首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meetam M  Keren N  Ohad I  Pakrasi HB 《Plant physiology》1999,121(4):1267-1272
A tetra-manganese cluster in the photosystem II (PSII) pigment-protein complex plays a critical role in the photosynthetic oxygen evolution process. PsbY, a small membrane-spanning polypeptide, has recently been suggested to provide a ligand for manganese in PSII (A.E. Gau, H.H. Thole, A. Sokolenko, L. Altschmied, R.G. Herrmann, E.K. Pistorius [1998] Mol Gen Genet 260: 56-68). We have constructed a mutant strain of the cyanobacterium Synechocystis sp. PCC 6803 with an inactivated psbY gene (sml0007). Southern-blot and polymerase chain reaction analysis showed that the mutant had completely segregated. However, the DeltapsbY mutant cells grew normally under photoautotrophic conditions. Moreover, growth of the wild-type and mutant cells were similar under high-light photoinhibition conditions, as well as in media without any added manganese, calcium, or chloride, three required inorganic cofactors for the oxygen-evolving complex of PSII. Analysis of steady-state and flash-induced oxygen evolution, fluorescence induction, and decay kinetics, and thermoluminescence profiles demonstrated that the DeltapsbY mutant cells have normal photosynthetic activities. We conclude that the PsbY protein in Synechocystis 6803 is not essential for oxygenic photosynthesis and does not provide an important binding site for manganese in the oxygen-evolving complex of PSII.  相似文献   

2.
Photosystem II (PSII) is a large membrane protein complex that catalyzes oxidation of water to molecular oxygen. During its normal function, PSII is damaged and frequently turned over. The maturation of the D1 protein, a key component in PSII, is a critical step in PSII biogenesis. The precursor form of D1 (pD1) contains a C-terminal extension, which is removed by the protease CtpA to yield PSII complexes with oxygen evolution activity. To determine the temporal position of D1 processing in the PSII assembly pathway, PSII complexes containing only pD1 were isolated from a CtpA-deficient strain of the cyanobacterium Synechocystis 6803. Although membranes from the mutant cell had nearly 50% manganese, no manganese was detected in isolated DeltactpAHT3 PSII, indicating a severely decreased manganese affinity. However, chlorophyll fluorescence decay kinetics after a single saturating flash suggested that the donor Y(Z) was accessible to exogenous Mn(2+) ions. Furthermore, the extrinsic proteins PsbO, PsbU, and PsbV were not present in PSII isolated from this mutant. However, PsbO and PsbV were present in mutant membranes, but the amount of PsbV protein was consistently less in the mutant membranes compared with the control membranes. We conclude that D1 processing precedes manganese binding and assembly of the extrinsic proteins into PSII. Interestingly, the Psb27 protein was found to be more abundant in DeltactpAHT3 PSII than in HT3 PSII, suggesting a possible role of Psb27 as an assembly factor during PSII biogenesis.  相似文献   

3.
A Synechocystis 6803 mutant carrying a chimaeric photosystem II (PSII), in which the Zea mays PsbH subunit (7.7 kDa calculated molecular mass) replaces the cyanobacterial copy (7.0 kDa), was constructed. With the exception of the N-terminal 12 amino acid extension, which has a phosphorylatable threonine, the eukaryotic polypeptide is 78% homologous to its bacterial counterpart. Biochemical characterization of this mutant shows that it expresses the engineered gene correctly and is competent for photoautotrophic growth. Fluorescence analysis and oxygen evolution measurements in the presence of exogenous acceptors indicate that the observed phenotype results from a chimaeric PSII rather than from the absence of function associated with PsbH, suggesting that the heterologous protein is assembled into a functional PSII. Inhibition of oxygen evolution by herbicides belonging to different classes shows that the sensitivity of the mutant PSII is changed only towards phenolic compounds. This result indicates slight conformational modification of the QB/herbicide binding pocket of the D1 polypeptide caused by the bulky PsbH protein in the mutant, and also suggests close structural interaction of the D1 and PsbH subunits in the topological arrangement of PSII.  相似文献   

