首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adenosine triphosphatase (ATPase) system in worker honey-bee brains showed an increased activity of 57 per cent in Na+K+ATPase and 63 per cent in Mg2+ATPase from adult emergence to 7 days post-emergence. Mg2+ATPase activity remained about the same throughout the remainder of adult life, while Na+K+ATPase remained the same until the sixth week, when a decline occurred. The percentage mortality of the bees exceeded 90 per cent at the time of decline of Na+K+ATPase. The in vitro inhibition of Mg2+ATPase and Na+K+ATPase by 10 μM DDT was between 40 and 50 per cent and about 20 per cent, respectively. A somewhat greater sensitivity to DDT was determined in brains of older honey-bees.  相似文献   

2.
Novel cyclic and acyclic analogues of dTMP and AZTMP were synthesized from the corresponding cycloSal-phosphotriesters. This method yielded the nucleotides in good yields with a simple work-up. Investigation of the substrate properties of the modified nucleotides towards TmpK showed, that they are very poor substrates for this key enzyme in the bioactivation of AZT.  相似文献   

3.
4.
The influence in vitro of SP and C-terminal fragments of analogues SP(5-11) (pyroGlu5, Tyr8); SP(6-11) (pyroGlu6, Tyr8); SP(6-11) (pyroGlu6, D-Phe7); SP(6-11) (pyroGlu6, D-Phe8) on the (Ca, Mg) and (Na, K) ATPases activities from synaptosomal membranes of cerebral cortex and hippocampus of rat brain were compared. The data obtained in this study indicate the following: 1. Substance P stimulates the activities of (Na, K) and (Ca, Mg) ATPases more effectively in synaptosomal membranes from hippocampus than cerebral cortex. 2. Heptapeptide SP(5-11) (pyroGlu5, Tyr8) causes a more distinct increase of (Ca, Mg) ATPase activity in cortical synaptosomal membranes than SP does. 3. The change of L-Phe conformation to D in position 7 in hexapeptide induces reduction of enzymes activities in hippocampus. 4. Especially important for the maintenance of biological activity of drugs is the replacement of Gln5 with pyroGlu6 and conformation of Phe residues. 5. SP and shorter analogues of fragments SP C-terminal SP regulate the active cation transport in synaptosomal membranes of cerebral cortex and hippocampus.  相似文献   

5.
Crampton DJ  LoBrutto R  Frasch WD 《Biochemistry》2001,40(12):3710-3716
Site-directed mutations were made to the phosphate-binding loop lysine in the beta-subunit of the chloroplast F(1)-ATPase in Chlamydomonas reinhardtii (betaK167) to investigate the participation of this residue in the binding of metal to catalytic site 3 in the absence of nucleotide. The cw-EPR spectra of VO(2+) bound to site 3 of CF(1)-ATPase from wild type and mutants revealed changes in metal ligation resulting from mutations to betaK167. The three-pulse ESEEM spectrum of the wild-type CF(1)-ATPase with VO(2+) bound to site 3 shows an equatorially coordinating (14)N from an amine. The ESEEM spectra of the mutants do not show evidence of an equatorially coordinating amine group. The results presented here show that, in the absence of nucleotide, betaK167 is a ligand to the metal bound at catalytic site 3, suggesting a regulatory role for the P-loop lysine in addition to its known role in catalysis.  相似文献   

