首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Summary Sister chromatid exchange (SCE) has been studied in the fibroblasts of five Bloom's syndrome patients, one heterozygote, and two normal individuals. The high frequency of SCE already known in the lymphocytes of Bloom's syndrome was also found in the fibroblasts of all five patients. However, populations with low and high frequency of SCE were not found. In addition, chromosome aberrations appeared with a lower frequency.The cell cycle duration in the Bloom's fibroblasts appeared to be similar to that in the normal cell line, and the difference in the growth pattern appeared to be due to the variation in the mitotic index. The cell cycle lasted about 24 h in at least four of the Bloom's lines studied during the present experiments.  相似文献   

2.
Summary The frequency of sister chromatid exchanges (SCE) and chromosome aberrations and the dynamics of cell division in peripheral blood lymphocytes of four patients with Fanconi's anemia were studied after in vitro exposure to alkylating agents TEPA and mitomycin.SCE frequency was significantly increased even after very low doses of mutagens, while chromosome aberrations were significantly increased only after high doses (0.160 g/ml mitomycin and 10-5 M TEPA). The responses of Fanconi's anemia cells and control cells did not differ significantly. The increased frequency of both SCE and chromosome aberrations was accompanied by gradual delay of cell division, which was most conspicuous in cells from patients with Fanconi's anemia.  相似文献   

3.
Paracetamol was given to 10 healthy human volunteers in 3 doses of 1 g each during a period of 8 h. Blood samples for lymphocyte cultures were taken before and 24 h after paracetamol administration. A small but significant increase was found in the frequency of sister-chromatid exchanges (SCE) after intake of paracetamol (0.187 +/- 0.030 per chromosome before and 0.208 +/- 0.024 per chromosome after). After exposure the mean frequency of chromatid breaks per 100 cells was significantly increased (2.16 +/- 1.33 versus 0.33 +/- 0.50 before exposure). Exposure of human lymphocytes in vitro showed that concentrations of paracetamol above 0.1 mM induced inhibition of replicative DNA synthesis. Increased SCE was found in lymphocytes exposed to 1-10 mM paracetamol for 2 h. Furthermore, 0.75-1.5 mM paracetamol exposure for 24 h increased the frequency of chromatid and chromosome breaks in the lymphocytes. The paracetamol-induced SCE and chromosome aberrations may be secondary effects of paracetamol-induced inhibition of DNA synthesis or due to covalent binding of paracetamol metabolite(s) to DNA.  相似文献   

4.
Bone-marrow cells from a patient with Bloom's syndrome cultured for 48 h in the presence of BudR exhibited a striking increase in the number of sister chromatid exchanges (SCEs) in comparison to that in the marrow cells of a patient with treated polycythemia vera (PV). Thus, it appears that an increased incidence of SCE in Bloom's syndrome occurs in various differentiated types of cells, not just blood lymphocytes, and constitutes the syndrome's most characteristic cytogenetic feature. In contrast, the incidence of SCE was not increased in marrow cells and lymphocytes of the particular PV patient studied here, whose cells did exhibit increased numbers of chromatid and chromosome gaps and breaks, presumably as result of the patient's earlier treatment. An increased frequency of SCE was demonstrated in Bloom's syndrome lymphocytes using both a technique based on BudR incorporation and one based on labeling with tritated deoxycytidine. This observation constitutes evidence against the increase of SCE being due to an unusual reaction to BudR. By conventional cytogenetic techniques, chromosome instability, including chromatid and chromosome breaks, but no homologous chromatid interchanges were also recognized in Bloom's syndrome bone-marrow cells incubated in vitro (without BudR) for either 1.k or 16 h. This observation points to the existence of chromosome instability in vivo.  相似文献   

