首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To increase the DNA cleavage activity and the cell delivery of the bis(phenanthroline) DNA cleaver "3-Clip-Phen", conjugates between 3-Clip-Phen and the intercalators acridine and 6-chloro-2-methoxyacridine, through amino acid linkers of various length, were prepared. After complexation with CuCl(2), the ability of these conjugates to cleave phiX 174 DNA in the presence of a reductant and air was compared. The results indicated that (i) the coupling of 3-Clip-Phen to an acridine derivative increased the DNA cleavage efficiency of the copper complexes, (ii) the acridine derivatives were more active than 6-chloro-2-methoxyacridine derivatives, (iii) the linker length influenced cleavage efficiency, the highest DNA cleavage activity being obtained for an aminocaproic spacer.  相似文献   

2.
Alpha-diaminobutyric acid-linked hairpin polyamides   总被引:1,自引:0,他引:1  
A hairpin polyamide-chlorambucil conjugate linked by alpha-diaminobutyric acid (alpha-DABA) has been shown to have interesting biological properties in cellular and small animal models. Remarkably, this new class of hairpin polyamides has not been previously characterized with regard to energetics and sequence specificity. Herein we present a series of pyrrole-imidazole hairpin polyamides linked by alpha-DABA and compare them to polyamides containing the standard gamma-DABA turn unit. The alpha-DABA hairpins have overall decreased binding affinities. However, alpha-DABA polyamide-chlorambucil conjugates are sequence-specific DNA alkylators with increased specificities. Affinity cleavage studies of alpha-DABA polyamide-EDTA conjugates confirmed their preference for binding DNA in a forward hairpin conformation. In contrast, an unsubstituted glycine-linked polyamide prefers to bind in an extended binding mode. Thus, substitution on the turn unit locks the alpha-DABA polyamide into the forward hairpin binding motif.  相似文献   

3.
Copper–phenanthroline complexes oxidatively damage and cleave nucleic acids. Copper bis-phenanthroline and copper complexes of mono- and bis-phenanthroline conjugates are used as research tools for studying nucleic acid structure and binding interactions. The mechanism of DNA oxidation and cleavage by these complexes was examined using two copper–phenanthroline conjugates of the sequence-specific binding molecule, distamycin. The complexes contained either one or two phenanthroline units that were bonded to the DNA-binding domain through a linker via the 3-position of the copper ligand. A duplex containing independently generated 2-deoxyribonolactone facilitated kinetic analysis of DNA cleavage. Oxidation rate constants were highly dependent upon the ligand environment but rate constants describing elimination of the alkali-labile 2-deoxyribonolactone intermediate were not. Rate constants describing DNA cleavage induced by each molecule were 11–54 times larger than the respective oxidation rate constants. The experiments indicate that DNA cleavage resulting from β-elimination of 2-deoxyribonolactone by copper–phenanthroline complexes is a general mechanism utilized by this family of molecules. In addition, the experiments confirm that DNA damage mediated by mono- and bis-phenanthroline copper complexes proceeds through distinct species, albeit with similar outcomes.  相似文献   

4.
5.
A novel conjugate of 3-Clip-Phen and polyamide containing three N-methylimidazole (Im) rings was synthesized for the targeting human telomeric repeat of 5'-TTAGGG-3', and the DNA cleaving activity and the sequence selectivity of the complex of copper-conjugate were confirmed by electrospray ionization mass spectrometry.  相似文献   

6.
Bis-conjugates of hairpin N-methylpyrrole/N-methylimidazole oligocarboxamide minor groove binders (MGB) possessing enhanced affinity and sequence-specificity for dsDNA were synthesized. Two hairpin MGBs were connected by their N-termini via an aminodiacetate linker. The binding of bis-MGB conjugates to the target DNA was studied by gel mobility retardation, footprinting, and circular dichroism; their affinity and binding mode in the DNA minor groove were determined. In order to functionalize the bis-MGB conjugates, DNA-cleaving agents such as phenanthroline or bipyridine were attached. Effective site-specific cleavage of target DNA in the presence of Cu(2+) ions was observed.  相似文献   

