首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Muscle creatine kinase (MCK) is expressed at high levels only in skeletal and cardiac muscle tissues. Previous in vitro transfection studies of skeletal muscle myoblasts and fibroblasts had identified two MCK enhancer elements and one proximal promoter element, each of which exhibited expression only in differentiated skeletal muscle. In this study, we have identified several regions of the mouse MCK gene that are responsible for tissue-specific expression in transgenic mice. A fusion gene containing 3,300 nucleotides of MCK 5' sequence exhibited chloramphenicol acetyltransferase activity levels that were more than 10(4)-fold higher in skeletal muscle than in other, nonmuscle tissues such as kidney, liver, and spleen. Expression in cardiac muscle was also greater than in these nonmuscle tissues by 2 to 3 orders of magnitude. Progressive 5' deletions from nucleotide -3300 resulted in reduced expression of the transgene, and one of these resulted in a preferential decrease in expression in cardiac tissue relative to that in skeletal muscle. Of the two enhancer sequences analyzed, only one directed high-level expression in both skeletal and cardiac muscle. The other enhancer activated expression only in skeletal muscle. These data reveal a complex set of cis-acting sequences that have differential effects on MCK expression in skeletal and cardiac muscle.  相似文献   

3.
4.
5.
6.
Regulatory regions of the mouse muscle creatine kinase (MCK) gene, previously discovered by analysis in cultured muscle cells, were analyzed in transgenic mice. The 206-bp MCK enhancer at nt-1256 was required for high-level expression of MCK-chloramphenicol acetyltransferase fusion genes in skeletal and cardiac muscle; however, unlike its behavior in cell culture, inclusion of the 1-kb region of DNA between the enhancer and the basal promoter produced a 100-fold increase in skeletal muscle activity. Analysis of enhancer control elements also indicated major differences between their properties in transgenic muscles and in cultured muscle cells. Transgenes in which the enhancer right E box or CArG element were mutated exhibited expression levels that were indistinguishable from the wild-type transgene. Mutation of three conserved E boxes in the MCK 1,256-bp 5' region also had no effect on transgene expression in thigh skeletal muscle expression. All these mutations significantly reduced activity in cultured skeletal myocytes. However, the enhancer AT-rich element at nt - 1195 was critical for expression in transgenic skeletal muscle. Mutation of this site reduced skeletal muscle expression to the same level as transgenes lacking the 206-bp enhancer, although mutation of the AT-rich site did not affect cardiac muscle expression. These results demonstrate clear differences between the activity of MCK regulatory regions in cultured muscles cells and in whole adult transgenic muscle. This suggests that there are alternative mechanism of regulating the MCK gene in skeletal and cardiac muscle under different physiological states.  相似文献   

7.
To determine whether mitogen-regulated expression of skeletal muscle genes is independent of cell type, muscle and nonmuscle cells were transfected with cloned 5'-flanking sequences of muscle creatine kinase (MCK) fused to a heterologous reporter gene and tested for expression in high and low mitogen culture conditions. Consistent with the behavior of endogenous MCK, a -3300MCK-CAT gene is expressed at high levels in differentiated muscle cells but at low to undetectable levels in proliferating myoblasts and in either mitogen-deprived or stimulated nonmuscle cells of mesodermal, ectodermal, or endodermal origin. A -776MCK-CAT gene behaves similarly with respect to its cell type specificity but it supports only an intermediate expression level in response to mitogen deprivation in skeletal muscle cells. These data suggest that the -3300 to +7 nucleotide region of mouse MCK contains one or more elements which are activable by mitogen deprivation only in myogenic cells.  相似文献   

8.
9.
10.
11.
12.
We have used transient transfections in MM14 skeletal muscle cells, newborn rat primary ventricular myocardiocytes, and nonmuscle cells to characterize regulatory elements of the mouse muscle creatine kinase (MCK) gene. Deletion analysis of MCK 5'-flanking sequence reveals a striated muscle-specific, positive regulatory region between -1256 and -1020. A 206-bp fragment from this region acts as a skeletal muscle enhancer and confers orientation-dependent activity in myocardiocytes. A 110-bp enhancer subfragment confers high-level expression in skeletal myocytes but is inactive in myocardiocytes, indicating that skeletal and cardiac muscle MCK regulatory sites are distinguishable. To further delineate muscle regulatory sequences, we tested six sites within the MCK enhancer for their functional importance. Mutations at five sites decrease expression in skeletal muscle, cardiac muscle, and nonmuscle cells. Mutations at two of these sites, Left E box and MEF2, cause similar decreases in all three cell types. Mutations at three sites have larger effects in muscle than nonmuscle cells; an A/T-rich site mutation has a pronounced effect in both striated muscle types, mutations at the MEF1 (Right E-box) site are relatively specific to expression in skeletal muscle, and mutations at the CArG site are relatively specific to expression in cardiac muscle. Changes at the AP2 site tend to increase expression in muscle cells but decrease it in nonmuscle cells. In contrast to reports involving cotransfection of 10T1/2 cells with plasmids expressing the myogenic determination factor MyoD, we show that the skeletal myocyte activity of multimerized MEF1 sites is 30-fold lower than that of the 206-bp enhancer. Thus, MyoD binding sites alone are not sufficient for high-level expression in skeletal myocytes containing endogenous levels of MyoD and other myogenic determination factors.  相似文献   

13.
Activation of a muscle-specific enhancer by the Ski proto-oncogene.   总被引:4,自引:1,他引:3       下载免费PDF全文
In transgenic mice, muscle-specific expression of the c-ski oncogene induces hypertrophy exclusively in a subset of fast muscle fibers. Here we report that regulatory elements from two genes expressed in fast fibers, myosin light chain 1/3 (MLC) and muscle creatine kinase (MCK), were activated when co-transfected with c-ski expression vectors in myoblasts. The expression from the MLC enhancer was reduced when the c-ski oncogene was cotransfected with MyoD into NIH3T3 fibroblasts. Activation of the MLC enhancer by Ski also occurred in vivo, since bigenic progeny generated by mating MLC-CAT and MSV-skitransgenic mice displayed higher CAT activity in their muscles than did the MLC-CAT parental line. Identification of gene targets for the fiber-specific action of the c-ski gene product provides a molecular model that could be used for the further dissection of Ski-induced hypertrophy, both in tissue culture and in vivo.  相似文献   

14.
15.
16.
17.
18.
The changes in the expression of muscle creatine kinase (MCK) gene in the heart and skeletal muscle of mice during aging were studied. Its expression declines as a function of age in the heart, however, no age-related change is observed in the skeletal muscle. The cis-acting elements, MEF-2, E boxes and A/T rich elements present in the enhancer region of the mouse MCK gene are known to regulate the expression of the gene. Hence, these elements were subcloned and electrophoretic mobility shift assay was carried out to investigate the changes in the binding of the nuclear trans-acting protein factors of the heart with these elements as a function of age. These factors showed specificity for the respective cis-acting elements. Furthermore, the binding of these factors was found to decrease during aging which may contribute to the age-related decline in the expression of the MCK gene and activity of the heart.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号