首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
水稻品种对褐飞虱持续抗性的筛选技术   总被引:1,自引:0,他引:1  
通过水稻品种苗期和分蘖期后对褐飞虱的抗性筛选,提出TN_1受害9级时受害1~5级的为抗性品种,TN_19级后苗期10天、分蘖期后24天内保持1~5级的为持抗品种,不具持抗的抗性品种为短期抗性品种。  相似文献   

2.
随着全球性气候变暖以及稻作区耕作栽培措施的改变,稻褐飞虱已成为严重危害水稻产量的害虫之一.综述当前水稻褐飞虱抗性基因的定位、克隆以及抗性机制的最新研究进展,并对抗褐飞虱水稻育种的利用现状作报道.  相似文献   

3.
利用浓硫酸-过氧化氢消煮法,研究了不同耐、感虫品种水稻分蘖期在褐飞虱侵害胁迫后根及地上部间营养成分含量的变化情况。结果表明:褐飞虱侵害协优963后3天,根及地上部N、P、K含量、6天根及地上部N含量、9天地上部N含量在60、120头/株侵害后变化不明显;6天根及地上部P含量、6天根K含量、9天地上部P含量、9天根及地上部K含量在120头/株侵害后显著下降,60头/株侵害后变化不明显;6天地上部K含量、9天根N含量在60、120头/株侵害后均显著下降。对于协优63,3天地上部N含量、3天根及地上部P含量、6天及9天地上部N、P含量在60、120头/株侵害后变化不明显;6天根N、P含量、根及地上部K含量、9天根N含量在120头/株侵害后显著下降,60头/株侵害后下降不明显;3天、9天根及地上部K含量、9天根部P含量在60、120头/株侵害后均显著下降。表明不同水稻品种体内不同营养物质含量在褐飞虱侵害后变化不同,协优63较协优963敏感;K含量变化最明显,其次为P,最后为N;而且根比地上部对褐飞虱的反应敏感。  相似文献   

4.
水稻品种对褐飞虱持续抗生的筛选技术   总被引:2,自引:0,他引:2  
陶林勇 《昆虫知识》1995,32(2):65-68
通过水稻品种苗期和分蘖期后对褐飞虱的抗性筛选,提出TN1受害9级时受害1-5级的为抗生品种,TN19级后苗期10天、分蘖期后24天内保持1-5级的为持抗品种,不具持抗的抗性品种为短期抗性品种。  相似文献   

5.
不同品种的水稻乙醇提取物对褐飞虱的影响   总被引:3,自引:1,他引:3  
不同品种的水稻乙醇提取物对褐飞虱的影响张古忍1廉斌3古练权2周强1张文庆1(1中山大学昆虫学研究所,2中山大学化学系广州510275;3暨南大学化学系广州510632)*国家博士后基金、广东省自然科学基金、广东省博士后基金、中山大学生物防治国家重点实...  相似文献   

6.
水稻麦黄酮对褐飞虱的抗性潜力   总被引:2,自引:0,他引:2  
凌冰  董红霞  张茂新  徐迪  王敬淑 《生态学报》2007,27(4):1300-1307
使用石油醚、乙酸乙酯、无水乙醇和水依次对抗性水稻品种IR36乙醇提取物进行萃取,并测试了4种萃取物对褐飞虱的活性。结果发现乙酸乙酯萃取物处理后3d的活性最强,褐飞虱1~2龄若虫和3~4龄若虫的死亡率分别是26.0%和48.0%。乙酸乙酯萃取物经柱层析分离得到麦黄酮。将麦黄酮定量加入人工饲料中饲养褐飞虱3龄若虫15d。结果表明,褐飞虱3、4龄若虫的排蜜露量随着麦黄酮在饲料中浓度(50~500μg/ml)的增加而减少,褐飞虱3、4龄若虫的死亡率却随着麦黄酮在饲料中浓度的增加而显著提高。当饲料中麦黄酮的浓度为500μg/ml时,褐飞虱3、4龄若虫的死亡率分别为58.21%和31.75%。麦黄酮50~500μg/ml浓度处理,褐飞虱3龄和4龄若虫的发育历期和相对生长量与对照之间没有明显的差异,表明麦黄酮有拒食作用。用500μg/ml的麦黄酮溶液涂抹到对褐飞虱敏感的水稻品种TN1植株上对褐飞虱雌成虫有明显的拒食作用和忌避产卵作用。本项研究结果表明水稻源的麦黄酮在水稻对褐飞虱的抗性中有重要的作用。  相似文献   

