首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Male courtship ritual is among the main behavioral characteristics of Drosophila. This is a complex, genetically determined process consisting of four general stages: orientation, vibration, licking, and attempts at copulation (or successful copulation). Several genes are known that control some stages of this behavior. Most of them have pleiotropic effects and are involved in other biological processes. Earlier, we have shown that a mutation in locus flamenco (20A1-3), which controls transposition and infectivity of retrotransposongypsy (MDG4), is involved in the genetic control of behavior. In strains mutant for this locus, the male mating activity is decreased and the structure of courtship ritual is changed. To understand the mechanisms of these changes, it is important to study all behavioral stages in genetically identical strains. For this purpose, the normal allele of geneflamenco from the X chromosome of the wild-type strain Canton S was introduced into strain SS carrying flam MS. This offers new opportunities in studying the role of gene flamenco in the control of mating behavior in Drosophila.  相似文献   

2.
3.
Olfactory sensitivity and locomotor activity was assayed in Drosophila melanogasterstrains carrying a mutation of the flamencogene, which controls transposition of retrotransposon gypsy. A change in olfactory sensitivity was detected. The reaction to the odor of acetic acid was inverted in flies of the mutator strain (MS), which carried the flammutation and active gypsycopies and were characterized by genetic instability. Flies of the genetically unstable strains displayed a lower locomotor activity. The behavioral changes in MS flies can be explained by the pleiotropic effect of the flammutation or by insertion mutations which arise in behavior genes as a result of genome destabilization by gypsy.  相似文献   

4.
Molecular cloning of the DIP1 gene located in the 20A4-5 region has been performed from the following strains with the flamenco phenotype: flam SS (SS) and flam MS (MS) characterized by a high transposition rate of retrotransposon gypsy (mdg4), flam py + (P) carrying the insertion of a construction based on the P element into the region of the flamenco gene, and flamenco +. The results of restriction analysis and sequencing cloned DNA fragments has shown that strains flam SS , flam MS considerably differ from flam py + (P), and flamenco + in the structure of DIP1. Strains flam SS and flam MS have no DraI restriction site at position 1765 in the coding region of the gene, specifically, in the domain determining the signal of the nuclear localization of the DIP1 protein. This mutation has been found to consist in a nucleotide substitution in the recognition site of DraI restriction endonuclease, which is transformed from TTTAAA into TTTAAG and, hence, is not recognized by the enzyme. This substitution changes codon AAA into AAG and is translationally insignificant, because both triplets encode the same amino acid, lysine. The DIP1 gene of strains flam SS and flam MS has been found to contain a 182-bp insertion denoted IdSS (insertion in DIP1 strain SS); it is located in the second intron of the gene. The IdSS sequence is part of the open reading frame encoding the putative transposase of the mobile genetic element HB1 belonging to the Tc1/mariner family. This insertion is presumed to disturb the conformations of DNA and the chromosome, in particular, by forming loops, which alters the expression of DIP1 and, probably, neighboring genes. In strains flamenco + and flam py + (P), the IdSS insertion within the HB1 sequence is deleted. The deletion encompasses five C-terminal amino acid residues of the conserved domain and the entire C-terminal region of the putative HB1 transposase. The obtained data suggest that DIP1 is involved in the control of gypsy transpositions either directly or through interaction with other elements of the genome.  相似文献   

5.
Distribution of two structural functional variants of the gypsy(MDG4) mobile genetic element was examined in 44 strains of Drosophila melenogaster. The results obtained suggest that less transpositionally active gypsyvariant is more ancient component of the Drosophilagenome. Using Southern blotting, five strains characterized by increased copy number of gypsywith significant prevalence of the active variant over the less active one were selected for further analysis. Genetic analysis of these strains led to the suggestion that some of them carry factors that mobilize gypsyindependently from the cellular flamencogene known to be responsible for transposition of this element. Other strains probably contained a suppressor of the flam mutant allele causing active transpositions of the gypsy. Thus, the material for studying poorly examined relationships between the retrovirus and the host cell genome was obtained.  相似文献   

6.
The allelic state of gene flamenco has been determined in a number of Drosophila melanogaster strains using the ovoD test. The presence of an active copy of gypsy in these strains was detected by restriction analysis. Then male reproduction behavior was studied in the strains carrying a mutation in gene flamenco. In these experiments mating success has been experimentally estimated in groups of flies. It has been demonstrated that the presence of mutant allele flamMS decreases male mating activity irrespective of the presence or absence of mutation white. The active copy of gypsy does not affect mating activity in the absence of the mutation in gene flamenco. Individual analysis has demonstrated that that mutation flamMS results in characteristic changes in courtship: flamMS males exhibit a delay in the transition from the orientation stage to the vibration stage (the so-called vibration delay). The role of locus flamenco in the formation of male mating behavior in Drosophila is discussed.  相似文献   