4.
The role of D2-Tyr160 (Y(D)), a photooxidizable residue in the D2 reaction center polypeptide of photosystem II (PSII), was investigated in both wild type and a mutant strain (D2-Tyr160Phe) in which phenylalanine replaces Y(D) in the cyanobacterium Synechocystis sp. (strain PCC 6803). Y(D) is the symmetry-related tyrosine that is homologous to the essential photoactive Tyr161(Y(Z)) of the D1 polypeptide of PSII. We compared the flash-induced yield of O(2) in intact, functional PSII centers from both wild-type and mutant PSII core complexes. The yield of O(2) in the intact holo-enzyme was found to be identical in the mutant and wild-type PSII cores using long (saturating) pulses or continuous illumination, but was observed to be appreciably reduced in the mutant using short (nonsaturating) light pulses (<50 ms). We also compared the rates of the first two kinetically resolved steps of photoactivation. Photoactivation is the assembly process for binding of the inorganic cofactors to the apo-water oxidation/PSII complex (apo-WOC-PSII) and their light-induced photooxidation to form the functional Mn(4)Ca(1)Cl(x)() core required for O(2) evolution. We show that the D2-Tyr160Phe mutant cores can assemble a functional WOC from the free inorganic cofactors, but at a much slower rate and with reduced quantum efficiency vs wild-type PSII cores. Both of these observations imply that the presence of Y(D)(*) leads to a more efficient photooxidation of the Mn cluster relative to deactivation (reductive processes). One possible explanation for this behavior is that the phenolic proton on Y(D) is retained within the reaction center following Y(D) oxidation. The positive charge, likely shared by D2-His189 and other residues, raises the reduction potential of P(680)(+)/P(680), thereby increasing the driving force for the oxidation of Mn(4)Y(Z). There is, therefore, a competitive advantage to organisms that retain the Y(D) residue, possibly explaining its retention in all sequences of psbD (encoding the D2 polypeptide) known to date. We also find that the sequence of metal binding steps during assembly of apo-WOC-PSII centers in cyanobacteria cores differs from that in higher plants. This is seen by a reduced calcium affinity at its effector site and reduced competition for binding to the Mn(II) site, resulting in acceleration of the initial lagtime by Ca(2+), in contrast to retardation in spinach. Ca(2+) binding to its effector site promotes the stability of the photointermediates (IM1 and above) by suppressing unproductive decay.  相似文献   

5.
The photosystem II (PSII) reaction center complex coordinates a cluster of Mn atoms that are involved in the accumulation of oxidizing equivalents generated by light-induced charge separations within the intrinsic portion of the PSII complex. A 33-kDa extrinsic protein, termed the Mn-stabilizing protein (MSP), has been implicated in the stabilization of two of the four Mn atoms of the cluster, yet the precise role of this protein in O2 evolution remains to be elucidated. Here we describe the construction of a mutant of the cyanobacterium Synechocystis sp. PCC6803 in which the entire gene encoding MSP has been deleted. Northern and immunoblot analyses indicate that other PSII proteins are expressed and accumulated, despite the absence of MSP. Fluorescence emission spectra at 77 K indicate PSII assembles in the mutant, but that the binding of MSP is required for the normal fluorescence characteristics of the PSII complex, and suggest a specific interaction between MSP and CP47. Fluorescence induction measurements indicate a reduced rate of forward electron transport to the primary electron donor, P680, in the mutant. It is concluded that in contrast to previous reports, MSP is not required for the assembly of active PSII complexes nor is it essential for H2O-splitting activity in vivo.  相似文献   

6.
The photosystem II (PSII) complex of photosynthetic oxygen evolving membranes comprises a number of small proteins whose functions remain unknown. Here we report that the low molecular weight protein encoded by the psbJ gene is an intrinsic component of the PSII complex. Fluorescence kinetics, oxygen flash yield, and thermoluminescence measurements indicate that inactivation of the psbJ gene in Synechocystis 6803 cells and tobacco chloroplasts lowers PSII-mediated oxygen evolution activity and increases the lifetime of the reduced primary acceptor Q(A)(-) (more than a 100-fold in the tobacco DeltapsbJ mutant). The decay of the oxidized S(2,3) states of the oxygen-evolving complex is considerably accelerated, and the oscillations of the Q(B)(-)/S(2,3) recombination with the number of exciting flashes are damped. Thus, PSII can be assembled in the absence of PsbJ. However, the forward electron flow from Q(A)(-) to plastoquinone and back electron flow to the oxidized Mn cluster of the donor side are deregulated in the absence of PsbJ, thereby affecting the efficiency of PSII electron flow following the charge separation process.  相似文献   