5.
Bloom's syndrome (BS) and EM9 cells both display elevated frequencies of sister chromatid exchange (SCE) following growth for two rounds of DNA replication in bromodeoxyuridine (BrdU)-containing medium. To learn whether hyperresponsiveness to BrdU itself might play a role in causing the SCE elevation, the effects of BrdU on two other parameters, cellular proliferation and chromosome disruption, were examined, comparing the responses of BS and normal lymphoblastoid cells and of EM9 and CHO cells. BS and normal cells responded similarly with respect to growth for 4 days in BrdU-containing medium (0, 1, 3, and 5 g/ml). Chromosome aberrrations were increased only slightly in the BS and normal cells after 2 days in BrdU. CHO cells responded to growth in BrdU-containing medium like BS and normal cells; however, little growth of EM9 was detected at any of the BrdU concentrations employed. CHO and EM9 cells also exhibited strikingly different amounts of chromosome damage following growth in BrdU. After 2 days in 1, 3, and 5 g/ml BrdU 21%, 46%, and 50%, respectively, of the CHO cells had chromosome aberrations in contrast to 92%, 96%, and 98% of the EM9 cells. Most of the aberrations in the BrdU-treated CHO cells consisted of what appeared to be polycentric and ring chromosomes or chromosomes exhibiting telomere association. Acentric fragments were absent from most cells with polycentric and ring chromosomes, indicating either that the abnormal chromosomes were formed during an earlier cell cycle or that the abnormal chromosomes represent a form of association in which the telomeres are apposed so tightly that the juncture between chromosomes cannot be identified microscopically. EM9 cells treated with BrdU exhibited many chromatid and isochromatid gaps and breaks as well as numerous quadriradial, triradial, and complex interchange configurations. In addition, the types of aberrations present in CHO cells also were increased greatly in number. The different responses of BS and EM9 cells to growth in BrdU suggest that the molecular defects in the two cell types are different.  相似文献   

6.
Sister-chromatid exchange (SCE) and chromosome aberrations have been studied in peripheral lymphocytes of 20 epileptic children treated in monotherapy with valproic acid (VPA) for 6-52 months and in 2 matched control groups. The frequencies of SCE in the VPA-treated epileptic children were significantly higher than in the 2 control groups (p less than 0.01); rates of chromosome aberrations were slightly higher but not significantly different from the 2 control groups. We also examined SCE in 10 epileptic children before and after they took sodium valproate for 6-7 months; there was a statistically significant change in SCE following VPA. 9 normal children whose lymphocytes were exposed in vitro to sodium valproate (5-20 micrograms/ml) showed a significant increase in SCE.  相似文献   

7.
In experiments to assess the effects of several biological, chemical, and physical variables on sister-chromatid exchange (SCE) induction in cultured lymphocytes exposed to mitomycin C (MMC) before PHA stimulation we observed: (1) high SCE frequencies in female cells, and normal SCE frequencies in Y-bearing metaphases in mixed cultures containing equal numbers of MMC-treated female lymphocytes and untreated male lymphocytes; (2) small, but statistically significant, decreases in SCEs with increasing pH after G0 exposure in the pH range 6.6–7.6; (3) pronounced reductions in MMC-induced SCEs in lymphocytes exposed at 4°C vs. 37°C. In other studies, SCE induction was evaluated in cultures exposed during G0 to MMC concentrations ranging from 0.25 to 2.5 μg/ml for varying time intervals ranging from 5 min to 24 h. For all concentrations tested SCE induction varied as a linear function of G0 exposure time. To compare SCE induction between cultures, we calculated the mean frequencies of SCEs induced per metaphase/unit dose MMC/unit G0 exposure time (SCE/μg/h). A mean frequency of 20.7 ± 4.8 SCE/μg/h was observed for 41 lymphocyte cultures suggesting that a single term adequately describes the rate of SCE induction following G0 exposure to a 10-fold range in concentration of MMC for time intervals of 30 min to 24 h.  相似文献   

8.
Bloom syndrome (BS) lymphocytes, which are characterized by a high incidence (75.4 per cell) of SCE, were treated with caffeine (CAF) during the first cell cycle and with monofunctional-(M-MC) and bifunctional-(MC)mitomycin C during the second cycle. The effect on the SCE level was synergistic. The CAF-pretreated cells in combination with M-MC and MC post-treatments, had significantly higher (SCE values 152.5 and 167.9 SCE per cell, resp.) than those treated with M-MC or MC alone during the second cycle (101.1 and 116.4 SCE per cell, resp.). M-MC and MC in the presence of BrdU (without CAF) for 2 cell cycles increased SCE to 157.6 and 169.4 per cell (about twice the control level). M-MC + CAF and MC + CAF treatments for 2 cell cycles did not produce a synergistic effect on the SCE frequency in BS cells; the SCE level was not significantly greater than that with M-MC or MC alone. Normal cells treated with MC and CAF for 2 cycles had a maximum SCE frequency of 156 per cell. This suggests that cells with SCE frequencies above this level may not be able to survive, i.e., this is the “saturation” level of SCE. However, CAF alone had almost no effect on SCE in either BS or normal cells and did not produce multiple chromosome aberrations. The lack of CAF effect on BS cells suggests that the lesions in DNA strands of BS cells which lead to SCE are double-strand lesions. In normal cells CAF is known to significantly slow down DNA-chain growth; the reduced rate of DNA-chain growth in BS is an inherent defect of the cells. Therefore, though CAF enhanced SCE and chromosome aberrations (shattered chromosomes) in combination with alkylating agents, CAF alone did not significantly increase the SCE rate in either BS cells or in normal cells. Thus, processes which may induce SCE are not only related to retarded rate of DNA-chain growth, but also to breaks in the template strand permitting double-strand exchanges to occur.  相似文献   

