首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Rabbit reticulocyte incorporation of iron from rabbit transferrin was independent of transferrin iron saturation but uptake from human transferrin was saturation dependent. Unlike human transferrin, rabbit transferrin does not surrender its iron from any unique preferred iron-binding site and can be described as functionally homogeneic.The two proteins also differ in their acid-base iron-binding properties. One human transferrin iron binding site retains an ability to bind iron at somewhat acid pH but this property is not shared by rabbit transferrin.  相似文献   

2.
Rabbit reticulocyte incorporation of iron from rabbit transferrin was independent of transferrin iron saturation but uptake from human transferrin was saturation dependent. Unlike human transferrin, rabbit transferrin does not surrender its iron from any unique preferred iron-binding site and can be described as functionally homogeneic. The two proteins also differ in their acid-base iron-binding properties. One human transferrin iron binding site retains an ability to bind iron at somewhat acid pH but this property is not shared by rabbit transferrin.  相似文献   

3.
Human diferric transferrin was partially labeled with 59Fe at low or neutral pH (chemically labeled) and by replacement of diferric iron previously donated to rabbit reticulocytes (biologically labeled). Reticulocyte 59Fe uptake experiments with chemically labeled preparations indicated that iron bound at near neutral pH was more readily incorporated by reticulocytes than iron bound at low pH. The pH-dependent iron dissociation studies of biologically labeled transferrin solutions indicated that Fe3+, bound at the site from which the metal was initially utilized by the cells, dissociated between pH 5.8 and 7.4. In contrast, lower pH (5.2--5.8) was required to effect dissociation of iron that has remained bound to the protein after incubation with reticulocytes. These findings suggest that each human transferrin iron-binding site has different acid-base iron-binding properties which could be related to the observed heterogenic rabbit reticulocyte iron-donating properties of human transferrin and identifies that the near neutral iron-binding site initially surrenders its iron to these cells.  相似文献   

4.
Human diferric transferrin was partially labeled with 59Fe at low or neutral pH (chemically labeled) and by replacement of diferric iron previously donated to rabbit reticulocytes (biologically labeled). Reticulocyte 59 uptake experiments with chemically labeled preparations indicated that iron bound at near neutral ph was more readily incorporated by reticulocytes than iron bound at low pH. The pH-dependent iron dissociation studies of biologically labeled transferrin solutions indicated that Fe3+, bound at the site from which the metal was initially utilized by the cells, dissociated between pH 5.8 and 7.4. In contrast, lower pH (5.2–5.8) was required to effect dissociation of iron that had remained bound to the protein after incubation with reticulocytes. These findings suggest that each human transferrin iron-binding site has different acid-base iron-binding properties which could be related to the observed heterogenic rabbit reticulocyte iron-binding properties of human transferrin and identifies that the near neutral iron-donating site initially surrenders its iron to these cells.  相似文献   

5.
Despite the remarkable molecular similarity of human lactoferrin and human transferrin, the results of this investigation indicate that human lactoferrin was unable to furnish rabbit reticulocytes with iron for heme synthesis. Although conalbumin closely resembles transferrin in many of its properties, conalbumin iron-binding differs from human transferrin iron-binding. There are conflicting reports in the literature regarding conalbumin's ability to furnish iron to reticulocytes. In this study, small amounts of lactoferrin or conalbumin were adsorbed to mature and immature cell surfaces but neither of these iron-binding proteins surrendered iron intracellularly to reticulocytes for heme synthesis.  相似文献   

6.
A single-sited iron-binding fragment of human transferrin has been obtained by thermolysin cleavage of the protein, selectively loaded with iron in the C-terminal binding site, in a urea-containing buffer. The fragment contains carbohydrate, and hence derives from the C-terminal half of transferrin. Its metal-binding site accepts Fe3+ and Cu2+ with bicarbonate as accompanying anion, but only Fe3+ with oxalate as anion. EPR spectroscopic properties of the fragment are similar to those of the corresponding site in the intact protein. However, iron-binding by the fragment is weaker than by the C-terminal site of the intact protein, particularly at low pH, suggesting that overall as well as local protein conformation influences the metal-binding functions of the site.  相似文献   

