首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We studied the nutritional modes of the orchid Serapias strictiflora and its mycorrhizal fungus Epulorhiza sp. using the differences in carbon isotopic composition (δ13C) of C3 orchid and C4 maize tissues. We found that if cultivated in substrate lacking any organic compounds, the mycorrhizal extraradical mycelia (δ13C = −26.3 ± 0.2 ‰) developed well, despite being fully dependent on nutrition from orchid roots (δ13C = −28.6 ± 0.1 ‰). If the mycorrhizal fungus had additional access to and colonized decaying maize roots (δ13C = −14.6 ± 0.1 ‰), its isotopic composition (δ13C = −21.6 ± 0.4 ‰) reflected a mixture of biotrophy and saprotrophy. No statistically significant differences in δ13C of new storage tubers were found between Epulorhiza-associated orchids with (δ13C = -28.2 ± 0.1 ‰) and without access to maize roots (δ13C = −28.6 ± 0.2 ‰). We conclude that autotrophy is the predominant nutritional mode of mature S. strictiflora plants and that they supply their mycorrhizal fungus with substantial amount of carbon (69 ± 3 % of the fungus demand), even if the fungus feeds saprotrophically.  相似文献   

2.
Semi-labile dissolved organic carbon (DOC) plays an important role in the transport and hypolimnetic remineralization of carbon in large freshwater lakes. However, sources of semi-labile DOC in lakes remain unclear. This study used a carbon stable isotope approach to examine relative contributions of autochthonous and allochthonous sources to semi-labile DOC. Vertical and seasonal variations in the concentration and carbon stable isotope ratio (δ13C) of DOC were determined in large (surface area 674 km2; maximum depth 104 m), monomictic Lake Biwa. A sharp vertical gradient of δ13C of DOC (δ13C-DOC) during the stratification period [mean ± standard error (SE) −25.5 ± 0.1 and −26.0 ± 0.0‰ in the epi- and hypolimnion, respectively] indicated the accumulation of 13C-rich DOC in the epilimnion. Vertical mixing explained the intermediate values of δ13C-DOC (−25.7 ± 0.0‰) measured throughout the water column during the overturn period. Both DOC concentration and δ13C-DOC decreased in the hypolimnion during stratification, indicating selective remineralization of 13C-rich DOC. Using a two-component mixing model, we estimated the δ13C value of semi-labile DOC to be −22.2 ± 0.3‰, which was close to the δ13C of particulate organic carbon collected in the epilimnion during productive seasons (−22.7 ± 0.7‰) but much higher than the δ13C-DOC in river waters (−26.5 ± 0.1‰). Semi-labile DOC appeared to be mainly autochthonous in origin, produced by planktonic communities during productive seasons. The spatiotemporal uncoupling between production and remineralization of semi-labile DOC implies that hypolimnetic oxygen consumption may be affected by pelagic primary production during productive seasons of the preceding year.  相似文献   

3.
During alcohol fermentation, the carbon isotope composition of ethyl alcohol produced depended on the substrate used and was characterized by the value of delta 13C equal to -24.7 +/- 0.8/1000 (wheat grain), -22 +/- 0.1/1000 (rye grain), -22 +/- 0.5/1000 (products of wood hydrolysis), -15.3 +/- 0.3/1000 (maize grain) and -10 +/- 0.1/1000 (sugar cane). The isotope composition of carbon of ethyl alcohol obtained during catalytic hydroxylation of ethylene has a delta 13C of -30.6 +/- 0.3/1000. The possibility of quantitative determination of specific components in mixtures of ethanol samples with various isotope compositions (chemical synthesis and alcohol fermentation of raw material from C3- or C4-plants) was shown.  相似文献   