9.
Most chemicals are S-dependent and are potent inducers of SCE, but do not produce chromosome-type aberrations in the first metaphases after exposure. Ionizing radiation, which is an S-independent agent, produces chromosome-type aberrations, especially dicentrics and rings, but inefficiently produces chromatid-type aberrations. A series of experiments has been performed to investigate whether cytogenetic damage induced by ionizing radiation (gamma-rays) might be assessed separately from that induced by the alkylating chemical, mitomycin C (MMC), when human lymphocytes were exposed to these 2 agents in combination. Whole-blood cultures of human lymphocytes in G0 phase were exposed to gamma-rays and MMC in combination or separately. Cytogenetic analyses were done for both chromosome aberrations (CA), analyzed in cultures incubated for 56 h without BrdUrd, and sister-chromatid exchanges (SCEs) in cultures incubated for 72 h with BrdUrd. The frequency of chromosome-type aberrations (dicentrics and rings) increased with increasing doses of gamma-rays from 0.5 to 4.0 Gy. The dose-response relationships were the same with or without concomitant treatment with MMC (10(-6) M). Although the SCE frequency increased with increasing doses of MMC, the increase was nearly the same as when cells were treated with both MMC and gamma-rays (2 Gy). There was no interaction between MMC and gamma-rays concerning these 2 endpoints.  相似文献   

10.
The modifying effects of tannin components extracted from green tea and black tea on mutagen-induced SCEs and chromosome aberrations were studied. These tannin components did not affect spontaneous SCEs and chromosome aberrations in cultured Chinese hamster cells. The frequency of SCEs and chromosome aberrations induced by mitomycin C (MMC) or UV was enhanced by the posttreatment with tea tannin components. When cells were post-treated with tea tannin components in the presence of metabolic enzymes of rat liver (S9 mix), the modifying effects on the induction of SCEs and chromosome aberrations by mutagens were complicated. MMC- and UV-induced SCEs and chromosome aberrations were suppressed by the posttreatment with tea tannin components at low concentrations (less than or equal to 6.7 micrograms/ml) with S9 mix. At a high concentration of tea tannin components (20 micrograms/ml) with S9 mix, a co-mutagenic effect was observed. The modifying effects of tea tannin components were shown to occur in the G1 phase of the cell cycle. In cells from a patient with xeroderma pigmentosum (XP) and a normal human embryo, MMC-induced SCEs were suppressed by the posttreatment with tea tannin components in the presence of S9 mix, and enhanced in the absence of S9 mix. On the other hand, tea tannin components modified SCE frequencies in UV-irradiated normal human cells but not in UV-irradiated XP cells. Our results suggested that tea tannin components themselves inhibited DNA-excision repair and resulted in a co-mutagenic effect, while in the presence of S9 mix metabolites of tea tannin components promoted DNA-excision repair activity and resulted in an antimutagenic effect. MMC-induced chromosome aberrations in mouse bone marrow cells were suppressed by the pretreatment with green tea and black tea tannin mixture.  相似文献   