7.
The role of the two iron-binding sites of rat transferrin in the exchange of iron with cells has been assessed using urea polyacrylamide gel electrophoresis to separate and quantitate the four possible molecular species of transferrin generated during the incubation of 125I-labelled transferrin with rat reticulocytes and hepatocytes. Addition of diferric transferrin to reticulocytes led directly to the appearance of apotransferrin together with small and comparable amounts of the two monoferric transferrins. After 2 h 44.8% of the iron had been removed by the cells, and of the iron-depleted transferrin 71.8% was apotransferrin, the remainder being monoferric transferrin, 16.1% with N-terminal iron and 12.1% with C-terminal iron. A similar pattern emerged with hepatocytes, but the rate of iron removal was slower and the proportion of apotransferrin generated was lower. After 4 h 10.9% of the iron had been removed from the transferrin and the distribution of the iron-depleted protein was: apotransferrin 26.9% and monoferric (N-terminal) 39.2%, (C-terminal) 33.9%. The appearance of apotransferrin during each incubation and the generation of both monoferric transferrins suggest that both cell types are able to remove iron from differic transferrin in pairwise fashion and that they do not appreciably distinguish between the two iron-binding sites of the protein. Release of iron from hepatocytes to apotransferrin lead to the appearance of both monferric species and then to increasing amounts of diferric transferrin. The process of iron release did not seem to distinguish between the vacant iron-binding sites of transferrin.  相似文献   

8.
1. Transferrin-membrane complexes and iron-binding membrane complexes were solubilized with sodium dodecyl sulfate from the plasma membranes of reticulocytes that had been incubated with (59Fe,125I)-labeled transferrin. Gel filtration of solubilized material demonstrated 125I-labeled transferrin complexed to two moieties, a minor component (Peak I) of apparent molecular weight 435,000 and a major component (Peak II) of apparent molecular weight 200,000. Most of the membrane 59Fe was located in Peak I. 2. Sepharose-bound anti-transferrin was used to purify the 125I-labeled transferrin-membrane complexes. The 59Fe/125I ratio in the transferrin complex purified from Peak I was the same as in the original transferrin and thus contained membrane-bound transferrin to which the 59Fe was still attached. The 59Fe/125I ratio in the purified Peak II transferrin complex was 0.33 times that of the original transferrin, indicating that more than 60% of its 59Fe had been delivered to the reticulocyte. 3. The purified transferrin complexes analyzed by SDS-polyacrylamide gel electrophoresis demonstrated a single band of apparent molecular weight 78,000 both by Coomassie blue stain for protein and by 125I radioactivity. The specific activity of this material was 0.27 and 0.56 times that of the original transferrin for Peak I and Peak II, respectively, indicating that transferrin in Peak I and II was bound to a membrane component with a molecular weight similar to that of transferrin. 4. The isoelectric focusing pattern of the Peak II transferrin complex showed isoelectric points of pH 6.7 and 6.2 compared to pH 5.4 for transferrin. 5. On the basis of these studies we propose that transferrin is first bound to a membrane protein and then delivers iron to a membrane component distinct and separate from the transferrin-binding moiety. Prior to its release, transferrin markedly depleted of iron is still bound to a component in the plasma membrane.  相似文献   

9.
Rabbit alveolar macrophages were incubated with [59Fe], washed, re-incubated with “cold” iron and homogenized. The distribution of radioactivity among the mitochondrial, lysosomal, microsomal and cytosol fractions was determined at short intervals after the onset of incubation. The findings indicate that the mitochondria form a significant iron-binding site during the early stage of iron uptake. A part of the mitochondrial-associated iron is later transferred to the cytosol where it is present in ferritin and in a low molecular weight form. Ferritin is the sole iron-binding protein of the cytosol.  相似文献   