7.
CP43, a component of Photosystem II (PSII) in higher plants, algae and cyanobacteria, is encoded by the psbC gene. Previous work demonstrated that alteration of an arginine residue occurring at position 305 to serine produced a strain (R305S) with altered PSII characteristics including lower oxygen-evolving activity, fewer assembled reaction centers, higher sensitivity to photoinactivation, etc. [Biochemistry 38 (1999) 1582]. Additionally, it was determined that the mutant exhibited an enhanced stability of its S2 state. Recently, we observed a significant chloride effect under chloride-limiting conditions. The mutant essentially lost the ability to grow photoautotrophically, assembled fewer fully functional PSII reaction centers and exhibited a very low rate of oxygen evolution. Thus, the observed phenotype of this mutation is very similar to that observed for the Delta(psb)V mutant, which lacks cytochrome c550 (Biochemistry 37 (1998) 1551). A His-tagged version of the R305S mutant was produced to facilitate the isolation of PSII particles. These particles were analyzed for the presence of cytochrome c550. Reduced minus oxidized difference spectroscopy and chemiluminescence examination of Western blots indicated that cytochrome c550 was absent in these PSII particles. Whole cell extracts from the R305S mutant, however, contained a similar amount of cytochrome c550 to that observed in the control strain. These results indicate that the mutation R305S in CP43 prevents the strong association of cytochrome c550 with the PSII core complex. We hypothesize that this residue is involved in the formation of the binding domain for the cytochrome.  相似文献   

8.
Washing spinach PSII oxygen-evolution complex (OEC) with 2 mmol/L EGTA or extraction medium caused a 28.4% and 25.0% loss of oxygen evolution activities respectively, but the loss of polypeptide components of OEC did not take place, whereas washing with 1 mol/L NaCI caused both a 90.0% loss of oxygen evolution activity and loss of 17, 23kD polypeptides. Adding 5–10 mmol/L CaC12 could restore oxygen evolution activities of OEC by various washing to a great extent, but had no effect on control OEC, whereas adding 5–10 mmol/L EGTA had no effect on the OEC by various' washing, but caused the loss of oxygen evolution mixtures, which could induce the release of of 17, 23kD polypeptides from OEC, caused 54.3% loss of oxygen evolution activity, under this circumstance, adding 2 mmol/L of EGTA could only maintain a weak oxygen evolution activity of OEC, but adding 10 mmol/L of CaCl2 could restore oxygen evolution activity of OEC to the control level. These findings' suggest a two way loose binding of Ga2+ to PSⅡ OEC in one way Ca2+ is loose bound to the surface of PSⅡOEC and in other, the Ca2+-binding site is wrapped by 17, 23kD polypeptides. Both of them have effect on oxygen evolution activity of PSⅡ OEC. By way, Mn2+ can antagonize the restoration of oxygen evolution activity by Ca2+ to the NaCl-washing PSⅡ OEC.  相似文献   

9.
Photosystem II (PSII) is a large membrane protein complex that uses light energy to convert water to molecular oxygen. This enzyme undergoes an intricate assembly process to ensure accurate and efficient positioning of its many components. It has been proposed that the Psb27 protein, a lumenal extrinsic subunit, serves as a PSII assembly factor. Using a psb27 genetic deletion strain (Deltapsb27) of the cyanobacterium Synechocystis sp. PCC 6803, we have defined the role of the Psb27 protein in PSII biogenesis. While the Psb27 protein was not essential for photosynthetic activity, various PSII assembly assays revealed that the Deltapsb27 mutant was defective in integration of the Mn(4)Ca(1)Cl(x) cluster, the catalytic core of the oxygen-evolving machinery within the PSII complex. The other lumenal extrinsic proteins (PsbO, PsbU, PsbV, and PsbQ) are key components of the fully assembled PSII complex and are important for the water oxidation reaction, but we propose that the Psb27 protein has a distinct function separate from these subunits. We show that the Psb27 protein facilitates Mn(4)Ca(1)Cl(x) cluster assembly in PSII at least in part by preventing the premature association of the other extrinsic proteins. Thus, we propose an exchange of lumenal subunits and cofactors during PSII assembly, in that the Psb27 protein is replaced by the other extrinsic proteins upon assembly of the Mn(4)Ca(1)Cl(x) cluster. Furthermore, we show that the Psb27 protein provides a selective advantage for cyanobacterial cells under conditions such as nutrient deprivation where Mn(4)Ca(1)Cl(x) cluster assembly efficiency is critical for survival.  相似文献   

