluated at both the biosynthetic and messenger RNA levels. Short-term (3 h) explant cultures of the medial portion of four segments of the descending aorta in newborn pigs were incubated in the presence of [3H] proline. Collagen production was quantified by collagenase digestion and elastin production was determined by immunoprecipitation. Between the conus arteriosus and the bifurcation of the iliac arteries, relative collagen synthesis increased 2-fold (from 5.8 to 12.0% of total protein synthesis), while relative elastin synthesis declined 10-fold (from 16.4 to 1.6% of total protein synthesis). Similarly, collagen production increased more than 7-fold (from 6.7 to 49.8 X 10(3) molecules/cell/h) while elastin production was reduced more than 3-fold (from 71.8 to 21.0 X 10(3) molecules/cell/h) along this developmental gradient. Elastin synthesis appeared to be controlled to a significant extent by the availability of elastin mRNA, since both cell-free translation and molecular hybridization to a cloned elastin gene probe showed gradients of elastin gene expression. Similarly, collagen synthesis was apparently regulated, at least in part, by an inverse gradient of collagen mRNA, as measured with a cloned cDNA for the pro-alpha 1(I) collagen gene. Marked changes in the amount of non-elastin protein synthesis accompanied differentiation and accounted for larger changes in relative synthesis. These results suggest that the phenotype of the cells of the porcine artery wall is distinct in different regions of this organ at this developmental stage.  相似文献   

7.
We have colocalized elastin and fibrillin-1 with perlecan in extracellular matrix of tensional and weight-bearing connective tissues. Elastin and fibrillin-1 were identified as prominent components of paraspinal blood vessels, and posterior longitudinal ligament in the human fetal spine and outer annulus fibrosus of the fetal intervertebral disc. We also colocalized perlecan with a synovial elastic basal lamina, where the attached synovial cells were observed to produce perlecan. Elastin, fibrillin-1 and perlecan were co-localized in the intima and media of small blood vessels in the synovium and in human fetal paraspinal blood vessels. Elastic fibers were observed at the insertion point of the anterior cruciate ligament to bone in the ovine stifle joint where they colocalized with perlecan. Elastin has not previously been reported to be spatially associated with perlecan in these tissues. Interactions between the tropoelastin and perlecan heparan sulfate chains were demonstrated using quartz crystal microbalance with dissipation solid phase binding studies. Electrostatic interactions through the heparan sulfate chains of perlecan and core protein mediated the interactions with tropoelastin, and were both important in the coacervation of tropoelastin and deposition of elastin onto perlecan immobilized on the chip surface. This may help us to understand the interactions which are expected to occur in vivo between the tropoelastin and perlecan to facilitate the deposition of elastin and formation of elastic microfibrils in situ and would be consistent with the observed distributions of these components in a number of connective tissues.  相似文献   

8.
Several in vitro studies have previously demonstrated that the addition of TGF-β to aortic smooth muscle cells or skin fibroblasts stimulates elastin synthesis. It is not clear however whether, in vivo, TGF-β participates in the regulation of elastin synthesis, especially in physiological conditions. The aim of our study was to explore the localization of elastin mRNA and TGF-β1 in the rat thoracic aorta (an elastic artery) and caudal artery (a muscular artery). Elastin mRNA was localized by in situ hybridization and quantified using Northern blot analysis. TGF-β1 was detected using immunohistochemistry. The study was carried out as a function of age (rats of 3, 10, 20, and 30 months). We observed that TGF-β1 immunoreactivity is present predominantly, but not exclusively, at the sites of elastin synthesis as determined by elastin mRNA detection: in smooth muscle cells in the aorta and in endothelial cells in the caudal artery. The ability of exogenously added TGF-β1 (0.001–10 ng/ml) to modulate the steady-state levels of elastin mRNA in primary cultures of endothelial cells, smooth muscle cells, and fibroblasts isolated from the thoracic aorta was also studied. At the highest concentration used, elastin mRNA levels increased 5-fold in endothelial cells and 11-fold in smooth muscle cells. The demonstration that TGF-β1 immunoreactivity is present at the sites of elastin synthesis in the thoracic aorta and in the caudal artery and the observation that TGF-β1 induces an increase in elastin mRNA levels in cultured endothelial cells and smooth muscle cells suggest that TGF-β1 may be implicated, at least in part, in the physiological regulation of elastin gene expression.  相似文献   