4.
We report abundance of 13C and 15N contents in terrestrial plants (mosses, lichens, liverworts, algae and grasses) from the area of Barton Peninsula (King George Island, maritime Antarctic). The investigated plants show a wide range of δ13C and δ15N values between −29.0 and −20.0‰ and between −15.3 and 22.8‰, respectively. The King George Island terrestrial plants show species specificity of both carbon and nitrogen isotope compositions, probably due to differences in plant physiology and biochemistry, related to their sources and in part to water availability. Carbon isotope compositions of Antarctic terrestrial plants are typical of the C3 photosynthetic pathway. Lichens are characterized by the widest carbon isotope range, from −29.0 to −20.0‰. However, the average δ13C value of lichens is the highest (−23.6 ± 2.8‰) among King George Island plants, followed by grasses (−25.6 ± 1.7‰), mosses (−25.9 ± 1.6‰), liverworts (−26.3 ± 0.5‰) and algae (−26.3 ± 1.2‰), partly related to habitats controlled by water availability. The δ15N values of moss samples range widest (−9.0 to 22.8‰, with an average of 4.6 ± 6.6‰). Lichens are on the average most depleted in 15N (mean = −7.4 ± 6.4‰), whereas algae are most enriched in 15N (10.0 ± 3.3‰). The broad range of nitrogen isotope compositions suggest that the N source for these Antarctic terrestrial plants is spatially much variable, with the local presence of seabird colonies being particularly significant.  相似文献   

5.
During microbial breakdown of leaf litter a fraction of the C lost by the litter is not released to the atmosphere as CO2 but remains in the soil as microbial byproducts. The amount of this fraction and the factors influencing its size are not yet clearly known. We performed a laboratory experiment to quantify the flow of C from decaying litter into the soil, by means of stable C isotopes, and tested its dependence on litter chemical properties. Three sets of 13C-depleted leaf litter (Liquidambar styraciflua L., Cercis canadensis L. and Pinus taeda L.) were incubated in the laboratory in jars containing 13C-enriched soil (i.e. formed C4 vegetation). Four jars containing soil only were used as a control. Litter chemical properties were measured using thermogravimetry (Tg) and pyrolysis–gas chromatography/mass spectrometry–combustion interface–isotope ratio mass spectrometry (Py–GC/MS–C–IRMS). The respiration rates and the δ13C of the respired CO2 were measured at regular intervals. After 8 months of incubation, soils incubated with both L. styraciflua and C. canadensis showed a significant change in δ13C (δ13Cfinal = −20.2 ± 0.4‰ and −19.5 ± 0.5‰, respectively) with respect to the initial value (δ13Cinitial = −17.7 ± 0.3‰); the same did not hold for soil incubated with P. taeda13Cfinal:−18.1 ± 0.5‰). The percentages of litter-derived C in soil over the total C loss were not statistically different from one litter species to another. This suggests that there is no dependence of the percentage of C input into the soil (over the total C loss) on litter quality and that the fractional loss of leaf litter C is dependent only on the microbial assimilation efficiency. The percentage of litter-derived C in soil was estimated to be 13 ± 3% of total C loss.  相似文献   

6.
We analysed the stable carbon isotope ratio in exhaled CO213Cbreath) of free-ranging vampires to assess the type of metabolized substrate (endogenous or exogenous substrate) and its origin, i.e. whether the carbon atoms came from a C4 food web (grass and cattle) or the C3 food web in which they were captured (a rainforest remnant and its mammals). For an improved understanding of factors influencing the δ13Cbreath of vampires, we conducted feeding experiments with captive animals. The mean δ13Cbreath of starved bats was depleted in 13C in relation to the diet by 4.6‰ (n = 10). Once fed with blood, δ13Cbreath levelled off within a short time approximately 2.2‰ above the stable carbon isotope signature of the diet. The median time required to exchange 50% of the carbon atoms in exhaled CO2 with carbon atoms from the ingested blood was 18.6 min (mean 29.5 ± 19.0 min, n = 5). The average δ13C of wing membrane and fur in free-ranging vampire bats suggested that bats almost exclusively foraged for cattle blood during the past weeks. The δ13Cbreath of the same bats averaged −19.1‰. Given that all free-ranging vampires were starving and that the δ13C of cattle was more in enriched in 13C by 5–6‰ than the δ13Cbreath of vampires, we conclude that the vampire bats of our study metabolised fat that was predominantly built from carbon atoms originating from cattle blood. Since δ13C of wing membrane and fur integrates over weeks and months respectively and δ13Cbreath over hours and days, we also conclude that vampire bats of the studied population consistently ignored rainforest mammals and chose cattle as their prey during and prior to our study.  相似文献   