7.
抗性水稻品种对褐飞虱和白背飞虱种群参数的影响   总被引:6,自引:0,他引:6  
朱麟  张古忍  古德祥 《昆虫知识》2002,39(4):265-268
在半自然状态下 ,用生命表方法初步比较了褐飞虱Nilaparvatalugens和白背飞虱Sogatellafurcif era在 4个抗褐飞虱水稻品种ASD7,IR3 6,JX89和Mudgo上的种群参数。初步的结果表明 ,白背飞虱在 4个抗褐飞虱水稻品种上具有较高的繁殖率 ,较短的发育时间和较大的种群增长。对褐飞虱各种群参数影响最大的是JX89,对白背飞虱影响最大的是Mudgo。与感性品种TN1比较 ,这些抗褐飞虱的水稻品种对 2种稻飞虱均具有不同程度的抗性。这些结果说明 ,抗褐飞虱水稻品种对白背飞虱同样具有一定的抗性 ,但白背飞虱对这种抗性具有较强的适应性 ,如果在一个地区长期推广抗褐飞虱的水稻品种 ,势必会导致白背飞虱的大发生  相似文献   

8.
褐飞虱侵害后不同水稻品种根及叶片脱落酸含量的变化   总被引:2,自引:0,他引:2  
为了解褐飞虱Nilaparvata lugens (Stål)侵害后水稻耐虫性与植物体内源激素关系,应用酶联免疫吸附法(enzyme-linked immunosorbent assay, ELISA)研究褐飞虱若虫侵害分蘖期超级培矮64S/E32和TN1,灌浆期协优963和TN1后根及叶片脱落酸(abscisic acid, ABA)含量变化.结果表明:褐飞虱侵害分蘖期超级培矮64S/E32和TN1后3 d,叶片ABA含量显著上升,ABA含量根冠比(根ABA/叶片ABA)显著下降;侵害后6 d,超级培矮64S/E32叶片ABA含量显著下降,根冠比显著上升;但TN1叶片ABA含量在褐飞虱侵害后3 d和6 d显著上升,根冠比显著下降.褐飞虱侵害灌浆期协优963与分蘖期超级培矮64S/E32变化一致,TN1在褐飞虱侵害后3 d叶片ABA含量显著上升,根冠比显著下降;侵害后6 d,叶片ABA含量、ABA含量根冠比均显著上升.由ABA含量变化百分比可见,分蘖期ABA含量变化幅度较灌浆期大;耐虫品种变化幅度较感虫品种大,持续期较感虫品种短;叶片变化幅度较根部大.褐飞虱侵害后,两种不同生育期两种抗性不同的水稻品种比较,耐虫品种叶片ABA含量先上升(3 d)后下降(6 d),ABA含量根冠比先下降(3 d)后上升(6 d);感虫品种叶片ABA含量持续上升(3 d和6 d),分蘖期ABA含量根冠比持续下降(3 d和6 d),灌浆期ABA含量根冠比先下降(3 d)后上升(6 d);耐、感虫水稻品种根部变化规律不明显.这些差别表明不同水稻(耐虫和感虫)品种受褐飞虱侵害后体内ABA含量变化规律不同.本研究结果对深入阐明水稻耐虫品种的机制具有重要参考价值.  相似文献   

9.
水稻对褐飞虱抗性相关蛋白的双向电泳分析   总被引:13,自引:0,他引:13  
以药用野生稻 (Oryzaofficinalis)的转育后代B5 (高抗褐飞虱 (NilaparvatalugensSt l) )与感虫品种明恢 6 3(OryzasativaL .)为亲本 ,构建了一个重组自交系群体。通过抗褐飞虱鉴定 ,筛选出极端抗虫株系和极端感虫株系 ,运用分群分析法 (bulkedsegregantanalysis ,BSA)分别建成了极端抗虫集团 (resistantbulk)和极端感虫集团 (susceptiblebulk)的蛋白质池。利用双向电泳技术 ,分别分析了极端抗虫集团和极端感虫集团受虫害与未受虫害的秧苗蛋白质的变化。结果发现 ,虫害 48h后 ,感虫集团的一个分子量为 40kD的蛋白质P40 (pI=6 .3)的表达明显减弱甚至消失 ,而在抗虫集团中 ,P40的表达未受影响。与褐飞虱为害后抗虫株系和感虫株系不同的生理反应相联系 ,推测P40与水稻受褐飞虱虫害后引起的应答反应相关  相似文献   