7.
Gypsy is an endogenous retrovirus present in the genome of Drosophila melanogaster. This element is mobilized only in the progeny of females which contain active gypsy elements and which are homozygous for permissive alleles of a host gene called flamenco (flam). Some data strongly suggest that gypsy elements bearing a diagnostic HindIII site in the central region of the retrovirus body represent a subfamily that appears to be much more active than elements devoid of this site. We have taken advantage of this structural difference to assess by the Southern blotting technique the genomic distribution of active gypsy elements. In some of the laboratory Drosophila stocks tested, active gypsy elements were found to be restricted to the Y chromosome. Further analyses of 14 strains tested for the permissive vs. restrictive status of their flamenco alleles suggest that the presence of permissive alleles of flam in a stock tends to be associated with the confinement of active gypsy elements to the Y chromosome. This might be the result of the female-specific effect of flamenco on gypsy activity. Received: 13 June 1997 / Accepted: 27 August 1997  相似文献   

8.
Summary The gypsy element of Drosophila melanogaster is the first retrovirus identified in invertebrates. Its transposition is controlled by a host gene called flamenco (flam): restrictive alleles of this gene maintain the retrovirus in a repressed state while permissive alleles allow high levels of transposition. To develop a cell system to study the gypsy element, we established four independent cell lines derived from the Drosophila strain SS, which contains a permissive allele of flamenco, and which is devoid of transposing copies of gypsy. The ultrastructural analysis of three SS cell lines revealed some remarkable characteristics, such as many nuclear virus-like particles, cytoplasmic dense particles, and massive cisternae filled with a fibrous material of unknown origin. Gypsy intragenomic distribution has been compared between the three cell lines and the original SS fly strain, and revealed in two of the cell lines an increase in copy number of a restriction fragment usually present in active gypsy elements. This multiplication seems to have occurred during the passage to the cell culture. Availability of SS cell lines should assist studies of gypsy transposition and infectivity and might be useful to produce high amounts of gypsy viral particles. These new lines already allowed us to show that the Envelope-like products of gypsy can be expressed as membrane proteins.  相似文献   

9.
Transposition activity of Drosophila melanogaster gypsy retrotransposon is controlled by the flamenco locus. Transposition activity of the gypsy, ZAM, Idefix, springer, nomad, rover, Quasimodo, 17.6, 297, and Tirant retrotransposons was investigated in isogenic SS and MS strains of D. melanogaster mutant for the flamenco gene. It has been shown that gypsy, ZAM, and Idefix have different genomic surrounding in the studied strains that evidences to their transposition in these strains.  相似文献   

10.
The distribution of two variants of MDG4 (gypsy) was analyzed in severalDrosophila melanogasterstrains. Southern blot hybridization revealed the inactive variant of MDG4 in all strains examined and active MDG4 only in some of them. Most of the strains harboring the active MDG4 variant were recently isolated from natural populations. It is of interest that the active MDG4 prevailed over the inactive one only in strains carrying the mutantflamenco gene. Several lines were analyzed in more detail. The number of MDG4 sites on salivary-gland polytene chromosomes was established via in situ hybridization, and MDG4 was tested for transposition using the ovoD test.  相似文献   

11.
12.
This article summarizes the results of a ten-year study of genetic instability of a mutator strain of Drosophila melanogaster caused by transposition of the gypsy retrotransposon. The results of other authors working with an analogous system are analyzed. Possible mechanisms are suggested for the interaction of gypsy with the cell gene flamenco that participates in transposition control of this mobile element.  相似文献   

13.
A previously described genetic system comprising a Mutator Strain (MS) and the Stable Strain (SS) from which it originated is characterized by genetic instability caused by transpositions of the retrotransposon gypsy. A series of genetic crosses was used to obtain three MS derivatives, each containing one MS chromosome (X, 2 or 3) in the environment of SS chromosomes. All derivatives are characterized by elevated frequencies of spontaneous mutations in both sexes. Mutations appear at the premeiotic stage and are unstable. Transformed derivatives of SS and another stable strain 208 were obtained by microinjection of plasmid DNA containing transpositionally active gypsy inserted into the Casper vector. In situ hybridization experiments revealed amplification and active transposition of gypsy in SS derivatives, while the integration of a single copy of gypsy into the genome of 208 does not change the genetic properties of this strain. We propose that genetic instability in the MS system is caused by the combination of two factors: mutation(s) in gene(s) regulating gypsy transposition in SS and its MS derivatives, and the presence of transpositionally active gypsy copies in MS but not SS.  相似文献   