7.
We used the dual isotope method to study differences in nitrate export in two subwatersheds in Vermont, USA. Precipitation, soil water and streamwater samples were collected from two watersheds in Camels Hump State Forest, located within the Green Mountains of Vermont. These samples were analyzed for the δ15N and δ18O of NO3. The range of δ15N–NO3 values overlapped, with precipitation −4.5‰ to +2.0‰ (n = 14), soil solution −10.3‰ to +6.2‰ (n = 12) and streamwater +0.3‰ to +3.1‰ (n = 69). The δ18O of precipitation NO3 (mean 46.8 ± 11.5‰) was significantly different (P < 0.001) from that of the stream (mean 13.2 ± 4.3‰) and soil waters (mean 14.5 ± 4.2‰) even during snowmelt periods. Extracted soil solution and streamwater δ18O of NO3 were similar and within the established range of microbially produced NO3, demonstrating that NO3 was formed by microbial processes. The δ15N and δ18O of NO3 suggests that although the two tributaries have different seasonal NO3 concentrations, they have a similar NO3 source.  相似文献   

8.
We studied the energy flow from C3 and C4 plants to higher trophic levels in a central Amazonian savanna by comparing the carbon stable-isotope ratios of potential food plants to the isotope ratios of species of different consumer groups. All C4 plants encountered in our study area were grasses and all C3 plants were bushes, shrubs or vines. Differences in δ13C ratios among bushes ( = −30.8, SD = 1.2), vines ( = −30.7, SD = 0.46) and trees ( = −29.7, SD = 1.5) were small. However the mean δ13C ratio of dicotyledonous plants ( = −30.4, SD = 1.3) was much more negative than that of the most common grasses ( = −13.4, SD = 0.27). The insect primary consumers had δ13C ratios which ranged from a mean of −29.5 (SD = 0.47) for the grasshopper Tropidacris collaris to a mean of −14.7 (SD = 0.56) for a termite (Nasutitermes sp.), a range similar to that of the vegetation. However, the common insectivorous and omnivorous vertebrates had intermediate values for δ13C, indicating that carbon from different autotrophic sources mixes rapidly as it moves up the food chain. Despite this mixing, the frogs and lizards generally had higher values of δ13C ( = −21.7, SD = 1.6;  = −21.9, SD = 1.8, respectively) than the birds ( = −24.8, SD = 1.8) and the only species of mammal resident in the savanna ( = −25.4), indicating that they are generally more dependent on, or more able to utilise, food chains based on C4 grasses. Received: 7 May 1998 / Accepted: 30 November 1998  相似文献   