10.
Photosystem II (PSII) reaction center core complexes have been isolated and characterized from wild type (WT) Scenedesmus obliquus and from its LF-1 mutant. LF-1 thylakoids are blocked on the oxidizing side of PSII and have a reduced Mn content. Visible absorption and low temperature fluorescence spectra of both core complexes are identical and resemble those reported for spinach (Satoh, Butler 1978 Plant Physiol 61: 373-379). Lithium dodecyl sulfate-polycrylamide gel electrophoresis reveals that a protein alteration, originally observed in thylakoid membranes (Metz, Wong, Bishop 1980 FEBS Lett 114: 61-66), is retained in the PSII core particles. That is, a 34-kilodalton (kD) polypeptide, present in the WT core complex, is missing in the mutant, and the core complex of the mutant contains a 36-kD protein not present in the WT. The 34-kD intrinsic protein is also observed in O2-evolving PSII preparations and PSII core complexes from spinach. It is distinct from the 33-kD extrinsic protein first reported by T. Kuwabara and N. Murata (1979 Biochim Biophys Acta 581: 228-236). We suggest that the 34-kD protein is a site of Mn binding in the PSII membrane.  相似文献   

11.
PsbZ (Ycf9) is a membrane protein of PSII complexes and is highly conserved from cyanobacteria to plants. We deleted the psbZ gene in the thermophilic cyanobacterium, Thermosynechococcus elongatus. The mutant cells showed photoautotrophic growth indistinguishable from that of the wild type under low and standard light conditions, while they showed even better growth than the wild type under high light. The mutant accumulated less carotenoids and more phycobiliproteins than the wild type under high light, suggestive of tolerance to photoinhibition. The mutant cells evolved oxygen at a rate comparable with the wild type, while the PSII complex isolated from the mutant retained much lower activity than the wild type. N-terminal sequencing revealed that Ycf12 and PsbK proteins were almost lost in the PSII complex. These results indicate that PsbZ is involved in functional integrity of the PSII complex by stabilizing PsbK and Ycf12. We suggest that Ycf12 is an unidentified membrane-spanning polypeptide that is placed near PsbZ and PsbK in the crystal structure of PSII.  相似文献   