9.
Relaxin modulates connective tissue remodeling by altering matrix molecule expression. We have found that relaxin specifically inhibits a microfibril component, fibrillin 2 (FBN2), without affecting fibrillin 1 (FBN1). Human dermal fibroblasts (HDFs) grown or stimulated to overexpress fibrillin expression were used to show that relaxin specifically down-regulated FBN2 mRNA and protein levels. Continuous exposure of HDFs to relaxin (30ng/ml) significantly (P<0.05) decreased fibrillin 2 protein (40%) while FBN1 protein expression was unchanged. Our in vitro studies were confirmed using relaxin null mice whereby the absence of relaxin was associated with increased FBN2 mRNA and protein in fetal skin from pregnant relaxin knockout mice. The regulation of FBN2 expression may be associated with functional changes in elastic tissues during development and growth.  相似文献   

10.
Elastin is the major extracellular matrix protein of large arteries such as the aorta, imparting characteristics of extensibility and elastic recoil. Once laid down in tissues, polymeric elastin is not subject to turnover, but is able to sustain its mechanical resilience through thousands of millions of cycles of extension and recoil. Elastin consists of ca. 36 domains with alternating hydrophobic and cross-linking characteristics. It has been suggested that these hydrophobic domains, predominantly containing glycine, proline, leucine and valine, often occurring in tandemly repeated sequences, are responsible for the ability of elastin to align monomeric chains for covalent cross-linking. We have shown that small, recombinantly expressed polypeptides based on sequences of human elastin contain sufficient information to self-organize into fibrillar structures and promote the formation of lysine-derived cross-links. These cross-linked polypeptides can also be fabricated into membrane structures that have solubility and mechanical properties reminiscent of native insoluble elastin. Understanding the basis of the self-organizational ability of elastin-based polypeptides may provide important clues for the general design of self-assembling biomaterials.  相似文献   

11.
12.
Elastic fibers provide recoil to tissues that undergo repeated stretch, such as the large arteries and lung. These large extracellular matrix (ECM) structures contain numerous components, and our understanding of elastic fiber assembly is changing as we learn more about the various molecules associated with the assembly process. The main components of elastic fibers are elastin and microfibrils. Elastin makes up the bulk of the mature fiber and is encoded by a single gene. Microfibrils consist mainly of fibrillin, but also contain or associate with proteins such as microfibril associated glycoproteins (MAGPs), fibulins, and EMILIN-1. Microfibrils were thought to facilitate alignment of elastin monomers prior to cross-linking by lysyl oxidase (LOX). We now know that their role, as well as the overall assembly process, is more complex. Elastic fiber formation involves elaborate spatial and temporal regulation of all of the involved proteins and is difficult to recapitulate in adult tissues. This report summarizes the known interactions between elastin and the microfibrillar proteins and their role in elastic fiber assembly based on in vitro studies and evidence from knockout mice. We also propose a model of elastic fiber assembly based on the current data that incorporates interactions between elastin, LOXs, fibulins and the microfibril, as well as the pivotal role played by cells in structuring the final functional fiber.  相似文献   