9.
The C isotope composition of leaf dark-respired CO213Cl) integrates short-term metabolic responses to environmental change and is potentially recorded in the isotopic signature of ecosystem-level respiration. Species differences in photosynthetic pathway, resource acquisition and allocation patterns, and associated isotopic fractionations at metabolic branch points can influence δ13Cl, and differences are likely to be modified by seasonal variation in drought intensity. We measured δ13Cl in two deep-rooted C3 trees (Prosopis velutina and Celtis reticulata), and two relatively shallow-rooted perennial herbs (a C3 dicot Viguiera dentata and a C4 grass Sporobolus wrightii) in a floodplain savanna ecosystem in southeastern Arizona, USA during the dry pre-monsoon and wet monsoon seasons. δ13Cl decreased during the nighttime and reached minimum values at pre-dawn in all species. The magnitude of nocturnal shift in δ13Cl differed among species and between pre-monsoon and monsoon seasons. During the pre-monsoon season, the magnitude of the nocturnal shift in δ13Cl in the deep-rooted C3 trees P. velutina (2.8 ± 0.4‰) and C. reticulata (2.9 ± 0.2‰) was greater than in the C3 herb V. dentata (1.8 ± 0.4‰) and C4 grass S. wrightii (2.2 ± 0.4‰). The nocturnal shift in δ13Cl in V. dentata and S. wrightii increased to 3.2 ± 0.1‰ and 4.6 ± 0.6‰, respectively, during the monsoon season, but in C3 trees did not change significantly from pre-monsoon values. Cumulative daytime net CO2 uptake was positively correlated with the magnitude of the nocturnal decline in δ13Cl across all species, suggesting that nocturnal δ13Cl may be controlled by 13C/12C fractionations associated with C substrate availability and C metabolite partitioning. Nocturnal patterns of δ13Cl in dominant plant species in the semiarid savanna apparently have predictable responses to seasonal changes in water availability, which is important for interpreting and modeling the C isotope signature of ecosystem-respired CO2.  相似文献   

10.
The vertical profile of stable carbon isotope ratios (δ13C) of leaves was analyzed for 13 tree species in a cool-temperate deciduous forest in Japan. The vertical distribution of long-term averaged δ13C in atmospheric CO2a) was estimated from δ13C of dry matter from NADP-malic enzyme type C4 plant (Zea mays L. var. saccharata Sturt.) grown at a tower in the forest for 32␣days, assuming constant Δ value (3.3‰) in Z. mays against height. The δa value obtained from δ13C in Z.␣mays was lowest at the forest floor (−9.30 ± 0.03‰), increased with height, and was almost constant above 10␣m (−7.14 ± 0.14‰). Then leaf Δ values for the tree species were calculated from tree leaf δ13 C andδa. Mean leaf Δ values for the three tall deciduous species (Fraxinus mandshurica, Ulmus davidiana, and Alnus hirsuta) were significantly different among three height levels in the forest: 23.1 ± 0.7‰ at the forest floor (understory), 21.4 ± 0.5‰ in lower canopy, and 20.5 ± 0.3‰ in upper canopy. The true difference in tree leaf Δ among the forest height levels might be even greater, because Δ in Z. mays probably increased with shading by up to ∼‰. The difference in tree leaf Δ among the forest height levels would be mainly due to decreasing intercellular CO2 (C i) with the increase in irradiance. Potential assimilation rate for the three tree species probably increased with height, since leaf nitrogen content on an area basis for these species also increased with height. However, the increase in stomatal conductance for these tree species would fail to meet the increase in potential assimilation rate, which might lead to increasing the degree of stomatal limitation in photosynthesis with height. Received: 30 September 1995 / Accepted: 25 October 1996  相似文献   

11.
Isotope screening is a simple test for determining the photosynthetic pathway used by plants. The scope of this work was to classify the photosynthetic type of some herbs and medicinal plants through studies of the carbon isotope composition (δ13C). Also, we propose the use of carbon isotope composition as a tool to control the quality of herbs and medicinal plants. For studies of δ13C, δ13C‰ = [R (sample)/R (standard) − 1] × 10−3, dry leaves powdered in cryogenic mill were analyzed in a mass spectrometer coupled with an elemental analyzer for determining the ratio R = 13CO2/12CO2. In investigation of δ13C of 55 species, 23 botanical families, and 44 species possessed a C3 photosynthetic type. Six species found among the botanical families Euphorbiaceae and Poaceae were C4 plants, and 5 species found among the botanical families Agavaceae, Euphorbiaceae, and Liliaceae possessed CAM-type photosynthesis. Carbon isotope composition of plants can be used as quality control of herbs and medicinal plants, allowing the identification of frauds or contaminations. Also, the information about the photosynthetic type found for these plants can help in introducing and cultivating exotic and wild herbs and medicinal plants.  相似文献   