10.
以药用野生稻(Oryza officinalis)的转育后代B5(高抗褐飞虱(Nilaparvata lugens Stl))与感虫品种明恢63 (Oryza sativa L.)为亲本,构建了一个重组自交系群体.通过抗褐飞虱鉴定,筛选出极端抗虫株系和极端感虫株系,运用分群分析法(bulked segregant analysis,BSA)分别建成了极端抗虫集团(resistant bulk)和极端感虫集团(susceptible bulk)的蛋白质池.利用双向电泳技术,分别分析了极端抗虫集团和极端感虫集团受虫害与未受虫害的秧苗蛋白质的变化.结果发现,虫害48 h后,感虫集团的一个分子量为40 kD的蛋白质P40 (pI=6.3)的表达明显减弱甚至消失,而在抗虫集团中,P40的表达未受影响.与褐飞虱为害后抗虫株系和感虫株系不同的生理反应相联系,推测P40与水稻受褐飞虱虫害后引起的应答反应相关.  相似文献   

11.
褐飞虱胁迫下两种水稻不同生育期玉米素核苷含量动态   总被引:2,自引:2,他引:0  
应用酶联免疫吸附法(enzyme-linked immunosorbent assay, ELISA)研究了在褐飞虱胁迫下镇稻2号(粳稻)和协优63(籼稻)抽穗期和灌浆期水稻叶片和根中玉米素核苷(zeatin riboside, ZR)含量变化情况。结果表明, 镇稻2号抽穗期ZR含量变化比灌浆期对褐飞虱侵害更为敏感,密度分别为15、30、60、120头/株的褐飞虱侵害水稻抽穗期3、6、9天后,叶片和根中ZR含量显著下降;灌浆期除各个褐飞虱密度侵害9天叶片中ZR含量和120头/株褐飞虱密度侵害9天根部ZR含量显著下降外,其他处理根和叶片中ZR含量下降不明显。协优63抽穗期受褐飞虱侵害后体内ZR的变化不同于镇稻2号,密度分别为15、30、60头/株的褐飞虱侵害3天后,叶片中ZR含量明显升高;在灌浆期,除30、60、120头/株褐飞虱密度侵害6天和120头/株褐飞虱密度侵害9天叶片中ZR含量有显著增加外,其他处理变化不明显。表明不同品种水稻在不同密度褐飞虱侵害下对根和叶片中ZR含量有不同的影响。  相似文献   

12.
褐飞虱卵黄蛋白的分离及其生化特性   总被引:1,自引:1,他引:0  
电泳结合不同染色方法证实, 褐飞虱Nilaparvata lugens (Stål)卵黄蛋白为一种糖脂结合蛋白,其分子量约为314 kD,由148 kD、124.5 kD和39.6 kD 3个亚基组成。免疫反应证明,卵黄蛋白只存在于生育期的雌性褐飞虱成虫体内。褐飞虱卵黄蛋白具有种的特异性,其免疫血清与白背飞虱的卵黄蛋白无交叉反应。  相似文献   

13.
The effect of Nilaparvata lugens (St?l) (Homoptera: Delphacidae), infestation on the content of zeatin ribosides (ZR) in rice plants was investigated with enzyme-linked immunosorbent assay. Hydroponics experiments were conducted on 'Zhendao 2' rice, in which plants were subjected to N. lugens infestation at three nonhopperburn-causing densities (15, 30, and 60 nymphs per hill) for 2, 4, 6, and 8 d and at one hopperburn-causing density (240 nymphs per hill) for 2, 4, and 6 d, respectively. When rice plants were infested at the nonhopperburn-causing densities, ZR content in leaves varied significantly with the infestation density. Compared with the control plants, ZR content in rice leaves decreased significantly after infestation by 60 nymphs per hill for 2 d, but it tended to increase due to prolonged infestation at all the nonhopperburn-causing densities. In contrast, ZR content in rice roots significantly reduced after the plants being infested at the density of 15 nymphs for 2 d and at all densities for prolonged duration, except for the plants infested by 60 nymphs for 6 and 8 d, in which the ZR content increased or did not change significantly. However, infestation at the hopperburn-causing density caused significant reduction in ZR content in rice roots, regardless of infestation duration, and in rice leaves from the plants subjected to 2-d infestation. These results are discussed in relation to the possible physiological reaction of rice plants to N. lugens infestation and the resultant severe damage or hopperburn.  相似文献   