7.
Topoisomerase I is an ubiquitous DNA-cleaving enzyme and an important therapeutic target in cancer chemotherapy for camptothecins as well as for indolocarbazole antibiotics such as rebeccamycin. To achieve a sequence-specific cleavage of DNA by topoisomerase I, a triple helix-forming oligonucleotide was covalently linked to indolocarbazole-type topoisomerase I poisons. The three indolocarbazole-oligonucleotide conjugates investigated were able to direct topoisomerase I cleavage at a specific site based upon sequence recognition by triplex formation. The efficacy of topoisomerase I-mediated DNA cleavage depends markedly on the intrinsic potency of the drug. We show that DNA cleavage depends also upon the length of the linker arm between the triplex-forming oligonucleotide and the drug. Based on a known structure of the DNA-topoisomerase I complex, a molecular model of the oligonucleotide conjugates bound to the DNA-topoisomerase I complex was elaborated to facilitate the design of a potent topoisomerase I inhibitor-oligonucleotide conjugate with an optimized linker between the two moieties. The resulting oligonucleotide-indolocarbazole conjugate at 10 nM induced cleavage at the triple helix site 2-fold more efficiently than 5 microM of free indolocarbazole, while the other drug-sensitive sites were not cleaved. The rational design of drug-oligonucleotide conjugates carrying a DNA topoisomerase poison may be exploited to improve the efficacy and selectivity of chemotherapeutic cancer treatments by targeting specific genes and reducing drug toxicity.  相似文献   

8.
A series of quinone methide precursors designed for DNA cross-linking were prepared and conjugated to a pyrrole-imidazole polyamide for selective association to the minor groove. Although reaction was only observed for DNA containing the predicted recognition sequence, yields of strand alkylation were low. Interstrand cross-linking was more efficient than alkylation but still quite modest and equivalent to that generated by a comparable conjugate containing the N-mustard chlorambucil. Varying the length of the linker connecting the polyamide and quinone methide derivative did not greatly affect the yield of DNA cross-linking. Instead, intramolecular trapping of the quinone methide intermediate by nucleophiles of the attached polyamide appears to be the major determinant that limits its reaction with DNA. Self-adducts of the quinone methide conjugate form readily and irreversibly as detected by a combination of chromatography and mass spectroscopy. This result is unlike comparable self-adducts observed for oligonucleotide conjugates that form more slowly and remain reversible. Equivalent intramolecular alkylation of a polyamide by its attached chlorambucil mustard was not observed under similar condition. The presence of DNA, however, did facilitate hydrolysis of this mustard conjugate.  相似文献   

9.
Hairpin conjugates of achiral seco-cyclopropaneindoline-2-benzofurancarboxamide (achiral seco-CI-Bf) and three diamides (ImPy 1, PyIm 2, and PyPy 3, where Py is pyrrole, and Im is imidazole), linked by a gamma-aminobutyrate group, were synthesized. The sequence-specific covalent alkylation of the achiral CI moiety with adenine-N3 in the minor groove was ascertained by thermally induced DNA cleavage experiments. The results provide evidence that hairpin conjugates of achiral seco-CI-Bf-gamma-polyamides could be tailored to target specific DNA sequences according to a set of general rules: the achiral CI moiety selectively reacts with adenine-N3, a stacked pair of imidazole/benzofuran prefers a G/C base pair, and a pyrrole/benzofuran prefers an A/T or T/A base pair. Models for the binding of hairpin conjugates 1-3 with sequences 5'-TCA(888)G-3', 5'-CAA(857)C-3', and 5'-TTA(843)C-3' are proposed.  相似文献   

10.
Amsacrine-4-carboxamide-oligonucleotide conjugates were synthesized and studied for their capacity to form DNA triple helices and to alter human topoisomerase II binding and cleavage properties. The intercalating agent was attached to the 3'- or the 5'-end of a 24 nt triple helix-forming oligonucleotide via linkers of different lengths. The stability of these DNA triple helices was investigated by gel retardation and melting temperature studies using a synthetic 70 bp DNA duplex target. The effect of the conjugates on DNA cleavage by topoisomerase II was evaluated using the 70 bp duplex and a 311 bp restriction fragment containing the same triple helix site. The conjugate with the amsacrine derivative linked to the 3' end of the TFO via a hexaethylene glycol linker modulates the extent of DNA cleavage by topoisomerase II at specific sites.  相似文献   