12.
Carbon isotope ratios (δ13C) were studied in evergreen and deciduous forest ecosystems in semi-arid Utah (Pinus contorta, Populus tremuloides, Acer negundo and Acer grandidentatum). Measurements were taken in four to five stands of each forest ecosystem differing in overstory leaf area index (LAI) during two consecutive growing seasons. The δ13Cleaf (and carbon isotope discrimination) of understory vegetation in the evergreen stands (LAI 1.5–2.2) did not differ among canopies with increasing LAI, whereas understory in the deciduous stands (LAI 1.5–4.5) exhibited strongly decreasing δ13Cleaf values (increasing carbon isotope discrimination) with increasing LAI. The δ13C values of needles and leaves at the top of the canopy were relatively constant over the entire LAI range, indicating no change in intrinsic water-use efficiency with overstory LAI. In all canopies, δ13Cleaf decreased with decreasing height above the forest floor, primarily due to physiological changes affecting c i/c a (> 60%) and to a minor extent due to δ13C of canopy air (< 40%). This intra-canopy depletion of δ13Cleaf was lowest in the open stand (1‰) and greatest in the denser stands (4.5‰). Although overstory δ13Cleaf did not change with canopy LAI, δ13C of soil organic carbon increased with increasing LAI in Pinus contorta and Populus tremuloides ecosystems. In addition, δ13C of decomposing organic carbon became increasingly enriched over time (by 1.7–2.9‰) for all deciduous and evergreen dry temperate forests. The δ13Ccanopy of CO2 in canopy air varied temporally and spatially in all forest stands. Vertical canopy gradients of δ13Ccanopy, and [CO2]canopy were larger in the deciduous Populus tremuloides than in the evergreen Pinu contorta stands of similar LAI. In a very wet and cool year, ecosystem discrimination (Δe) was similar for both deciduous Populus tremulodies (18.0 ± 0.7‰) and evergreen Pinus contorta (18.3 ± 0.9‰) stands. Gradients of δ13Ccanopy and [CO2]canopy were larger in denser Acer spp. stands than those in the open stand. However, 13C enrichment above and photosynthetic draw-down of [CO2]canopy below tropospheric baseline values were larger in the open than in the dense stands, due to the presence of a vigorous understory vegetation. Seasonal patterns of the relationship δ13Ccanopy versus 1/[CO2]canopy were strongly influenced by precipitation and air temperature during the growing season. Estimates of Δe for Acer spp. did not show a significant effect of stand structure, and averaged 16.8 ± 0.5‰ in 1933 and 17.4 ± 0.7‰ in 1994. However, Δe varied seasonally with small fluctuations for the open stand (2‰), but more pronounced changes for the dense stand (5‰). Received: 15 April 1996 / Accepted: 19 October 1996  相似文献   

13.
We determined both carbon and nitrogen isotope ratios of ten organic reference materials (CERKU-01 to CERKU-10) in the Center for Ecological Research (CER), Kyoto University, and three organic reference materials (BG-A, BG-P, and BG-T) in the Institute of Biogeosciences (BioGeos), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), using an internationally recommended calibration method of two-point anchoring. The reference materials cover δ13CVPDB range of −34.92 to −9.45‰ and δ15NAir range of −5.22 to 22.71‰ and can be used to measure isotope ratios of naturally occurring substances.  相似文献   