12.
Isotope-edited FTIR difference spectroscopy was employed to determine if the C-terminal alpha-COO(-) group of the D1 polypeptide ligates the (Mn)(4) cluster in photosystem II (PSII) and, if so, if it ligates the Mn ion that undergoes an oxidation during the S(1) --> S(2) transition. Wild-type and mutant cells of the cyanobacterium Synechocystis sp. PCC 6803 were propagated photoautotrophically in the presence of L-[1-(13)C]alanine or unlabeled ((12)C) L-alanine. In wild-type cells, both the C-terminal alpha-COO(-) group of the D1 polypeptide at D1-Ala344 and all alanine-derived peptide carbonyl groups will be labeled. In D1-A344G and D1-A344S mutant cells, the C-terminal alpha-COO(-) group of the D1 polypeptide will not be labeled because this group is no longer provided by alanine. The resultant S(2)-minus-S(1) FTIR difference spectra of purified wild-type and mutant PSII particles showed that one symmetric carboxylate stretching mode that is altered during the S(1) --> S(2) transition is sensitive to L-[1-(13)C]alanine-labeling in wild-type PSII particles but not in D1-A344G and D1-A344S PSII particles. Because the only carboxylate group that can be labeled in the wild-type PSII particles but not in the mutant PSII particles is the C-terminal alpha-COO(-) group of the D1 polypeptide, we assign the L-[1-(13)C]alanine-sensitive symmetric carboxylate stretching mode to the alpha-COO(-) group of D1-Ala344. In unlabeled wild-type PSII particles, this mode appears at approximately 1356 cm(-1) in the S(1) state and at approximately 1339 or approximately 1320 cm(-1) in the S(2) state. These frequencies are consistent with unidentate ligation of the (Mn)(4) cluster by the alpha-COO(-) group of D1-Ala344 in both the S(1) and S(2) states. The apparent 17-36 cm(-1) downshift in frequency in response to the S(1) --> S(2) transition is consistent with the alpha-COO(-) group of D1-Ala344 ligating a Mn ion whose charge increases during the S(1) --> S(2) transition. Accordingly, we propose that the alpha-COO(-) group of D1-Ala344 ligates the Mn ion that undergoes an oxidation during the S(1) --> S(2) transition. Control experiments were conducted with Mn-depleted wild-type PSII particles. These experiments showed that tyrosine Y(D) may be structurally coupled to the carbonyl oxygen of an alanine-derived peptide carbonyl group.  相似文献   

13.
CP 47, a component of photosystem II (PSII) in higher plants, algae and cyanobacteria, is encoded by the psbB gene. Site-specific mutagenesis has been used to alter a portion of the psbB gene encoding the large extrinsic loop E of CP 47 in the cyanobacterium Synechocystis 6803. Alteration of a lysine residue occurring at position 321 to glycine produced a strain with altered PSII activity. This strain grew at wild-type rates in complete BG-11 media (480 µM chloride). However, oxygen evolution rates for this mutant in complete media were only 60% of the observed wild-type rates. Quantum yield measurements at low light intensities indicated that the mutant had 66% of the fully functional PSII centers contained in the control strain. The mutant proved to be extremely sensitive to photoinactivation at high light intensities, exhibiting a 3-fold increase in the rate of photoinactivation. When this mutant was grown in media depleted of chloride (30 µM chloride), it lost the ability to grow photoautotrophically while the control strain exhibited a normal rate of growth. The effect of chloride depletion on the growth rate of the mutant was reversed by the addition of 480 µM bromide to the chloride-depleted BG-11 media. In the presence of glucose, the mutant and control strains grew at comparable rates in either chloride-containing or chloride-depleted media. Oxygen evolution rates for the mutant were further depressed (28% of control rates) under chloride-limiting conditions. Addition of bromide restored these rates to those observed under chloride-sufficient conditions. Measurements of the variable fluorescence yield indicated that the mutant assembled fewer functional centers in the absence of chloride. These results indicate that the mutation K321G in CP 47 affects PSII stability and/or assembly under conditions where chloride is limiting.  相似文献   

14.
The psbC gene encodes CP43, a component of Photosystem II (PSII) in higher plants, algae, and cyanobacteria. Previous work demonstrated that alteration of an arginine residue occurring at position 305 to serine produced a strain (R305S) with altered PSII activity (Knoepfle, N., Bricker, T. M., and Putnam-Evans, C. (1999) Biochemistry 38, 1582-1588). This strain grew at wild-type rates in complete BG-11 media (480 microM chloride) and evolved oxygen at rates that were 60-70% of the observed wild-type rates. The R305S strain assembled approximately 70-80% of the functional PSII centers contained in the control strain, and these PSII centers were very sensitive to photoinactivation at high light intensities. We recently observed that the R305S mutant exhibited a pronounced chloride effect. When this mutant was grown in media depleted of chloride (30 microM chloride), it exhibited a severely reduced photoautotrophic growth rate. The effect of chloride depletion on the growth rate of the mutant was reversed by the addition of 480 microM bromide to the chloride-depleted BG-11 media. Oxygen evolution rates for the mutant were further depressed to about 22% of that observed in control cells under chloride-limiting conditions. Addition of bromide restored these rates to those observed under chloride-sufficient conditions. The mutant exhibited a significantly lower relative quantum yield for oxygen evolution than did the control strain, and this was exacerbated under chloride-limiting conditions. Fluorescence yield measurements indicated that both the mutant and the control strains assembled fewer PSII reaction centers under chloride-limiting conditions. The reaction centers assembled by the mutant exhibited an enhanced sensitivity to photoinactivation under chloride-limiting conditions, with a t(1/2) of photoinactivation of 2.6 min under chloride-limiting conditions as compared to a t(1/2) of 4.7 min under normal growth conditions. The mutant also exhibited an enhanced stability of its S(2) state and increased number of centers in the S(1) state following dark incubation. These results indicate that the mutant R305S exhibits a defect in its ability to utilize chloride in support of efficient oxygen evolution in PSII. This is the first mutant of this type described in the CP43 protein.  相似文献   