6.
Pore-forming toxins, many of which are pathogenic to humans, are highly dynamic proteins that adopt a different conformation in aqueous solution than in the lipid environment of the host membrane. Consequently, their crystal structures obtained in aqueous environment do not reflect the active conformation in the membrane, making it difficult to deduce the molecular determinants responsible for pore formation. To obtain structural information directly in the membrane, we introduce a fluorescence technique to probe the native topology of pore-forming toxins in planar lipid bilayers and follow their movement during pore formation. Using a Förster resonance energy transfer (FRET) approach between site-directedly labeled proteins and an absorbing compound (dipicrylamine) in the membrane, we simultaneously recorded the electrical current and fluorescence emission in horizontal planar lipid bilayers formed in plastic chips. With this system, we mapped the topology of the pore-forming domain of Cry1Aa, a biological pesticide from Bacillus thuringiensis, by determining the location of the loops between its seven α helices. We found that the majority of the toxins initially traverse from the cis to the trans leaflet of the membrane. Comparing the topologies of Cry1Aa in the active and inactive state in order to identify the pore-forming mechanism, we established that only the α3–α4 hairpin translocates through the membrane from the trans to the cis leaflet, whereas all other positions remained constant. As toxins are highly dynamic proteins, populations that differ in conformation might be present simultaneously. To test the presence of different populations, we designed double-FRET experiments, where a single donor interacts with two acceptors with very different kinetics (dipicrylamine and oxonol). Due to the nonlinear response of FRET and the dynamic change of the acceptor distribution, we can deduce the distribution of the acceptors in the membrane from the time course of the donor fluorescence. We found that Cry1Aa is present on both membrane leaflets.  相似文献   

7.
The Kdp system is a three-subunit member of the E1-E2 family of transport ATPases. There is sequence homology of the 72 kDa KdpB protein, the largest subunit of Kdp, with the other members of this family. The predicted structure of the 21 kDa KdpC subunit resembles that of the beta subunit of the Na+,K(+)-ATPase, suggesting that these subunits may have a similar function. The 59 kDa KdpA subunit has no known homologue; it is very hydrophobic and is predicted to cross the membrane 10-12 times. Genetic studies implicate this subunit in the binding of K+. As the binding site must be close to the beginning of the transmembrane channel, we suggest that KdpA also forms most or all of the latter. KdpA may have evolved from a K+/H+ antiporter that was recruited by the KdpB precursor to achieve the high affinity and specificity for K+, and the activation of transport by low turgor pressure characteristic of Kdp. Turgor pressure controls the expression of Kdp. This action is dependent on the 70 kDa KdpD and 23 kDa KdpE proteins. We are in the process of sequencing these genes. KdpE is homologous to the smaller protein of other members of a family of pairs of regulatory proteins implicated in control of a variety of bacterial processes such as porin synthesis, phosphate regulon expression, nitrogen metabolism, chemotaxis and nodule formation.  相似文献   

8.
This study was carried out to screen lactic acid bacteria that produce active dietary enzymes, such as amylase, lipase, phytase, and protease, using a two-step process in pigs. We isolated a total of 210 and 132 strains of bacteria, grown under aerobic and anaerobic conditions, respectively, in Man Rogosa Sharpe agar containing 0.13% bile after treatment of intestinal samples at pH 3 for 30 min. From fecal samples, a total of 134 aerobic and 111 anaerobic strains were isolated in the same manner. In the second screening test, we selected four strains that produced four dietary enzymes from isolates obtained in the first screening test. Each strain was characterized as lactobacilli based on the following criteria: rod shape, negative for catalase, Gram positive, and lack of acute oral toxicity in mice. Of these four strains, we finally selected Lactobacillus spp. PSC101, which was resistant to pH 3 for 8 h and grew in the presence of 1% bile. In summary, Lactobacillus sp. PSC101 may be a strong probiotic candidate in swine due to its resistance to both acid and bile, its production of dietary enzymes that promote animal growth, and its non-toxic nature in mice.  相似文献   

9.
"Twitchin-actin linkage hypothesis" for the catch mechanism in molluscan smooth muscles postulates in vivo existence of twitchin links between thin and thick filaments that arise in a phosphorylation-dependent manner [N.S. Shelud'ko, G.G. Matusovskaya, T.V. Permyakova, O.S. Matusovsky, Arch. Biochem. Biophys. 432 (2004) 269-277]. In this paper, we proposed a scheme for a possible catch mechanism involving twitchin links and regulated thin filaments. The experimental evidence in support of the scheme is provided. It was found that twitchin can interact not only with mussel myosin and rabbit F-actin but also with the paramyosin core of thick filaments, myorod, mussel thin filaments, "natural" F-actin from mussel, and skeletal myosin from rabbit. No difference was revealed in binding of twitchin with mussel and rabbit myosin. The capability of twitchin to interact with all thick filament proteins suggests that putative twitchin links can be attached to any site of thick filaments. Addition of twitchin to a mixture of actin and paramyosin filaments, or to a mixture of Ca(2+)-regulated actin and myosin filaments under relaxing conditions caused in both cases similar changes in the optical properties of suspensions, indicating an interaction and aggregation of the filaments. The interaction of actin and myosin filaments in the presence of twitchin under relaxing conditions was not accompanied by an appreciable increase in the MgATPase activity. We suggest that in both cases aggregation of filaments was caused by formation of twitchin links between the filaments. We also demonstrate that native thin filaments from the catch muscle of the mussel Crenomytilus grayanus are Ca(2+)-regulated. Twitchin inhibits the ability of thin filaments to activate myosin MgATPase in the presence of Ca(2+). We suggest that twitchin inhibition of the actin-myosin interaction is due to twitchin-induced switching of the thin filaments to the inactive state.  相似文献   