14.
Fractionation of stable carbon isotopes 12C and 13C by three pure cultures of photoautotrophic purple sulfur bacteria (Ectothiorhodospira shaposhnikovii, Lamprocystis purpureus, and Thiocapsa sp.) (PSB) and the green sulfur bacterium Prosthecochloris sp. (GSB) was investigated in 13–15-day experiments. The cultivation was carried out in a luminostat (2000 lx) on mineral media with 1–1.5 g/l NaHCO3 (inoculum) with the subsequent transfer to the medium with up to 10 g/l NaHCO3. For PSB, the difference in the quantitative characteristics of the isotopic composition of suspended carbon (including bacterial cells) and mineral carbon of the medium (Δ13C = δ13Csubstrate − δ13Cbiomass) changed from 15.0 to 34.3‰. For GSB, the range of Δ13C changes was significantly less (18.3–22.7‰). These data suggested the possibility of a pool of soluble mineral carbon in PSB cells. The pool of intracellular mineral carbon was calculated; depending on the PSB species and growth stage, it varied from 0 to 68% of the total cell carbon. The α coefficients reflecting the carbon isotope fractionation by PSB and GBS and calculated from the changes of the bicarbonate carbon isotopic composition in the medium depending on its consumption were 1.029 ± 0.003 and 1.019 ± 0.001, respectively. These α values did not depend on the growth rate. CO2 fixation on ribulose-bisphosphate was shown to be the major factor determining the carbon isotope fractionation by PSB; at the stage of CO2 penetration into the cell, fractionation was insignificant. In GSB, fractionation occurred mostly at CO2 penetration into the cell, while it was insignificant at the stage of carbon dioxide fixation in the reverse TCA cycle. Analysis of the isotopic data of the photosynthesis by PSB and GSB in meromictic lakes also revealed that in PSB-dominated natural communities suspended organic matter was more enriched with light 13C (Δ13C = 23.4−24.6‰) than in the communities with more active GSB (Δ13C = 10.2−14.0‰)  相似文献   

15.
In marine food web studies, stable isotopes of nitrogen (δ15N) and carbon (δ13C) are widely used to estimate organisms’ trophic levels (TL) and carbon sources, respectively. For smaller organisms, whole specimens are commonly analyzed. However, this “bulk method” involves several pitfalls since different tissues may fractionate stable isotopes differently. We compared the δ15N and δ13C values of exoskeleton versus soft tissue, in relation to whole specimens, of three common Arctic amphipods in Svalbard waters: the benthic Anonyx nugax, the sympagic (ice-associated) Gammarus wilkitzkii and the pelagic Themisto libellula. The δ15N values of the exoskeletons were significantly lower than those of the soft tissues for A. nugax (10.5 ± 0.7‰ vs. 15.7 ± 0.7‰), G. wilkitzkii (3.3 ± 0.3‰ vs. 8.3 ± 0.4‰) and T. libellula (8.6 ± 0.3‰ vs.10.8 ± 0.3‰). The differences in δ13C values between exoskeletons and soft tissues were insignificant, except for A. nugax (−21.2 ± 0.2‰ vs. −20.3 ± 0.2‰, respectively). The δ15N values of whole organisms were between those of the exoskeletons and the soft tissues, being similarly enriched in 15N as the exoskeletons (except G. wilkitzkii) and depleted in 15N by 1.2–3.7‰ compared to the soft tissues. The δ15N-derived TLs of the soft tissues agreed best with the known feeding preferences of the three amphipods, which suggest a potential underestimation of 0.5–1.0 TL when stable isotope analyses are performed on whole crustaceans with thick exoskeletons. The insignificant or small differences in δ13C values among exoskeletons, soft tissues and whole specimens, however, suggest low probability for misinterpretations of crustaceans’ primary carbon source in marine ecosystems with distinctly different δ13C-carbon sources.  相似文献   

