首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hypothesis that ABA produced by roots in drying soil is responsible for stomatal closure was tested with grafted plants constructed from the ABA-deficient tomato mutants, sitiens and flacca and their near-isogenic wild-type parent. Three types of experiments were conducted. In the first type, reciprocal grafts were made between the wild type and sitiens or flacca. Stomatal conductance accorded with the genotype of the shoot, not the root. Stomates closed in all of the grafted plants in response to soil drying, regardless of the root genotype, i.e. regardless of the ability of the roots to produce ABA. In the second type of experiment, wild-type shoots were grafted onto a split-root system consisting of one wild-type root grafted to one mutant (flacca or sitiens) root. Water was withheld from one root system, while the other was watered well so that the shoots did not experience any decline in water potential or loss of turgor. Stomates closed to a similar extent when water was withheld from the mutant roots or the wild-type roots. In the third type of experiment, grafted plants with wild-type shoots and either wild-type or sitiens roots were established in pots that could be placed inside a pressure chamber, and the pressure increased as the soil dried so that the shoots remained fully turgid throughout. Stomates closed as the soil dried, regardless of whether the roots were wild type or sitiens. These experiments demonstrate that stomatal closure in response to soil drying can occur in the absence of leaf water deficit, and does not require ABA production by roots. A chemical signal from roots leading to a change in apoplastic ABA levels in leaves may be responsible for the stomatal closure.  相似文献   

2.
To examine whether the reduced shoot growth of abscisic acid (ABA)-deficient mutants of tomato is independent of effects on plant water balance, flacca and notabilis were grown under controlled-humidity conditions so that their leaf water potentials were equal to or higher than those of well-watered wild-type plants throughout development. Most parameters of shoot growth remained markedly impaired and root growth was also greatly reduced. Additional experiments with flacca showed that shoot growth substantially recovered when wild-type levels of ABA were restored by treatment with exogenous ABA, even though improvement in leaf water potential was prevented. The ability of applied ABA to increase growth was greatest for leaf expansion, which was restored by 75%. The ethylene evolution rate of growing leaves was doubled in flacca compared to the wild type and treatment with silver thiosulphate to inhibit ethylene action partially restored shoot growth. The results demonstrate that normal levels of endogenous ABA are required to maintain shoot development, particularly leaf expansion, in well-watered tomato plants, independently of effects on plant water balance. The impairment of shoot growth caused by ABA deficiency is at least partly attributable to ethylene.  相似文献   

3.
4.
It is known that salt stress and exogenously applied abscisic acid (ABA) can enhance the polyamine content in plants and that salt stress itself can lead to an increase in endogenous ABA production. In the present study, the relationships between salt-induced ABA and polyamine accumulation were inves- tigated using ABA-deficient mutant (vp5/vp5) maize (Zea mays L.) seedlings and ABA and polyamine biosynthesis inhibitors. The results show that reduced endogenous ABA levels, as a result of either the mutation or by using a chemical inhibitor (sodium tungstate), also reduced the accumulation of polyamines in salt-stressed leaves of maize seedlings. The polyamine synthesis inhibitors D-arginine and α- difluoromethylornithine also reduced the polyamine content of the leaves of maize seedling under salt stress. Both ABA and polyamine enhanced the dry weight accumulation of salt-stressed seedlings and also increased the activities of the two dominant tonoplast membrane enzymes, H^+-ATPase and H^+-PPase, when plants were under salt stress. The results suggest that salt stress induces an increase in endogenous ABA levels, which then enhances polyamine synthesis. Such responses may increase a plant's tolerance to salt.  相似文献   

5.
ABA-deficiency results in reduced plant and fruit size in tomato   总被引:3,自引:0,他引:3  
Abscisic acid (ABA) deficient mutants, such as notabilis and flacca, have helped elucidating the role of ABA during plant development and stress responses in tomato (Solanum lycopersicum L.). However, these mutants have only moderately decreased ABA levels. Here we report on plant and fruit development in the more strongly ABA-deficient notabilis/flacca (not/flc) double mutant. We observed that plant growth, leaf-surface area, drought-induced wilting and ABA-related gene expression in the different genotypes were strongly correlated with the ABA levels and thus most strongly affected in the not/flc double mutants. These mutants also had reduced fruit size that was caused by an overall smaller cell size. Lower ABA levels in fruits did not correlate with changes in auxin levels, but were accompanied by higher ethylene evolution rates. This suggests that in a wild-type background ABA stimulates cell enlargement during tomato fruit growth via a negative effect on ethylene synthesis.  相似文献   