15.
P J Nixon  B A Diner 《Biochemistry》1992,31(3):942-948
Eleven site-directed mutations were constructed at aspartate 170 of the D1 polypeptide of the photosystem II (PSII) reaction center of the cyanobacterium Synechocystis sp. PCC 6803. The light-saturated rates of O2 evolution (VO2) measured in whole cells range from close to that of wild-type for Asp170Glu to zero for Asp170Ser and Ala. Those mutant strains that are best able to evolve O2 are also those that show the lowest Km in PSII core complexes for the oxidation of Mn2+ by oxidized Tyr161, the normal oxidant of the Mn cluster responsible for O2 evolution. To a first approximation, the lower the pKa of the residue at position 170, the higher the VO2 and the lower the Km. D1-Asp170 appears to participate in the early steps associated with the assembly of the Mn cluster. It is also the first reported example of an amino acid residue critical to the function and assembly of the oxygen-evolving complex.  相似文献   

16.
M Miyao  Y Inoue 《Biochemistry》1991,30(22):5379-5387
The Mn cluster that catalyzes photosynthetic oxygen evolution was removed from the photosystem II (PSII) complex by treating PSII membranes with 1.0 mM NH2OH with concomitant inactivation of oxygen evolution. The cluster was reconstituted by incubating the treated membranes with 1.0 mM Mn2+, 20 mM Ca2+, 10 microM 2,6-dichlorophenolindophenol, and Cl- under illumination with continuous or flashing light to restore the oxygen-evolving capacity. This light-dependent activation (photoactivation) of oxygen evolution did not occur to a significant extent at 3 mM Cl-, but markedly accelerated at higher Cl- concentrations without showing a saturation phenomenon even at 1 M Cl-. At 10 mM Cl- only about 10% of the oxygen-evolving activity before NH2OH treatment was restored by 5-min illumination with continuous light, whereas at 600 mM Cl- about 60% of the original activity was recovered. This acceleration resulted from at least two different actions of Cl-: (1) stabilization of the intermediate state involved in the photoactivation process and (2) increase in the quantum yield of photoactivation. The stabilization of the intermediate was saturated at about 150 mM Cl-, whereas the increase in yield did not show saturation. The Cl(-)-induced increase in quantum yield did not involve any changes in the affinity of either Mn2+ binding or Ca2+ binding for photoactivation, but was rather ascribed to a protective effect of Cl- against inhibition of photoactivation by high concentrations of Mn2+. We also found that removal of the extrinsic 33-kDa protein from the PSII complex increased the Cl- requirement for photoactivation.  相似文献   

17.
Properties of the Photosystem II (PSII) complex were examined in the wild-type (control) strain of the cyanobacterium Synechocystis PCC 6803 and its site-directed mutant D1-His252Leu in which the histidine residue 252 of the D1 polypeptide was replaced by leucine. This mutation caused a severe blockage of electron transfer between the PSII electron acceptors Q(A) and Q(B) and largely inhibited PSII oxygen evolving activity. Strong illumination induced formation of a D1-cytochrome b-559 adduct in isolated, detergent-solubilized thylakoid membranes from the control but not the mutant strain. The light-induced generation of the adduct was suppressed after prior modification of thylakoid proteins either with the histidine modifier platinum-terpyridine-chloride or with primary amino group modifiers. Anaerobic conditions and the presence of radical scavengers also inhibited the appearance of the adduct. The data suggest that the D1-cytochrome adduct is the product of a reaction between the oxidized residue His(252) of the D1 polypeptide and the N-terminal amino group of the cytochrome alpha subunit. As the rate of the D1 degradation in the control and mutant strains is similar, formation of the adduct does not seem to represent a required intermediary step in the D1 degradation pathway.  相似文献   