16.
Estimates of diet derived from stable isotope analyses are sensitive to the accuracy of corrections made for diet-tissue fractionation. In particular, diet-tissue fractionation in reindeer Rangifer tarandus may be expected to differ significantly from the generic values often used in stable isotope dietary calculations, given the known values obtained from other ungulates and the complex digestive system and nutrient recycling characteristic of the species. We fed domestic reindeer a homogenous artificial diet of known isotopic value in order to directly determine diet-tissue isotopic fractionation of carbon and nitrogen, the main elements used in stable isotope dietary analyses. Diet-tissue fractionation values for blood plasma were +3.5 ± 0.1‰ (δ13C) and +4.2 ± 0.3‰ (δ15N). Diet-tissue fractionation values for whole blood were +3.7 ± 0.2‰ (δ13C) and +2.5 ± 0.3‰ (δ15N). Metabolic turnover rates were clearly sufficient for complete tissue replacement over the period of artificial feeding for blood plasma, but may not have been so for whole blood, especially for δ15N. Our values, except for whole blood δ15N, differ considerably from the generic values often used in dietary studies and interspecific comparisons of trophic niche. The results underline the importance of obtaining as specific as possible fractionation values for the species, tissue, and in some cases sex and physiological status of animals under examination, and the potential problems associated with assuming ‘generic’ fractionation values when comparing species, especially where digestive processes are dissimilar.  相似文献   

17.
Abstract Freshwater ecosystems derive organic carbon from both allochthonous and autochthonous sources. We studied the relative contributions of different carbon sources to zooplankton in a small, polyhumic, steeply stratified lake, using six replicate surface-to-sediment enclosures established during summer and autumn 2004. We added 13C-enriched bicarbonate to the epilimnion of half the enclosures for three weeks during each season and monitored carbon stable isotope ratios of DIC, DOC, POC and Daphnia, along with physical, chemical and biological variables. During summer, 13C-enriched DIC (δ13C up to 44 ± 7.2‰) was soon taken up by phytoplankton (δ13C up to −5.1 ± 13.6‰) and was transmitted to Daphnia13C up to −1.7 ± 7.2‰), demonstrating consumption of phytoplankton. In contrast, during autumn, 13C-enriched DIC (δ13C up to 56.3 ± 9.8‰) was not transmitted to Daphnia, whose δ13C became progressively lower (δ13C down to −45.6 ± 3.3‰) concomitant with decreasing methane concentration. Outputs from a model suggested phytoplankton contributed 64–84% of Daphnia diet during summer, whereas a calculated pelagic carbon mass balance indicated only 30–40% could have come from phytoplankton. Although autumn primary production was negligible, zooplankton biomass persisted at the summer level. The model suggested methanotrophic bacteria contributed 64–87% of Daphnia diet during autumn, although the calculated carbon mass balance indicated a contribution of 37–112%. Thus methanotrophic bacteria could supply virtually all the carbon requirement of Daphnia during autumn in this lake. The strongly 13C-depleted Daphnia values, together with the outputs from the models and the calculated carbon mass balance showed that methanotrophic bacteria can be a greater carbon source for Daphnia in lakes than previously suspected.  相似文献   