6.
Levels of endogenous glycine betaine in the leaves were measured in response to cold acclimation, water stress and exogenous ABA application in Arabidopsis thaliana. The endogenous glycine betaine level in the leaves increased sharply during cold acclimation treatment as plants gained freezing tolerance. When glycine betaine (10 mM) was applied exogenously to the plants as a foliar spray, the freezing tolerance increased from -3.1 to -4.5 degrees C. In addition, when ABA (1 mM) was applied exogenously, the endogenous glycine betaine level and the freezing tolerance in the leaves increased. However, the increase in the leaf glycine betaine level induced by ABA was only about half of that by the cold acclimation treatment. Furthermore, when plants were subjected to water stress (leaf water potential of approximately -1.6 MPa), the endogenous leaf glycine betaine level increased by about 18-fold over that in the control plants. Water stress lead to significant increase in the freezing tolerance, which was slightly less than that induced by the cold acclimation treatment. The results suggest that glycine betaine is involved in the induction of freezing tolerance in response to cold acclimation, ABA, and water stress in Arabidopsis plants.  相似文献   

7.
8.
9.
Water-deficit induction of a tomato H1 histone requires abscisic acid   总被引:5,自引:0,他引:5  
Many genes are induced by periods of water deficit, and a subset of these are dependent on elevated ABA content for expression. A number of drought-induced genes are not induced in leaves of the ABA-deficient mutant flacca from tomato (Lycopersicon esculentum) but are induced in detached, wilted wild-type leaves and ABA-treated leaves of both genotypes. The nucleotide sequence of the cDNA and corresponding genomic DNA fragment of one of these genes, his1-s (formerly called le20), encodes an amino acid sequence that is rich in Lys, Ala, and Ser. The predicted protein contains the tripartite structure of H1 histone and is similar to other H1 histones, especially in the globular domain. Since, his1-s is more closely related to a stress-induced gene from Lycopersicon pennellii than to another H1 histone in the tomato genome it is considered a stress-induced variant of H1 histone. his1-s mRNA accumulated in vegetative plants in response to other abiotic stress treatments, including application of polyethylene glycol, and salt. The mRNA preferentially accumulated in leaves as compared to roots. his1-s mRNA accumulation was controlled during development; the level was higher in developing seeds of mature green fruit than in detached wilted leaves. H1 histones have been implicated in the general repression of gene expression and in the regulation of specific genes. The rapid accumulation of his1-s mRNA during stress may indicate that this unique, stress-induced H1 histone is involved in controlling gene expression during plant stress.  相似文献   

10.
11.
It has been suggested that abscisic acid (ABA) regulates a centralized response of plants to low soil resource availability that is characterized by decreased shoot growth relative to root growth, decreased photosynthesis and stomatal conductance, and decreased plant growth rate. The hypothesis was tested that an ABA-deficient mutant of tomato (flacca; flc) would not exhibit the same pattern of down-regulation of photosynthesis, conductance, leaf area and growth, as well as increased root/shoot partitioning, as its near isogenic wild-type in response to nitrogen or water deficiency, or at least not exhibit these responses to the same degree. Plants were grown from seed in acid-washed sand and exposed to control, nutrient stress, or water stress treatments. Additionally, exogenous ABA was sprayed onto the leaves of a separate group of flc individuals in each treatment. Growth analysis, based on data from frequent harvests of a few individuals, was used to assess the growth and partitioning responses of plants, and gas exchange characteristics were measured on plants throughout the experiment to examine the response of photosynthesis and stomatal conductance. Differences in growth, partitioning and gas exchange variables were found between flc and wild-type individuals, and both nutrient and water treatments caused significant reductions in relative growth rate (RGR) and changes in biomass partitioning. Only the nutrient treatment caused significant reductions in photosynthetic rates. However, flc and wild-type plants responded identically to nutrient and water stress for all but one of the variables measured. The exception was that flc showed a greater decrease in the relative change in leaf area per unit increase of plant biomass (an estimate of the dynamics of leaf area ratio) in response to nutrient stress—a result that is opposite to that predicted by the centralized stress response model. Furthermore, addition of exogenous ABA to flc did not significantly alter any of the responses to nutrient and water stress that we examined. Although it was clear that ABA regulated short-term stomatal responses, we found no evidence to support a pivotal role for ABA, at least absolute amounts of ABA, in regulating a centralized whole-plant response to low soil resource availability.  相似文献   