10.
A single amino acid substitution (Asp to Asn) at position 138 of Escherichia coli elongation factor Tu (EF-Tu) was introduced in the tufA gene clone by oligonucleotide site-directed mutagenesis. The mutated tufA gene was then expressed in maxicells. The properties of [35S]methionine-labeled mutant and wild type EF-Tu were compared by in vitro assays. The Asn-138 mutation greatly reduced the protein's affinity for GDP; however, this mutation dramatically increased the protein's affinity for xanthosine 5'-diphosphate. The mutant protein forms a stable complex with Phe-tRNA and xanthosine 5'-triphosphate, which binds to ribosomes, whereas it does not form a complex with Phe-tRNA and GTP (10 microM). These results suggest that in EF-Tu.nucleoside diphosphate complexes, amino acid residue 138 must interact with the substituent on C-2 of the purine ring. Thus, in wild type EF-Tu, Asp-138 would hydrogen bond to the 2-amino group of GDP, and in the mutant EF-Tu, Asn-138 would form an equivalent hydrogen bond with the 2-carbonyl group of xanthosine 5'-diphosphate. Aspartic acid 138 is conserved in the homologous sequences of all GTP regulatory proteins. This mutation would allow one to specifically alter the nucleotide specificity of other GTP regulatory proteins.  相似文献   

11.
Summary. Imatinib, a tyrosine kinase inhibitor directed against the enzymatic domain of KIT protein, was found to produce dramatic clinical responses in metastatic gastrointestinal stromal tumors (GISTs). However, resistance usually develops thus determining treatment failure. The present study was performed to analyse the expression of somatostatin receptor (SSTR) subtypes, modulators of tissue transglutaminase, in a series of GISTs and leiomyosarcomas by immunohistochemistry to identify a new potential therapeutic target. Sixteen cases (8 males and 8 females, age range: 38–73; 11 GISTs, 4 leiomyosarcomas, 1 leiomyoma) were studied. Immunohistochemical detection of the relevant SSTRs was performed on paraffin-embedded tissue sections, stained with polyclonal antibodies directed against the five somatostatin receptor subtypes. We found 7 out of 16 (44%) tumors expressing all SSTRs and 14 out of 16 (87%) tumors positive for at least 3 subtypes. SSTR2A was the most represented subtype in the tumors studied, being expressed in approximately 70% of cases exhibiting an intense labeling in most of these cases. The significant expression of SSTRs shown in this series of GISTs and gastrointestinal leiomyosarcomas suggests a potential therapeutic target to be explored alone and/or in combination with other therapeutic agents in the setting of refractory GI stromal tumors.  相似文献   

12.
The molecular mechanism participating in the transport of newly synthesized proteins from the cytoplasm to the nucleus in mammalian cells is poorly understood. Recently, the nuclear localization signal sequences (NLS) of many nuclear proteins have been identified, and most have been found to be composed of a highly basic amino acid stretch. A genetic "subtractive" and a biochemical "additive" approach were used in our studies to identify the NLS's of the polyomavirus structural capsid proteins. An NLS was identified at the N-terminus (Ala1-Pro-Lys-Arg-Lys-Ser-Gly-Val-Ser-Lys-Cys11) of the major capsid protein VP1 and at the C-terminus (Glu307 -Glu-Asp-Gly-Pro-Glu-Lys-Lys-Lys-Arg-Arg-Leu318) of the VP2/VP3 minor capsid proteins.  相似文献   