18.
Family Chenopodiaceae is an intriguing lineage, having the largest number of C4 species among dicots, including a number of anatomical variants of Kranz anatomy and three single-cell C4 functioning species. In some previous studies, during the culture of Bienertia cycloptera Bunge ex Boiss., carbon isotope values (δ13C values) of leaves deviated from C4 to C3−C4 intermediate type, raising questions as to its mode of photosynthesis during growth in natural environments. This species usually co-occurs with several Kranz type C4 annuals. The development of B. cycloptera morphologically and δ13C values derived from plant samples (cotyledons, leaves, bracts, shoots) were analyzed over a complete growing season in a salt flat in north central Iran, along with eight Kranz type C4 species and one C3 species. For a number of species, plants were greenhouse-grown from seeds collected from the site, in order to examine leaf anatomy and C4 biochemical subtype. Among the nine C4 species, the cotyledons of B. cycloptera, and of the Suaeda spp. have the same respective forms of C4 anatomy occurring in leaves, while cotyledons of members of tribe Caroxyloneae lack Kranz anatomy, which is reflected in the δ13C values found in plants grown in the natural habitat. The nine C4 species had average seasonal δ13C values of −13.9‰ (with a range between species from −11.3 to −15.9‰). The measurements of δ13C values over a complete growing season show that B. cycloptera performs C4 photosynthesis during its life cycle in nature, similar to Kranz type species, with a seasonal average δ13C value of −15.2‰. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
We report the use of stable isotope and crop content analyses to quantify the use of saguaro (Carnegiea gigantea) nectar and fruit by migratory desert white-winged doves (Zenaida asiatica mearsnii). Saguaro resources had characteristically 13C-enriched CAM values (δ13C=–12.8±0.7‰ SD VPDB and –13.1±0.5‰ SD VPDB for nectar and fruit, respectively) relative to other food plants used by doves (δ13CC3=–24.9±3.3‰ SD VPDB). The water contained in saguaro nectar and fruit was deuterium enriched (δD=19.6±2.0‰ SD VSMOW and 48.4±1.6‰ SD VSMOW for nectar and fruit, respectively) relative to other water sources (ranging from –41 to –19‰ VSMOW). During the fruiting season, there was a positive correlation between δ13C in dove liver tissues and percent of saguaro in crop contents. A two-point mixing model indicated that during the peak of saguaro fruit use, most of the carbon incorporated in dove tissues was from saguaro. Desert white-winged doves appear to be saguaro specialists. Averaged over the period when doves were resident, saguaro comprised about 60% of the total carbon incorporated into dove tissues. Tissue δ13C and δD of body water showed a significant positive correlation, indicating that doves were using saguaro as a source of both nutrients and water. However, at the peak of saguaro utilization, the doves’ body-water δD was more positive (by about 20‰) than saguaro fruit water. We hypothesize that this enrichment is due to fractionated evaporative water losses by doves. Using dove carbon isotope data and a two end-point mixing model we estimate that, on average, doves consume the equivalent of 128 saguaro fruits per season; each fruit contains on average 26.0±14.8 g SD of pulp (wet mass) of which 19.4 g is water. Stable isotopes have been used to produce qualitative re-constructions of animal diets. Our study shows that they can be used to provide quantitative estimates of the flow of nutrients from resources into consumers as well. Received: 30 September 1999 / Accepted: 23 March 2000  相似文献   

20.
In semi-arid regions, where plants using both C3 and C4 photosynthetic pathways are common, the stable C isotope ratio (δ13C) of ecosystem respiration (δ13CR) is strongly variable seasonally and inter-annually. Improved understanding of physiological and environmental controls over these variations will improve C cycle models that rely on the isotopic composition of atmospheric CO2. We hypothesized that timing of precipitation events and antecedent moisture interact with activity of C3 and C4 grasses to determine net ecosystem CO2 exchange (NEE) and δ13CR. Field measurements included CO2 and δ13C fluxes from the whole ecosystem and from patches of different plant communities, biomass and δ13C of plants and soils over the 2000 and 2001 growing seasons. NEE shifted from C source to sink in response to rainfall events, but this shift occurred after a time lag of up to 2 weeks if a dry period preceded the rainfall. The seasonal average of δ13CR was higher in 2000 (−16‰) than 2001 (20‰), probably due to drier conditions during the 2000 growing season (79.7 mm of precipitation from April up to and including July) than in 2001 (189 mm). During moist conditions, δ13C averaged −22‰ from C3 patches, −16‰ from C4 patches, and −19‰ from mixed C3 and C4 patches. However, during dry conditions the apparent spatial differences were not obvious, suggesting reduced autotrophic activity in C4 grasses with shallow rooting depth, soon after the onset of dry conditions. Air and soil temperatures were negatively correlated with δ13CR; vapor pressure deficit was a poor predictor of δ13CR, in contrast to more mesic ecosystems. Responses of respiration components to precipitation pulses were explained by differences in soil moisture thresholds between C3 and C4 species. Stable isotopic composition of respiration in semi-arid ecosystems is more temporally and spatially variable than in mesic ecosystems owing to dynamic aspects of pulse precipitation episodes and biological drivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号