10.
Rat plasma contains two isotransferrins rather than the single iron-binding protein found in plasma of other species, and it was recently proposd that differences between the biological behavior of each isotransferrin accounted for observations previously attributed to behavioral differences between each of the two transferrin iron-binding sites. The two isotransferrins were isolated from rat plasma by DEAE-Sephadex ion-exchange chromatography and isoelectric focusing. The pH-dependent iron-dissociating and reticulocyte iron-donating properties of each isotransferrin were investigated and found to be indistinguishable. Like human transferrin, one iron-binding site retains its affinity for iron below pH 6 and this property was used to investigate the invivo acquisition of catabolic iron in order to determine whether the process occurs at one specific or both binding sites. Plasma radioactive iron, derived from injected 59Fe-labelled heat denatured erythrocytes was bound with high specificity to the transferrin iron-binding site that was most resistant to acidic dissociation. This finding supports Fletcher and Huehns' hypothesis that each of the two rat transferrin iron-binding sites is endowed with a separate functional role.  相似文献   

11.
The release of iron and transferrin from the human melanoma cell   总被引:3,自引:0,他引:3  
The role of the transferrin homologue, melanotransferrin (p97), in iron metabolism has been studied using the human melanoma cell line, SK-MEL-28, which expresses this antigen in high concentrations. The release of iron and transferrin were studied after prelabelling cells with human transferrin doubly labelled with iron-59 and iodine-125. Approx. 45% of internalised iron was in ferritin with little redistribution during reincubation. Iron release was linear with time, while transferrin release was biphasic, suggesting that iron was leaving the cell independently of transferrin. Unlabelled diferric transferrin increased transferrin release, implying a degree of coupling between cell surface binding, internalisation and release of transferrin. Increasing the preincubation time increased the amount of transferrin which remained internalised within the cell. A membrane-bound, iron-binding component with properties consistent with melanotransferrin was observed. Desferrioxamine or pyridoxal isonicotinoyl hydrazone could not remove iron from this compartment, suggesting a high affinity for iron. The number of membrane iron-binding molecules per cell was estimated to be 387,000 +/- 7000 . The non-transferrin-bound membrane Fe did not decrease during reincubation periods up to 5 h, suggesting that the cell was not utilising it. Hence, melanotransferrin may not have a role in internalising iron in melanoma cells.  相似文献   

12.
59Fe uptake by rabbit reticulocytes from human transferrin-bound iron was studied by using transferrin solutions (35, 50, 65, 80 and 100% saturated with iron) whose only common characteristic was their content of diferric transferrin. During the early incubation period, 59Fe uptake from each preparation by reticulocytes was identical despite wide variations in amounts of total transferrin, total iron, monoferric transferrin and apotransferrin in solution. During the later phase of incubation, rate of uptake declined and was proportional to each solution's monoferric transferrin content. Uptake was also studied in a comparative experiment which used two identical, partially saturated transferrin preparations, one uniformly 59Fe-labelled and the other tracer-labelled with [59Fe]diferric transferrin. In both experiments, iron uptake by reticulocytes corresponded to utilization of a ferric ion from diferric transferrin before utilization of iron from monoferric transferrin.  相似文献   

13.
Addition of iron-binding proteins (human serum transferrin, mouse serum transferrin, human lactoferrin) to the luminal fluid in tied-off segments of mouse intestine in vivo led to reduced 59Fe3+ absorption from 59Fe3+-nitrilotriacetate when compared to 59Fe3+-nitrilotriacetate alone. Assay of transferrin in luminal fluid from tied segments revealed only trace amounts of immunoreactivity. The levels of luminal transferrin are unaltered in chronic hypoxia where iron absorption is significantly enhanced. Studies in vitro revealed that NH4Cl, dansylcadavarine, para-chloromercuribenzoate and trinitrobenzenesulphonate have no effect on initial 59Fe3+ uptake rates from 59Fe3+-nitrilotriacetate, while N-ethylmaleimide (1 mM) caused a 40% inhibition. In vivo 59Fe3+ uptake was unaffected by preincubation of tied-off segments with colchicine (5 mM) for up to 2 h. These results suggest that receptor-mediated endocytosis of transferrin is not a significant mechanism in the uptake of luminal Fe3+ by mouse duodenum.  相似文献   