13.
14.
15.
T7 RNA polymerase (T7 RNAP) is an enzyme that utilizes ribonucleotides to synthesize the nascent RNA chain in a template-dependent manner. Here we have studied the interaction of T7 RNAP with cibacron blue, an anthraquinone monochlorotriazine dye, its effect on the function of the enzyme and the probable mode of binding of the dye. We have used difference absorption spectroscopy and isothermal titration calorimetry to show that the dye binds T7 RNAP in a biphasic manner. The first phase of the binding is characterized by inactivation of the enzyme. The second binding site overlaps with the common substrate-binding site of the enzyme. We have carried out docking experiment to map the binding site of the dye in the promoter bound protein. Competitive displacement of the dye from the high affinity site by labeled GTP and isothermal titration calorimetry of high affinity GTP bound enzyme with the dye suggests a strong correlation between the high affinity dye binding and the high affinity GTP binding in T7 RNAP reported earlier from our laboratory.  相似文献   

16.
17.
Stereoselective total synthesis of bioactive marine natural product crucigasterin A has been accomplished from commercially available and inexpensive l-(?)-malic acid as a starting material. Julia olefination and chelation controlled Grignard additions are the key steps involved in the present synthesis. Cytotoxic properties of crucigasterin A and its related analogues crucigasterins B and D have been evaluated. Crucigasterin A showed promising activities against both the human cervical cancer cell line and human breast adenocarcinoma cell line.  相似文献   

18.
A central question is how the conformational changes of proteins affect their function and the inhibition of this function by drug molecules. Many enzymes change from an open to a closed conformation upon binding of substrate or inhibitor molecules. These conformational changes have been suggested to follow an induced-fit mechanism in which the molecules first bind in the open conformation in those cases where binding in the closed conformation appears to be sterically obstructed such as for the HIV-1 protease. In this article, we present a general model for the catalysis and inhibition of enzymes with induced-fit binding mechanism. We derive general expressions that specify how the overall catalytic rate of the enzymes depends on the rates for binding, for the conformational changes, and for the chemical reaction. Based on these expressions, we analyze the effect of mutations that mainly shift the conformational equilibrium on catalysis and inhibition. If the overall catalytic rate is limited by product unbinding, we find that mutations that destabilize the closed conformation relative to the open conformation increase the catalytic rate in the presence of inhibitors by a factor exp(ΔΔGC/RT) where ΔΔGC is the mutation-induced shift of the free-energy difference between the conformations. This increase in the catalytic rate due to changes in the conformational equilibrium is independent of the inhibitor molecule and, thus, may help to understand how non-active-site mutations can contribute to the multi-drug-resistance that has been observed for the HIV-1 protease. A comparison to experimental data for the non-active-site mutation L90M of the HIV-1 protease indicates that the mutation slightly destabilizes the closed conformation of the enzyme. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.  相似文献   

19.
20.
Members of the Leishmania genus are the causative agents of the life-threatening disease leishmaniasis. New drugs are being sought due to increasing resistance and adverse side effects with current treatments. The knowledge that dUTPase is an essential enzyme and that the all α-helical dimeric kinetoplastid dUTPases have completely different structures compared with the trimeric β-sheet type dUTPase possessed by most organisms, including humans, make the dimeric enzymes attractive drug targets. Here, we present crystal structures of the Leishmania major dUTPase in complex with substrate analogues, the product dUMP and a substrate fragment, and of the homologous Campylobacter jejuni dUTPase in complex with a triphosphate substrate analogue. The metal-binding properties of both enzymes are shown to be dependent upon the ligand identity, a previously unseen characteristic of this family. Furthermore, structures of the Leishmania enzyme in the presence of dUMP and deoxyuridine coupled with tryptophan fluorescence quenching indicate that occupation of the phosphate binding region is essential for induction of the closed conformation and hence for substrate binding. These findings will aid in the development of dUTPase inhibitors as potential new lead anti-trypanosomal compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号