14.
15.
Summary The laboratory imitator strain (MS) of Drosophila melanogaster is characterized by an elevated frequency of spontaneous mutation (10–3–10–4). Mutations occur in both sexes at premeiotic stages of germ cell development. The increased mutability is a characteristic feature of MS itself, since it appears in the absence of outcrossing. Most of the mutations arising in this strain are unstable: reversions to wild type, high frequency mutation to new mutant states and replicating instability were observed. We have investigated the localization of the transposable genetic elements mdg1, 412, mdg3, gypsy (mdg4), copia and P in the X chromosomes of the MS and in the mutant lines y, ct, sbt derived from it by in situ hybridization. The P element was not found in any of these strains. The distributions of mdg1, 412, mdg3 and copia were identical in the X chromosomes of the MS and its derivatives. However, the sites of hybridization with gypsy differ in the various lines tested. In the polytene chromosomes of MS animals significant variation in location and number of copies of the gypsy element was demonstrated between different larvae; copy numbers as high as 30–40 were observed. These results suggest autonomous transposition of gypsy in the MS genome while several other mobile elements remain stable.  相似文献   

16.
17.
A previously described genetic system comprising a Mutator Strain (MS) and the Stable Strain (SS) from which it originated is characterized by genetic instability caused by transpositions of the retrotransposon gypsy. A series of genetic crosses was used to obtain three MS derivatives, each containing one MS chromosome (X, 2 or 3) in the environment of SS chromosomes. All derivatives are characterized by elevated frequencies of spontaneous mutations in both sexes. Mutations appear at the premeiotic stage and are unstable. Transformed derivatives of SS and another stable strain 208 were obtained by microinjection of plasmid DNA containing transpositionally active gypsy inserted into the Casper vector. In situ hybridization experiments revealed amplification and active transposition of gypsy in SS derivatives, while the integration of a single copy of gypsy into the genome of 208 does not change the genetic properties of this strain. We propose that genetic instability in the MS system is caused by the combination of two factors: mutation(s) in gene(s) regulating gypsy transposition in SS and its MS derivatives, and the presence of transpositionally active gypsy copies in MS but not SS.  相似文献   

18.
The ovo locus is required for the maintenance of the female germ line in Drosophila melanogaster. In the absence of an ovo+ gene, males are completely normal but females have no germ-line stem cells. Three dominant mutations at the ovo locus, called ovoD, were observed to revert towards recessive alleles at high frequency when ovoD males were crossed to females of the strain y v f mal. We have found that this strain contains an inordinately high number of gypsy transposable elements, and crossing it with the ovoD strains results in the mobilization of both gypsy and copia, with high-frequency insertions into the ovo locus: of 16 revertants examined 12 have gypsy and four have copia inserted at 4E, the ovo cytological site. Using gypsy DNA as a tag we have cloned 32 kb of wild-type DNA sequences surrounding a gypsy insertion and characterized molecular rearrangements in several independent revertants: in 10 of them gypsy appears to be inserted into the same site. The orientation of gypsy is strictly correlated with whether the neighbouring lozenge-like mutation appears in the revertants. A distal limit of the ovo locus was molecularly determined from the breakpoint of a deletion affecting closely flanking regions.  相似文献   

19.
The dependence of selection on an introduced mutation l(2)M167 DTS on male mating competitiveness, viability, and developmental rate of larvae and pupae of Drosophila melanogaster, heterozygous for this mutation, was examined in population experiments with preset conditions. The limitations of fitness parameters of individuals l(2)M167 DTS /+ relative to individuals +/+ were estimated according to the conditions of the experiment and phenotypic characteristics of the mutation studied. Under conditions of limited food supply and dependence on emergence time in each generation, the sequence of female mating was shown to be of less importance than the order of medium utilization by the progeny of a certain genotype related to the male success in the first mating. The limiting factors acting on the l(2)M167 DTS mutation were viability and developmental rate.__________Translated from Genetika, Vol. 41, No. 5, 2005, pp. 620–625.Original Russian Text Copyright © 2005 by Kulikov, Marec, Mitrofanov.  相似文献   

20.
By the example of MDG4 (gypsy) of Drosophila melanogaster, characteristics of endogenous invertebrate retroviruses of the errantiviruses class (Errantiviridae, Metaviridae) are analyzed. Ways of the evolution of retroviruses of invertebrates together with possible mechanisms of their origin from retrotransposons via the addition of viral genes from other systematic groups are discussed. It has been demonstrated that the locus flamenco plays an important role in providing the internal immunity against MDG4 (gypsy) in Drosophila melanogaster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号