11.
The effect of a tumor promoter, 12-O-tetradecanoyl-phorbol 13-acetate (TPA) alone and in combination with mitomycin C (MMC) or cyclophosphamide (CPP) on the induction of sister-chromatid exchanges (SCE) in Chinese hamster V79 cells was investigated. TPA alone at various doses and durations caused no increase of SCE frequency. MMC either at the dose of 0.03 or 0.003 μg/ml alone or in combination with TPA (2 μg/ml) all caused a significant increase of SCE frequencies. There was no difference in SCE frequencies between the cultures treated with MMC alone at 0.03 μg/ml and those treated with MMC plus TPA. However, cultures treated with MMC at 0.003 μg/ml plus TPA had significantly and consistently higher SCE frequencies than those treated with MMC alone at all durations. Treatment of CPP at 1 μg/ml activated by S9 mix caused significant increase of SCE frequencies. Surprisingly, the cultures treated with CPP, S9 mix plus TPA (2 μg/ml) caused a drastic reduction of SCE frequencies as compared to those treated with CPP and S9 mix only at all durations. These results indicate that TPA alone had no effect on SCE in V79 cells. TPA enhanced the SCE induction in V79 cells treated with MMC at a low dose, i.e. 0.003 μg/ml, but it inhibited SCE induction in cultures treated with the indirect mutagen CPP. Thus, TPA has no direct effect on genetic materials but it may indirectly alter the effects of a mutagen.  相似文献   

12.
The frequencies of sister chromatid exchanges (SCEs) were examined in phytohaemagglutinin-stimulated blood lymphocytes of a normal individual, a Bloom's syndrome heterozygote (bl/+), and two Bloom's syndrome homozygotes (bl/bl). To determine the baseline SCE frequencies, lymphocytes were cultured with various concentrations of 5-bromodeoxyuridine (BrdUrd) for two cell cycles. The incidence of SCEs per two cell cycles inbl/bl lymphocytes levelled off at BrdUrd concentrations below 10 g/ml while that in normal andbl/+ lymphocytes stayed constant below 7.5 g/ml. The baseline SCE frequency in bl/bl cells was ten times higher than that in normal andbl/+ cells. At BrdUrd concentrations above 15 g/ml, SCEs inbl/bl cells were induced more frequently than in normal andbl/+ cells. These results indicate that at low concentrations BrdUrd has a minimal effect on the induction of SCEs in all individuals, while at higher concentrations the BrdUrd incorporated inbl/bl cells has a larger effect than that in normal andbl/+ cells. To elucidate the effect of BrdUrd incorporated into the daughter and parental DNA strands on SCE induction, SCEs occurring during each cell cycle were examined separately in three-way or two-way differentially stained, third-cycle metaphases. The incidence of SCEs detected in each cell cycle at 5 g/ml BrdUrd was constant in all individuals and the rates of SCEs in each cell cycle inbl/bl cells were remarkably higher than those observed in normal andbl/+ cells. These findings strongly indicate that most of the abnormally increased SCEs in thebl/bl cells used in our study occurred independently of any effect of BrdUrd incorporated into both the daughter and parental DNA strands. In addition, an abnormal response ofbl/bl cells to BrdUrd was not found for cell cycle progression or chromosomal aberration induction. Thus, the bl/bl cells did not exhibit an abnormal hypersensitivity to BrdUrd. From these results, it seems quite probable that the abnormally increased SCEs in thebl/bl lymphocytes used here were spontaneous.  相似文献   

13.
Cell-cycle kinetics, sister-chromatid exchange (SCE) and chromosome aberrations have been studied from the skin fibroblasts of the Indian muntjac after treatment with 100 micrograms/ml of caffeine and 0.05 microgram/ml of anthramycin. The cultures were incubated for a period which was sufficient for the completion of two consecutive cell cycles and both the drugs appeared to produce a slight inhibitory effect. When anthramycin-treated cells were however post-treated with caffeine, the cells did not proceed beyond one cycle and exhibited a mitotic block. The SCE frequency in the control and the experiments with caffeine and anthramycin was 8.63, 18.32 and 34.88 per cell respectively. The SCEs were randomly distributed amongst all chromosomes unlike a non-random distribution within the X chromosomes. Caffeine and anthramycin produced only 0.5% and 3.1 cells with chromosome aberrations respectively. Potentiation of chromosome aberrations was observed when the anthramycin-treated cells were post-treated with caffeine. Caffeine potentiation presumably results from an inhibition of the cells to cycle and a failure to repair the effect of the mutagen on DNA.  相似文献   