12.
Abstract. Deuterium-labelled ABA-aldehyde was fed to various tomato genotypes. Normal and notabilis mutant plants incorporated substantial amounts of the label into ABA. In contrast, two ABA-deficient mutants, flacca and sitiens , reduced ABA-aldehyde to a mixture of cis- and trans -ABA alcohol rather than oxidizing it to ABA. It was concluded that ABA-aldehyde is the immediate precursor of ABA in higher plants. It appears that the flacca and sitiens lesions both act to block the last step of the ABA biosynthetic pathway. The mutant gene loci are likely to be involved in coding for different sub-units of the same dehydrogenase enzyme.  相似文献   

13.
14.
Abscisic Acid and C10 Dicarboxylic Acids in Wilty Tomato Mutants   总被引:1,自引:0,他引:1  
Linforth, R. S. T., Taylor, I. B. and Hedden, P. 1987. Abscisicacid and C10 dicarboxylic acids in wilty tomato mutants.—J.exp. Bot. 38: 1734–1740. The concentration of C10 dicarboxylic acids in wilty tomatomutants was investigated. Three of the genotypes studied (flacca,sitiens and the double mutant homozygote flacca/sitiens) werefound to have higher concentrations of 2,7-dimethyl-2,4-octadienedioicacid (ODA) than the isogenic normal form. In contrast, the othergenotypes (notabilisand the double mutant homozygotes notabilis/flaccaand notabilis/sitiens) were found to have lower concentrationsof ODA than the isogenic normal form. The concentration of ODAin flacca plants was increased by water stress and reduced byexogenously applied abscisic acid (ABA). A second structurallyrelated compound, 2,7-dimethyl-4-octenedioic acid (OEA) wasalso quantified, but it showed no clear genotype-related pattern. The concentration of ABA in the wilty tomato mutants was alsoinvestigated. As expected in the light of previously publishedresults, it was reduced in the single mutants relative to theisogenic control plants. In the double mutant flacca/sitiensABA levels were similar to those of the single mutant sitiens.However, in the two double mutants notabilis/flacca and notabilis/sitiensABA was substantially lower than those in any other genotypeinvestigated. Key words: Abscisic acid, 2,7-dimethyl-2,4-octadienedioic acid, 2,7-dimethyl-4-octenedioc acid, tomato, wilty mutants  相似文献   

15.
16.
Leaves from dark-grown barley (Hordeum vulgare L. var Larker) seedlings grown in the presence and absence of fluridone were used to determine whether or not abscisic acid (ABA) accumulation was necessary for proline to accumulate in wilted tissue. Wilted tissue (polyethylene glycol-treated) leaves from fluridone-grown seedlings did not accumulate ABA but did accumulate proline at a rate that was not different from the non-fluridone-treated leaves. Thus ABA accumulation is not required for wilting-induced proline accumulation in barley leaves. Proline accumulation in wilted leaves from the wilty tomato (Lycopersicon esculentum) mutant, flacca, was compared to that in the wild type, Rheinlands Ruhm. Proline accumulated in wilted leaves from flacca. The rate of accumulation was faster in flacca compared to the rate in the wild type because the wilty mutant wilted faster. ABA accumulated in wilted leaves from the wild type but not in the wilty mutant. This result is a further confirmation that ABA accumulation is not required for wilting-induced proline accumulation. These results are significant in that proline accumulation in barley leaves can be induced independently by any one of three treatments: wilting, ABA, or salt.  相似文献   