14.
A method for removal of trace iron contamination from biological buffers   总被引:2,自引:0,他引:2  
J M Gutteridge 《FEBS letters》1987,214(2):362-364
Laboratory chemicals and reagents normally contain trace amounts of iron salts sufficient to catalyse free radical reactions. This iron contamination can be removed from buffers and reagents using a dialysis sac containing a high-affinity iron-binding protein like conalbumin or transferrin without altering the pH value of the fluid.  相似文献   

15.
The salt dependence of the iron-binding properties of transferrin was studied by urea/polyacrylamide-gel electrophoresis. The distribution of iron between the N-terminal and C-terminal binding sites under equilibrium conditions and the rates of release of iron from the two sites were studied. It was found that salt increases the thermodynamic stability of iron binding in the N-terminal site relative to the C-terminal site. Similar behaviour is observed for the kinetics of iron release, where salt retards the rate of removal of iron from the N-terminal site but facilitates removal from the C-terminal site.  相似文献   

16.
Porphyrin accumulation by proliferating cells, e.g., those associated with cancers or wounds, tends to correlate with increased transferrin receptor density. To determine whether transferrin might be implicated in porphyrin transport, fluorescence and absorption spectroscopy were used to study the interaction of porphyrins with transferrin. A single high-affinity binding site for heme and other porphyrins (Kd approximately 20-25 nM) was detected by fluorescence spectroscopy. Difference spectroscopy revealed three additional heme-binding sites. These sites were distinct from the iron-binding sites: 1) Apotransferrin and diferric transferrin bound porphyrins with equal affinity; 2) 59Fe was not displaced from transferrin by porphyrins. Murine erythroleukemia cells incubated with [59Fe]hemin-[125I]transferrin internalized both labels concomitantly. Accumulation of [59Fe]hemin could be blocked by a 100-fold excess of diferric transferrin but not by apotransferrin. These results indicate that cells can internalize exogenous heme, and possibly porphyrins, bound to transferrin via its receptor.  相似文献   

17.
The mechanism and effectiveness of iron removal from transferrin by three series of new potential therapeutic iron sequestering agents have been analyzed with regard to the structures of the chelators. All compounds are hexadentate ligands composed of a systematically varied combination of methyl-3,2-hydroxypyridinone (Me-3,2-HOPO) and 2,3-dihydroxyterephthalamide (TAM) binding units linked to a polyamine scaffold through amide linkers; each series is based on a specific backbone: tris(2-aminoethyl)amine, spermidine, or 5-LIO(TAM), where 5-LIO is 2-(2-aminoethoxy)ethylamine. Rates of iron removal from transferrin were determined spectrophotometrically for the ten ligands, which all efficiently acquire ferric ion from diferric transferrin with a hyperbolic dependence on ligand concentration (saturation kinetics). The effect of the two iron-binding subunits Me-3,2-HOPO and TAM and of the scaffold structures on iron removal ability is discussed. At the low concentrations corresponding to therapeutic dose, TAM-containing ligands exhibit the fastest rates of iron removal, which correlates with their high affinity for ferric ion and suggests the insertion of such binding units into future therapeutic chelating agents. In addition, urea polyacrylamide gel electrophoresis was used to measure the individual microscopic rates of iron removal from the three iron-bound transferrin species (diferric transferrin, N-terminal monoferric transferrin, C-terminal monoferric transferrin) by the representative chelators 5-LIO(Me-3,2-HOPO)(2)(TAM) and 5-LIO(TAMmeg)(2)(TAM), where TAMmeg is 2,3-dihydroxy-1-(methoxyethylcarbamoyl)terephthalamide. Both ligands show preferential removal from the C-terminal site of the iron-binding protein. However, cooperative effects between the two binding sites differ with the chelator. Replacement of hydroxypyridinone moieties by terephthalamide groups renders the N-terminal site more accessible to the ligand and may represent an advantage for iron chelation therapy.  相似文献   