14.
Various carcinogens were tested with regard to the induction of sister-chromatid exchanges (SCEs) and chromosome aberrations using 3 types of Bloom syndrome (BS) B-lymphoblastoid cell lines (LCLs) (type I with normal frequency of SCEs and normal karyotype; type II with high frequency of SCEs and normal karyotype; type III with high frequency of SCEs and abnormal karyotypes) in the presence and absence of S9 mix. Three types of BS B-LCLs and normal cells showed different responses to the various carcinogens in the level of SCE induction. BS type I cells had the same SCE response as normal cells to carcinogens. Some carcinogens that require metabolic activation (S9 mix) had little effect on type II cells without S9 mix but had high SCE levels with S9 mix. BS type III cells were highly susceptible to both direct and indirect carcinogens with respect to high SCE increase without S9 mix (ca. 140 SCEs/cell), though some carcinogens produced SCEs rated in the medium (ca. 120 SCEs/cell) range, and had a high rate (more than 10%) of centromere spreading (CS), in addition to quadriradials. Therefore BS type III is a unique cell line which can be used to detect carcinogens.  相似文献   

15.
The chromosomal sensitivity to mitomycin-C (MMC) and cell-cycle kinetics in cells from patients with Klinefelter syndrome, a sex chromosomal disorder giving a high risk of malignant tumor, were studied by techniques of sister-chromatid exchanges (SCEs). The frequencies of MMC-induced SCEs increased in proportion to the increase in MMC concentration in both patient and normal control cells. At low levels of MMC there were no significant differences in SCE frequencies between the patient and normal control cells, but at MMC concentrations of 3 X 10(-8) M (p less than 0.05) and 1 X 10(-7) M (p less than 0.01), significant increases in the frequency of MMC-induced SCEs were observed in cells from patients compared to cells from normal controls. Although the analysis of cell-cycle kinetics both after various culture times and after treatment with MMC revealed that there were no significant differences between the patient and normal control cells, patients with Klinefelter syndrome showed a tendency to cell-cycle delays after treatment with MMC in comparison with normal controls.  相似文献   

16.
The trypsin inhibitor (ATI) isolated from gastrointestinal nematode Ascaris suum was tested in vitro for induction of chromosome aberrations and sister chromatid exchanges (SCE). Genotoxicity assessment of purified ATI was carried out on metaphase plates received from peripheral blood lymphocyte macroculture (48 h test of structural chromosome aberrations and 72 h test of SCE) with exogenous metabolic activation. ATI was tested in dose of 25, 50 and 100 μg per ml of culture. Kinetics of cell divisions were determined by the replication index (RI). The mitotic index (MI) was expressed as a number of metaphases per 1000 nuclei analysed. Analysis of chromosome aberrations showed that higher doses of ATI (50 and 100 μg/ml) significantly increased the frequency of chromosome aberrations (mainly of chromatid gaps and breaks) compared to the negative control. All concentrations of ATI caused a statistically significant reduction in the MI and RI. In comparison with the negative control, a significant increase in the SCE frequency was observed in all applied doses of ATI. Thus, in the presence of S9 activation, the Ascaris trypsin inhibitor showed potential clastogenic activity and inhibition of the dynamics of lymphocyte divisions.  相似文献   

17.
The induction of sister-chromatid exchanges (SCEs) was studied in phytohemagglutinin (PHA)-stimulated human lymphocytes exposed for 1 h to mitomycin C (MMC, 3 X 10(-6) M), ethyl methanesulphonate (EMS, 2 X 10(-2) M), or 4-nitroquinoline-1-oxide (4NQO, 3 X 10(-5) M) at various cell-cycle stages of 72-h cultures. The doses of the chemical were chosen to give about 20 SCEs per cell when treated at Go. The SCE frequency increased almost linearly with MMC or EMS treatments at later times after PHA stimulation, peaking with those at 36 h (at around the first G1/S boundary in the 2 consecutive cell cycles, which was revealed by concomitant experiments), and then decreased with subsequent treatment times. Cell-cycle kinetics and the cell stages at which the cells were treated were measured by autoradiography and sister-chromatid differential staining. The data show that MMC and EMS produce larger numbers of SCEs when treated at stages closer to the beginning of S, and that the most efficient time of treatment is the G1/S boundary in the first cell cycle of the two consecutive cycles before sampling. Pulse treatment with EMS caused about 3 times larger inductions of SCEs when done at late G1/early S(G1/S boundary) in the first cell cycle compared to that at G0/early G1, whereas identical exposure to MMC at the first G1/S boundary produced only 1.5 times larger numbers of SCEs than that at G0/early G1. EMS and MMC both, however, induced 30-40% larger numbers of SCEs when treated at the G1/S boundary in the first cell cycle than when treated at the second cell cycle before sampling. On the contrary, treatment with 4NQO led to the induction of about the same numbers of SCEs even when treated at different cell-cycle stages before the second G1/S boundary. The SCE frequency in 4NQO-treated cells then decreased with subsequent treatment times.  相似文献   