11.
The synthesis and nuclease activity of a new bifunctional heterodinuclear platinum–copper complex are reported. The design of this ditopic coordination compound is based on the specific mode of action of each component, namely, cisplatin and Cu(3-Clip-Phen), where 3-Clip-Phen is 1-(1,10-phenanthrolin-3-yloxy)-3-(1,10-phenanthrolin-8-yloxy)propan-2-amine. Cisplatin is not only able to direct the Cu(3-Clip-Phen) part to the GG or AG site, but also acts as a kinetically inert DNA anchor. The nuclease activity of this complex has been investigated on supercoiled DNA. The dinuclear compound is not only more active than Cu(3-Clip-Phen), but is also capable of inducing direct double-strand breaks. The sequence selectivity of the mononuclear platinum complex has been investigated by primer extension experiments, which reveal that its interaction with DNA occurs at the same sites as for cisplatin. The Taq polymerase recognizes the resulting DNA damage as different from that for unmodified cisplatin. The sequence-selective cleavage has been investigated by high-resolution gel electrophoresis on a 36-bp DNA fragment. Sequence-selective cleavages are observed in the close proximity of the platinum sites for the strand exhibiting the preferential platinum binding sites. The platinum moiety also coordinates to the other DNA strand, most likely leading only to mono guanine or adenine adducts. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Mechanisms of DNA oxidation by copper complexes of 3-Clip-Phen and its conjugate with a distamycin analogue, in the presence of a reductant and air, were studied. Characterisation of the production of 5-methylenefuranone (5-MF) and furfural, associated with the release of nucleobases, indicated that these copper complexes oxidised the C1′ and C5′ positions of 2-deoxyribose, respectively, which are accessible from the DNA minor groove. Oxidation at C1′ was the major degradation route. Digestion of DNA oxidation products by P1 nuclease and bacterial alkaline phosphatase allowed characterisation of glycolic acid residues, indicating that these copper complexes also induced C4′ oxidation. However, this pathway was not associated with base propenal release. The ability of the copper complex of the 3-Clip-Phen conjugate with the distamycin analogue to produce sequence-selective DNA cleavage allowed confirmation of these mechanisms of DNA oxidation by PAGE. Comparison of DNA cleavage activity showed that conjugation of 3-Clip-Phen with a DNA minor groove binder, like the distamycin analogue, decreased both its ability to perform C1′ oxidation as well as the initial rate of the reaction, but this conjugate is still active after 5 h at 37°C, making it an efficient DNA cleaver.  相似文献   

13.
Abstract

Amsacrine-4-carboxamide-oligonucleotide conjugates were synthesized and studied for their capacity to form DNA triple helices and to alter human topoisomerase II binding and cleavage properties. The intercalating agent was attached to the 3′- or the 5′-end of a 24 nt triple helix-forming oligonucleotide via linkers of different lengths. The stability of these DNA triple helices was investigated by gel retardation and melting temperature studies using a synthetic 70 bp DNA duplex target. The effect of the conjugates on DNA cleavage by topoisomerase II was evaluated using the 70 bp duplex and a 311 bp restriction fragment containing the same triple helix site. The conjugate with the amsacrine derivative linked to the 3′ end of the TFO via a hexaethylene glycol linker modulates the extent of DNA cleavage by topoisomerase II at specific sites.  相似文献   

14.
We report on the synthesis of 2,9-diamino-1,10-phenanthroline PNA conjugates as well as on their action in cleavage of a target RNA. Synthesis of the PNA conjugates are performed on solid support and the phenanthroline derivative is conjugated either to the amino-end or to a centrally positioned diaminopropionic acid in the PNA via a urea linker. Cleavage of the target RNA is achieved and compared to cleavage with the corresponding 2,9-dimethyl-1,10-phenanthroline and glycine conjugates.  相似文献   

15.
Topoisomerase I is a ubiquitous DNA-cleaving enzyme and an important therapeutic target in cancer chemotherapy for camptothecins (CPTs). These drugs stimulate DNA cleavage by topoisomerase I but exhibit little sequence preference, inducing toxicity and side effects. A convenient strategy to confer sequence specificity consists of the linkage of topoisomerase poisons to DNA sequence recognition elements. In this context, triple-helix-forming oligonucleotides (TFOs) covalently linked to CPTs were investigated for the capacity to direct topoisomerase I-mediated DNA cleavage in cells. In the first part of our study, we showed that these optimized conjugates were able to regulate gene expression in cells upon the use of a Photinus pyralis luciferase reporter gene system. Furthermore, the formation of covalent topoisomerase I/DNA complexes by the TFO-CPT conjugates was detected in cell nuclei. In the second part, we elucidated the molecular specificity of topoisomerase I cleavage by the conjugates by using modified DNA targets and in vitro cleavage assays. Mutations either in the triplex site or in the DNA duplex receptor are not tolerated; such DNA modifications completely abolished conjugate-induced cleavage all along the DNA. These results indicate that these conjugates may be further developed to improve chemotherapeutic cancer treatments by targeting topoisomerase I-induced DNA cleavage to appropriately chosen genes.  相似文献   

16.
Imidazole and compounds containing imidazole residues have been shown to cleave RNA in an RNase A-mimicking manner. Di-imidazole lexitropsin is a compound which is derived from the polyamide drugs distamycin and netropsin essentially by the replacement of two pyrrole heterocycles with N-methyl-imidazole residues. This enables it to bind to the minor groove of B-DNA in a sequence-specific manner. We demonstrate here that this lexitropsin derivative has RNA cleavage activity, as tested on model RNAs. Optimal cleavage conditions and cleavage specificity resemble those known from other imidazole conjugates and are thus consistent with an RNase A type cleavage mechanism. The optimum concentration of the compound for cleavage is similar to previously investigated imidazole-based RNase mimics. As a whole new class of chemical compounds capable of interacting with nucleic acids through extensive hydrogen bonding, these imidazole containing compounds constitute promising scaffolds and ligands, for the construction of novel RNase mimics with high affinity.  相似文献   