14.
Cheng DJ  Hou RF 《Tissue & cell》2001,33(3):273-279
Transovarial transmission of a yeast-like symbiote (YLS) in the brown planthopper, Nilaparvata lugens Stal, was observed with light and electron microscopy. Light micrographs showed that there was no YLS in testes and spermathecae of the mated females, indicating that sperm is not involved in the transovarial transmission of the symbiote. Both light and electron micrographs showed the processes of YLS transmission from fat body to the oocyte. In females, the symbiotes in mycetocytes moved out of the syncytium, which is formed from a layer of fat body cells, by exocytosis, and released into hemocoel. Then, the free YLS in hemolymph approached to the ovarioles near pedicel and were enclosed by follicle cells. They entered the follicle cells around the primary oocyte by endocytosis at epithelial plug of the ovariole. The YLS aggregated at the posterior end of the mature egg after entering, and finally formed a symbiote ball.  相似文献   

15.
Cheng DJ  Hou RF 《Tissue & cell》2005,37(1):37-45
Electrophoretic analyses of hemolymph and body or ovary homogenates from reproducing females, males, and 5th instar nymphs of the brown planthopper, Nilaparvata lugens Stal, revealed a protein band of 175 kDa in females. An immunoblot test using antibody against this protein showed a positive reaction with a 175 kDa protein from female body or ovary homogenates. It is likely that this protein in hemolymph is vitellogenin (Vg). Distribution of Vg was determined by immunofluorescence and immunogold labeling techniques. The results showed that the positive immunofluorescence reactions were present in yolk particles, the intercellular space of follicle cells, hemolymph, and the epithelial plug of ovarioles. In addition, the yeast-like symbiotes (YLS) in mycetocytes of adults and various nymphal instars as well as those free in hemolymph or entering oocytes also exhibited a positive reaction. Electron micrographs showed that immunogold particles were found most in yolk mass and YLS over other tissues. Especially the YLS in various developmental stages all contained immunogold particles, implying that the symbiote is somewhat related with production of the female-specific protein.  相似文献   