13.
Mutations in the microfibrillar protein fibrillin-1 or the absence of its binding partner microfibril-associated glycoprotein (MAGP1) lead to increased TGFβ signaling due to an inability to sequester latent or active forms of TGFβ, respectively. Mouse models of excess TGFβ signaling display increased adiposity and predisposition to type-2 diabetes. It is therefore interesting that individuals with Marfan syndrome, a disease in which fibrillin-1 mutation leads to aberrant TGFβ signaling, typically present with extreme fat hypoplasia. The goal of this project was to characterize multiple fibrillin-1 mutant mouse strains to understand how fibrillin-1 contributes to metabolic health. The results of this study demonstrate that fibrillin-1 contributes little to lipid storage and metabolic homeostasis, which is in contrast to the obesity and metabolic changes associated with MAGP1 deficiency. MAGP1 but not fibrillin-1 mutant mice had elevated TGFβ signaling in their adipose tissue, which is consistent with the difference in obesity phenotypes. However, fibrillin-1 mutant strains and MAGP1-deficient mice all exhibit increased bone length and reduced bone mineralization which are characteristic of Marfan syndrome. Our findings suggest that Marfan-associated adipocyte hypoplasia is likely not due to microfibril-associated changes in adipose tissue, and provide evidence that MAGP1 may function independently of fibrillin in some tissues.  相似文献   

14.
Elastic tissue is composed of amorphous-appearing elastin and 12-nm diameter microfibrils, one component of which has recently been isolated and characterized as the 31 KD microfibril-associated glycoprotein MAGP. Monospecific antibodies to each of these components have been developed in this laboratory. The parameters that determine optimal localization of colloidal gold probes for post-embedding immunolabeling of elastic tissue components have been systematically studied in a variety of normal and developing tissues in mammals and birds. Protein A-gold probes stabilized with dextran have been shown to provide complexes that remain stable after more than 2 years. Conditions have been defined that permit precise localization within the extracellular matrix of antibodies to MAGP and to elastin, singly and together. Best results were obtained with acrylic resins (Lowicryl K4M or LR White). Fixation in glutaraldehyde or other aldehydic fixatives, with or without osmium, did not affect the immunostaining of elastic tissue with affinity-purified antibodies to tropoelastin, or to anti-[alpha-elastin] or anti-[alkali-insoluble elastin]. Immunostaining with the anti-MAGP antibody was less robust and was possible in tissues which had been fixed only lightly before embedding in Lowicryl K4M or LR White. This staining was enhanced by metaperiodate oxidation of the sections as well as by reduction of the tissues with sodium borohydride en bloc, followed by hyaluronidase digestion of the sections. The effects on immunostaining of a range of enzyme digestions have also been examined. Conditions have thus been defined that make possible detailed study of the relationship between elastic tissue, elastin-associated microfibrils, and other microfibrillar structures in normal and abnormal tissues during development and aging.  相似文献   

15.
16.
The temporal expression of elastogenesis is unique among connective tissues in that elastin production occurs primarily during late fetal and early neonatal periods and is essentially fully repressed once fiber assembly is completed. To test whether elastin synthesis in adult nuchal ligament fibroblasts is permanently repressed or whether the cells retain the ability to reinitiate production upon proper stimulation, we examined in adult ligament cells various parameters known to be involved in the regulation of elastin production. Elastin synthetic capacity, as determined by the levels of steady-state tropoelastin mRNA, of adult tissue was significantly decreased relative to fetal tissue. Likewise, fibroblasts grown from explants of adult ligament had about a fourfold decrease in elastin production and elastin-specific mRNA levels. On the other hand, adult cells were similar to fetal ligament cells in that they were sensitive to glucocorticoid stimulation and demonstrated chemotactic responsiveness to elastin peptides. Since our previous studies have shown that the extracellular matrix (ECM) plays an important role in influencing elastin phenotypic expression, fetal and adult fibroblasts were grown on slices of nonviable adult ligament to test if repression of elastin production was directed by factors in ECM of adult tissues. No change in elastin synthesis was detected with either cell type grown on adult ligament, whereas both fetal and adult cells demonstrated increased elastin production in response to contact with fetal ligament. These results suggest that adult ligament ECM does not provide a metabolic signal to shut off the elastin gene and that adult cells remain responsive to external stimuli that may reinitiate high levels of elastin synthesis.  相似文献   