18.
Cytogenetic analysis in workers occupationally exposed to nickel carbonyl   总被引:1,自引:0,他引:1  
D C Cai  M Jin  L Han  S Wu  Z Q Xie  X S Zheng 《Mutation research》1987,188(2):149-152
Chromosomal aberration and sister-chromatid exchange (SCE) base-line frequencies and SCE frequencies induced by 10 ng/ml mitomycin C (MMC) were analysed in cultured peripheral lymphocytes of 65 workers occupationally exposed to nickel carbonyl Ni(CO)4. The subjects were divided into 4 groups: (1) control; (2) exposed to nickel carbonyl (= exposed); (3) cigarette smokers; (4) smoking-exposed. The results show that there are no significant differences in chromosomal aberration frequencies, breaks or gaps, between the various groups. However, the SCE base-line frequency of the smoking-exposed group, with an average of 7.7/cell, was significantly higher than that of the control group, with an average of 6.5/cell (P less than 0.01), and also than that of the exposed group with an average of 5.9/cell (P less than 0.01). Similarly, the SCE frequency induced by 10 ng/ml MMC in the smoking-exposed group which averaged 15.5/cell was significantly higher than that of the control group (average of 13.2/cell (P less than 0.05], and also than that of the exposed group with an average of 12.3/cell (P less than 0.01). Under our experimental conditions, it may be that the level of exposure was not high enough to elicit an increase in chromosomal aberrations and SCE frequencies in the non-smoker exposed group. The fact that an increase in SCE frequencies was only found in the smoking-exposed group implies that the two factors, smoking and exposure to nickel carbonyl, are jointly responsible for the result.  相似文献   

19.
The cytogenetic effect of a hormonal steroid, estradiol-17beta, was assessed in peripheral blood human lymphocyte culture. Sister chromatid exchanges (SCE) and chromosome aberrations (CA) were scored as genetic end points. Significant induction of CA was observed at 25 microg/ml and 50 microg/ml concentrations of estradiol-17beta in the absence of microsomal activation. The drug was effective in all treatments in the presence of rat liver S(9) microsomal fraction (S(9) mix) and exhibited increased frequency of chromosomal aberrations. The drug was effective in increasing the SCE frequency which was found to be maximum at the dose of 50 microg/ml concentration (i.e., 4.34+/-1.22) both with and without metabolic activation. It was found that estradiol-17beta itself and possibly its metabolites are potent mutagens beyond a particular dose in human lymphocytes.  相似文献   

20.
Sister-chromatid exchanges in lymphocytes from infants with Down's syndrome   总被引:1,自引:0,他引:1  
Sister-chromatid exchange (SCE) frequencies were studied in blood lymphocytes from 12 patients (3 females and 9 males) with Down's syndrome (DS). The mean frequency of SCE per metaphase for the patients (both sexes) was 9.2 +/- 0.8 which was significantly higher (P less than 0.01) than the mean SCE value (5.1 +/- 0.2) scored for 16 healthy infants (8 females and 8 males). A significant increase in the mean frequency of SCE in 12 parents of infants with DS (8.7 +/- 0.9 SCE/cell) was noticeable when compared with 20 parents of normal infants (6.3 +/- 0.1 SCE/cell). Increases in cellular division with reduction in their replication were also observed in patients with DS. Treatment with mitomycin C (0.05 micrograms/ml), hycanthone (0.1 micrograms/ml) and gamma-radiation (0.1 Gy) revealed a significant (P less than 0.01) increase in frequencies of SCE in DS lymphocytes and in those of their parents as compared to controls. These data may reveal a familial hypersensitivity reaction to these agents. The results indicate a genomic instability and deranged DNA-repair mechanisms which are accentuated by exposure to mutagenic agents, the underlying causal factor for which might be genetic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号