17.
The effects of water stress and osmotic stress (sorbitol treatment) on the production of putrescine and proline in excised rice leaves were compared. Osmotic stress and water stress were found to affect differentially the levels of putrescine and proline in excised rice leaves. Putrescine accumulation is induced by osmotic stress, whereas proline accumulation is induced by water stress. The effects of ABA on the levels of proline and putrescine are similar to those of water stress, whereas the effects of jasmonic acid methyl ester (JA-Me) are similar to those of osmotic stress. Water stress results in an increase of endogenous ABA is excised rice leaves. However, neither osmotic stress nor JA-Me has effect on endogenous ABA levels in excised rice leaves. Of particular interest is the finding that proline levels increase when putrescine levels induced by osmotic stress or JA-Me are reduced by D-arginine and -methylornithine. L-arginine and L-ornithine applied exogenously also cause an increase in proline levels. It seems that L-arginine and L-ornithine are preferentially utilized as precursors for putrescine accumulation in excised rice leaves treated with osmotic stress and JA-Me, and for proline accumulation in excised rice leaves exposed to water stress and ABA.Abbreviations ABA abscisic acid - BSA bovine serum albumin - ELISA enzyme-linked immunosorbent assay - HPLC high performance chromatography - JA-Me jasmonic acid methyl ester - PVP poly-vinylpyrrolidone  相似文献   

18.
Bray EA 《Plant physiology》1991,97(2):817-820
Levels of endogenous abscisic acid (ABA) in wild type were not required for the synthesis of heat shock proteins in detached leaves of tomato (Lycopersicon esculentum Mill., cv Ailsa Craig). Heat-induced alterations in gene expression were the same in the ABA-deficient mutant of tomato, flacca, and the wild type. Heat tolerance of the mutant was marginally less that the wild type, and in contrast, ABA applications significantly reduced the heat tolerance of wild-type leaves. It was concluded that elevated levels of endogenous ABA are not involved in the tomato heat shock response.  相似文献   

19.
Polyamines have been globally associated to plant responses to abiotic stress. Particularly, putrescine has been related to a better response to cold and dehydration stresses. It is known that this polyamine is involved in cold tolerance, since Arabidopsis thaliana plants mutated in the key enzyme responsible for putrescine synthesis (arginine decarboxilase, ADC; EC 4.1.1.19) are more sensitive than the wild type to this stress. Although it is speculated that the overexpression of ADC genes may confer tolerance, this is hampered by pleiotropic effects arising from the constitutive expression of enzymes from the polyamine metabolism. Here, we present our work using A. thaliana transgenic plants harboring the ADC gene from oat under the control of a stress-inducible promoter (pRD29A) instead of a constitutive promoter. The transgenic lines presented in this work were more resistant to both cold and dehydration stresses, associated with a concomitant increment in endogenous putrescine levels under stress. Furthermore, the increment in putrescine upon cold treatment correlates with the induction of known stress-responsive genes, and suggests that putrescine may be directly or indirectly involved in ABA metabolism and gene expression.Key words: cold acclimation, dehydration, putrescine, polyamines, stress  相似文献   

20.
The apoplastic pH of intact Forsythiaxintermedia (cv. Lynwood) and tomato (Solanum lycopersicum) plants has been manipulated using buffered foliar sprays, and thereby stomatal conductance (g(s)), leaf growth rate, and plant water loss have been controlled. The more alkaline the pH of the foliar spray, the lower the g(s) and/or leaf growth rate subsequently measured. The most alkaline pH that was applied corresponds to that measured in sap extracted from shoots of tomato and Forsythia plants experiencing, respectively, soil drying or a relatively high photon flux density (PFD), vapour pressure deficit (VPD), and temperature in the leaf microclimate. The negative correlation between PFD/VPD/temperature and g(s) determined in well-watered Forsythia plants exposed to a naturally varying summer microclimate was eliminated by spraying the plants with relatively alkaline but not acidic buffers, providing evidence for a novel pH-based signalling mechanism linking the aerial microclimate with stomatal aperture. Increasing the pH of the foliar spray only reduced g(s) in plants of the abscisic acid (ABA)-deficient flacca mutant of tomato when ABA was simultaneously sprayed onto leaves or injected into stems. In well-watered Forsythia plants exposed to a naturally varying summer microclimate (variable PFD, VPD, and temperature), xylem pH and leaf ABA concentration fluctuated but were positively correlated. Manipulation of foliar apoplastic pH also affected the response of g(s) and leaf growth to ABA injected into stems of intact Forsythia plants. The techniques used here to control physiology and water use in intact growing plants could easily be applied in a horticultural context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号