17.
Simon H  Kittler L  Baird E  Dervan P  Zimmer C 《FEBS letters》2000,471(2-3):173-176
The influence of an eight-ring hairpin DNA minor groove binder on the gyrase mediated DNA supercoiling and cleavage reaction step of the enzyme was investigated. The results demonstrate that supercoiling is affected by the hairpin polyamide in the millimolar concentration range while the enzyme catalyzed cleavage of a 162 bp fragment of pBR322 containing a single strong gyrase site is effectively inhibited at nanomolar concentration. As demonstrated by footprint analysis the latter effect is caused by a specific binding of the hairpin forming polyamide to the enzyme recognition site (GGCC), which indicates that the gyrase activity to produce a double strand break is blocked at this site. The pyrrole-imidazole hairpin polyamide is the most potent inhibitor of the gyrase mediated cleavage reaction compared to other known anti-gyrase active DNA binding agents.  相似文献   

18.
The design of molecules that damage a selected DNA sequence provides a formidable opportunity for basic and applied biology. For example, such molecules offer new prospects for controlled manipulation of the genome. The conjugation of DNA-code reading molecules such as polyamides to reagents that induce DNA damages provides an approach to reach this goal. In this work, we showed that a bipyridine conjugate of polyamides was able to induce sequence-specific DNA breaks in cells. We synthesized compounds based on two polyamide parts linked to bipyridine at different positions. Bipyridine conjugates of polyamides were found to have a high affinity for the DNA target and one of them produced a specific and high-yield cleavage in vitro and in cultured cells. The bipyridine conjugate studied here, also presents cell penetrating properties since it is active when directly added to cell culture medium. Harnessing DNA damaging molecules such as bipyridine to predetermined genomic sites, as achieved here, provides an attractive strategy for targeted genome modification and DNA repair studies.  相似文献   

19.
To investigate the effect of elongating base-pair (bp) recognition sequences, we synthesized N-methylpyrrole-N-methylimidazole (PI) polyamide conjugates with eight-bp recognition (3-5). The DNA alkylating activities of conjugates 3-5 were evaluated by high-resolution denaturing polyacrylamide gel electrophoresis with a 208-bp DNA fragment. Conjugates 3-5 showed high alkylating activities at nanomolar concentrations. We then addressed the following issue about PI conjugates. Generally, PI polyamide conjugates hardly dissolve in aqueous solution. To improve the aqueous solubility, by the introduction of hydrophilic groups, we synthesized PI polyamide conjugates that were modified with a seco-CBI moiety (6-11). Conjugates 9-11 that were modified by methoxypolyethylene glycol (PEG) 750 acquired moderate solubility and stability in aqueous solution. In addition, conjugates 10 and 11 had high cytotoxicity against A549 and DU145.  相似文献   

20.
We have designed and synthesized a series of novel DNA photocleaving agents which break DNA with high sequence specificity. These compounds contain the non-diffusible photoactive p-nitrobenzoyl group covalently linked via a dimethylene (or tetramethylene) spacer to thiazole analogues of the DNA binding portion of the antibiotic bleomycin A2. By using a variety of 5' or 3' 32P-end labeled restriction fragments from plasmid pBR322 as substrate, we have shown that photoactive bithiazole compounds bind DNA at the consensus sequence 5'-AAAT-3' and induce DNA cleavage 3' of the site. Analysis of cleavage sites on the complementary DNA strand and inhibition of DNA breakage by distamycin A indicates these bithiazole derivatives bind and attack the minor groove of DNA. A photoactive unithiazole compound was less specific inducing DNA breakage at the degenerate site 5'-(A/T)(AA/TT)TPu(A/T)-3'. DNA sequence recognition of these derivatives appears to be determined by the thiazole moiety rather than the p-nitrobenzoyl group: use of a tetramethylene group in place of a dimethylene spacer shifted the position of DNA breakage by one base pair. Moreover, much less specific DNA photocleavage was observed for a compound in which p-nitrobenzoyl was linked to the intercalator acridine via a sequence-neutral hexamethylene spacer. The 5'-AAAT-3' specificity of photoactive bithiazole derivatives contrasts with that of bleomycin A2 which cleaves DNA most frequently at 5'-GPy-3' sequences. These results suggest that the cleavage specificity exhibited by bleomycin is not simply determined by its bithiazole/sulphonium terminus, and the contributions from other features, e.g. its metal-chelating domain, must be considered. The novel thiazole-based DNA cleavage agents described here should prove useful as reagents for probing DNA structure and for elucidating the molecular basis of DNA recognition by bleomycin and other ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号