16.
The brown planthopper (Nilaparvata lugens Stål), the most destructive pest of rice, has been identified, including biotypes with high virulence towards previously resistant rice varieties. There have also been many reports of a yeast-like symbiont of N. lugens, but little is known about the bacterial microbes. In this study, we examined the bacterial microbes in N. lugens and identified a total of 18 operational taxonomic units (OTUs) representing four phyla (Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes) by sequencing and analyzing 16S rRNA gene libraries obtained from three populations of N. lugens, which were maintained on the rice varieties TN1, Mudgo, and ASD7. Several of the OTUs were similar to previously reported secondary symbionts of other insects, including an endosymbiont of the psyllid Glycapsis brimblecombei, an Asaia sp. found in the mosquito Anopheles stephensi, and Wolbachia, found in the mite Metaseiulus occidentalis. However, the species and numbers of the detected OTUs differed substantially among the N. lugens populations. Further, in situ hybridization analysis using digoxigenin-labeled probes indicated that OTU 1 was located in hypogastrium tissues near the ovipositor and ovary in biotype 1 insects, while OTU 2 was located in the front of the ovipositor sheath in biotype 2 insects. In addition, masses of bacterium-like organisms were observed in the tubes of salivary sheaths in rice plant tissues that the insects had fed upon. The results provide indications of the diversity of the bacterial microbes harbored by the brown planthopper and of possible associations between specific bacterial microbes and biotypes of N. lugens.Close associations between insects and the microbes they harbor appear to be common. Symbionts have been found to contribute to the nutrition, development, reproduction, speciation, and defense against natural enemies of their host insects (1, 11, 18, 30, 39). The small brown planthopper (Laodelphax striatellus) and the white-backed planthopper (Sogatella furcifrea) also reportedly harbor an alphaproteobacterial Wolbachia symbiont (29) that can be transferred horizontally between different insect species and that affects its hosts'' sexual reproduction, cytoplasmic incompatibility, and immune responses (21, 38, 39).The brown planthopper, Nilaparvata lugens Stål (Homoptera: Delphacidae), is a monophagous insect herbivore of rice (13) that feeds on rice phloem and causes serious damage to rice crops. N. lugens reportedly harbors an intracellular, eukaryotic “yeast-like symbiont” (YLS) in the fat body, which plays a key role in recycling uric acid (3, 33). However, little is known about bacterial symbionts in N. lugens.It has been well recognized that diversity exists within insect species and that “biotypes” or populations that are adapted to or that prefer a particular host can frequently develop (10, 12). The behavioral and physiological responses during insect establishment on plants are feeding, metabolism of ingested food, growth, adult survival, egg production, and oviposition (34). In N. lugens, the biotype is assigned to a population with the ability to damage varieties of rice that carry resistance genes and that were previously resistant to it (5). It has been claimed that some biotypes of N. lugens differ in small morphological features, isozymes, and DNA polymorphisms (6, 25, 36). However, the precise nature of the virulence-conferring mechanisms in N. lugens biotypes (and their modes and stability of inheritance) is not clear. It is interesting to survey symbionts in different biotype populations of N. lugens.Generally, the 16S rRNA gene has been used as a molecular marker enabling the detection of as-yet-uncultured microbes, and it facilitates a profound investigation of microbial diversity (2, 22, 44). We initiated a study using molecular methods to investigate the bacterial symbionts of N. lugens. The major objective of this study was to identify bacterial microbes in N. lugens. The identified bacterial microbes appeared to be associated with different populations of N. lugens and in some cases were located in specific tissues, according to in situ hybridization (ISH) analyses.  相似文献   

17.
ABSTRACT.
  • 1 The brown planthopper, Nilaparvata lugens (Stål), is a major pest of rice in Asia. It is known to make wind-assisted migratory flights each year to colonize the summer rice growing areas of China, Japan and Korea.
  • 2 Modelling windborne displacements between rice growing areas in Asia requires migratory behaviour and flight duration to be established for this insect.
  • 3 Field and laboratory observations suggest that N. lugens take-off at dusk and that some continue flying for up to 24–26 h if the temperature is ≥ 17°C.
  • 4 Trajectories for 10 m above ground level and 1.5 km above mean sea level are used to identify possible sources and, hence, to estimate the flight times of N.lugens caught in nets on ships on the East China Sea in 1973 and 1981.
  • 5 Estimated flight times between the sources and the ships ranged from about 9 to 30 h.
  • 6 Results suggest that long-distance migration can occur in surface winds, when they are strong, but that long-distance migration is more likely at 1.5 km.
  • 7 When simulating windborne displacements of N.lugens, it can be assumed that in areas and at heights where the temperature is ≥ 17°C, some migrants will fly downwind for up to 30 h after a dusk take-off. Others will fly for shorter periods, giving the population as a whole the opportunity to colonize all the rice crops flown over.
  相似文献   

18.
为了明确温度对杀虫剂毒杀作用的影响,本文研究了5个温度梯度(22℃、25℃、28℃、31℃和34℃)下毒死蜱和噻嗪酮对褐飞虱的毒杀作用。结果表明毒死蜱在不同温度下对褐飞虱的毒力变化与噻嗪酮有所不同。处理时间相同时毒死蜱的LC50随温度升高而逐渐下降。毒死蜱处理24 h、72 h、120 h时,毒死蜱对褐飞虱的LC_(50)在22℃下分别的50.15、16.15和15.33 mg/L,而在34℃下分别降低为6.70、4.16和1.92 mg/L。在实验的5个温度下,噻嗪酮对褐飞虱的LC_(50)没有显著差异。同一温度下,噻嗪酮的LC50随处理时间的增加而降低,但没有显著差异。在全球变暖的大环境下,明确温度对毒死蜱和噻嗪酮的毒力影响状况,对于杀虫剂的合理使用具有一定的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号