17.
Elastin is the principal protein component of the elastic fiber in vertebrate tissue. The waters of hydration in the elastic fiber are believed to play a critical role in the structure and function of this largely hydrophobic, amorphous protein. (13)C CPMAS NMR spectra are acquired for elastin samples with different hydration levels. The spectral intensities in the aliphatic region undergo significant changes as 70% of the water in hydrated elastin is removed. In addition, dramatic differences in the CPMAS spectra of hydrated, lyophilized, and partially dehydrated elastin samples over a relatively small temperature range (-20 degrees C to 37 degrees C) are observed. Results from other experiments, including (13)C T(1) and (1)H T(1 rho) measurements, direct polarization with magic-angle spinning, and static CP of the hydrated and lyophilized elastin preparations, also support the model that there is significant mobility in fully hydrated elastin. Our results support models in which water plays an integral role in the structure and proper function of elastin in vertebrate tissue.  相似文献   

18.
Tropoelastin     
Tropoelastin is a 60-72 kDa alternatively spliced extracellular matrix protein and a key component of elastic fibres. It is found in all vertebrates except for cyclostomes. Secreted tropoelastin is tethered to the cell surface, where it aggregates into organised spheres for cross-linking and incorporation into growing elastic fibres. Tropoelastin is characterised by alternating hydrophobic and hydrophilic domains and is highly flexible. The conserved C-terminus is an area of the molecule of particular biological importance in that it is required for both incorporation into elastin and for cellular interactions. Mature cross-linked tropoelastin gives elastin, which confers resilience and elasticity on a diverse range of tissues. Elastin gene disruptions in disease states and knockout mice emphasise the importance of proper tropoelastin production and assembly, particularly in vascular tissue. Tropoelastin constructs hold promise as biomaterials as they mimic many of elastin's physical and biological properties with the capacity to replace damaged elastin-rich tissue.  相似文献   

19.
To elucidate the molecular mechanism involved in the suppression of keloids and hypertrophic scars by tranilast, we investigated the target protein of tranilast in bovine skin and aorta. A specific tranilast-binding protein was isolated from both tissues by drug affinity chromatography and was identified as 36-kDa microfibril-associated glycoprotein (36-kDa MAGP). Binding of 36-kDa MAGP to tranilast seemed to be specific since 36-kDa MAGP could be eluted from the drug affinity column by tranilast itself and also binding of 36-kDa MAGP to other anti-allergy drugs (amlexanox and cromolyn) is significantly weaker than that to tranilast. Light and electron microscopic immunohistochemistry detected the protein at the periphery of elastic fibers in normal human skin. In hypertrophic scar tissue, however, 36-kDa MAGP was located on small bundles of microfibrils. These findings provide support for the concept that elastogenesis occurs in scar tissue and 36-kDa MAGP might be one of the targets for tranilast.  相似文献   

20.
Summary Mutations in the gene coding for the ABC transporter, ABCC6, in humans cause Pseudoxanthoma elasticum, which is characterized by the deposition of aberrant elastic fibers. To investigate whether the presence of ABCC6 in tissues synthesizing elastin is required for elastin deposition and elastic fiber assembly, we have compared the steady-state levels and tissue distribution of Abcc6 and tropoelastin mRNAs during mouse embryogenesis. Whereas tropoelastin mRNA levels rose during embryogenesis and were the highest in neonatal mice, Abcc6 mRNA levels remained constantly low throughout embryogenesis. In some tissues, both Abcc6 and tropoelastin mRNA were detected. However, Abcc6 mRNA and protein were not detected in neonatal aorta and arteries, which produce large amounts of elastin indicating that the presence of Abcc6 in elastic tissues is not required for elastic fiber assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号