18.
Transferrin and iron uptake by rat reticulocytes   总被引:1,自引:0,他引:1  
The uptake of transferrin labeled with 3H and 59Fe by rat reticulocytes was studied to clarify the characteristics of the uptake process and intracellular transport. Rat reticulocytes took up transferrin in a saturable, time- and temperature-dependent manner. Scatchard analysis of the binding parameters indicated that transferrin molecules were bound to cell-surface receptors with high affinity. Monodansyl- cadaverine, a potent inhibitor of transglutaminase, reduced the amount of internalized transferrin but has no effect on the total amount of cell-associated transferrin, suggesting that transferrin is taken up by rat reticulocytes via receptor-mediated endocytosis. About 50% of the internalized 3H label was released from the cells after reincubation for 1 h in fresh medium. In contrast, no release of 59Fe label was observed. By immunoprecipitation and subsequent SDS-PAGE the released 3H-labeled product was identified as apotransferrin. Lysosomotropic reagents and a proton ionophore reduced the uptake of 59Fe. These results indicated that iron was removed from transferrin at an intracellular site in an acidic environment. The released iron was found not to associate with any intermediate ligands before it was utilized for heme synthesis in mitochondria.  相似文献   

19.
The effect of the known inhibitors of iron uptake, n-butylamine and NH4Cl, was examined at the molecular level to more precisely define the mechanisms by which these lysosomotropic agents block iron uptake by rabbit reticulocytes. Utilizing a rapid pulse-chase technique to follow the handling of a cohort of 59Fe, 125I-transferrin bound to rabbit reticulocytes, both amines were observed to have no effect on the cell-mediated release of 59Fe from internalized transferrin. The results indicated, however, that both agents acted to 1) retard the internalization of transferrin bound to transferrin receptors on the plasma membrane of reticulocytes, 2) retard the externalization of internalized transferrin, and 3) block the transport into the cytosol of iron released from transferrin.  相似文献   

20.
Transferrins are a group of iron-binding proteins that control the levels of iron in the body fluids of vertebrates by their ability to bind two Fe3+ and two CO3(2-). The transferrin molecule, with a molecular mass of about 80 kDa, is folded into two similarly sized homologous N- and C-lobes that are stabilized by many intrachain disulfides. As observed by X-ray crystallography, each lobe is further divided into two similarly sized domains, domain 1 and domain 2, and an Fe3+-binding site is within the interdomain cleft. Four of the six Fe3+ coordination sites are occupied by protein ligands (2 Tyr residues, 1 Asp, and 1 His) and the other two by a bidentate CO3(2-). Upon uptake and release of Fe3+, transferrins undergo a large-scale conformational change depending on a common structural mechanism: domains 1 and 2 rotate as rigid bodies around a rotation axis that passes through the two antiparallel beta-strands linking the domains. The extent of the rotation is, however, variable for different transferrin species and lobes. As a Fe3+ release mechanisms at low pH from the N-lobes of serum transferrin and ovotransferrin, the structural evidence for 'dilysine trigger mechanism' is shown. A structural mechanism for the Fe3+ release in presence of a non-synergistic anion is proposed on the basis of the sulfate-bound apo crystal structure of the ovotransferrin N-lobe. Domain-opened structures with the coordinated Fe3+ by the two tyrosine residues are demonstrated in fragment and intact forms, and their functional implications as a possible intermediate for iron uptake and release are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号