18.
W Vermaas  J Charité  G Z Shen 《Biochemistry》1990,29(22):5325-5332
To probe the involvement of amino acid residues of the D2 protein in the water-splitting process in photosystem II, site-directed mutagenesis was applied to identify D2 residues that might contribute to binding the Mn cluster involved in oxygen evolution. Mutation of Glu-69 to Gln or Val in D2 of the cyanobacterium Synechocystis sp. PCC 6803 was found to lead to a loss of photoautotrophic growth. However, in cells of the Gln mutant (E69Q) a significant Hill reaction rate could be observed upon the start of illumination, but the oxygen evolution rate declined with a half-time of approximately 1 min. Addition of 1 mM Mn2+ stabilized oxygen evolution in E69Q thylakoids. Other divalent cations were ineffective in specific stabilization. When the water-splitting system was bypassed, the rate of electron transport remained stable during illumination, indicating that the inactivation of oxygen evolution is localized in the water-splitting complex. We interpret these observations to indicate that Glu-69 is a Mn ligand and that the loss of oxygen evolution in the E69Q mutant upon turnover of PS II is initiated by changes in the Mn cluster, possibly leading to Mn release from the water-splitting complex. The addition of exogenous Mn to E69Q thylakoids may help to keep the Mn cluster active for a longer time, perhaps by providing Mn to rebind in the cluster after release of one Mn and before the Mn cluster had disintegrated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The 'stay-green' mutation cytG in soybean ( Glycine max ) partially inhibits the degradation of the light-harvesting complex II (LHCII) and the associated chlorophyll during monocarpic senescence. cytG did not alter the breakdown of the cytochrome b 6/ f complex, thylakoid ATP synthase or components of Photosystem I. In contrast, cytG accelerated the loss of oxygen evolution activity and PSII reaction-centre proteins. These data suggest that LHCII and other thylakoid components are degraded by separate pathways. In leaves induced to senesce by darkness, cytG inhibited the breakdown of LHCII and chlorophyll, but it did not enhance the loss of PSII-core components, indicating that the accelerated degradation of PSII reaction centre proteins in cytG was light dependent. Illumination of mature and senescent leaves of wild-type soybean in the presence of an inhibitor (lincomycin) of chloroplast protein synthesis revealed that senescence per se did not affect the rate of photoinhibition in leaves. Likewise, mature leaves of the cytG mutant did not show more photoinhibition than wild-type leaves. However, in senescent cytG leaves, photoinhibition proceeded more rapidly than in the wild-type. We conclude that the cytG mutation enhances photoinhibition in senescing leaves, and photoinhibition causes the rapid loss of PSII reaction-centre proteins during senescence in cytG .  相似文献   

20.
Strains of Chlamydomonas reinhardtii lacking the PsaF gene or containing the mutation K23Q within the N-terminal part of PsaF are sensitive to high light (>400 microE m(-2) s(-1)) under aerobic conditions. In vitro experiments indicate that the sensitivity to high light of the isolated photosystem I (PSI) complex from wild type and from PsaF mutants is similar. In vivo measurements of photochemical quenching and oxygen evolution show that impairment of the donor side of PSI in the PsaF mutants leads to a diminished linear electron transfer and/or a decrease of photosystem II (PSII) activity in high light. Thermoluminescence measurements indicate that the PSII reaction center is directly affected under photo-oxidative stress when the rate of electron transfer becomes limiting in the PsaF-deficient strain and in the PsaF mutant K23Q. We have isolated a high light-resistant PsaF-deficient suppressor strain that has a high chlorophyll a/b ratio and is affected in the assembly of light-harvesting complex. These results indicate that under high light a functionally intact donor side of PSI is essential for protection of C. reinhardtii against photo-oxidative damage when the photosystems are properly connected to their light-harvesting antennae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号