首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The beta2 integrin CD11b/CD18 is an integral membrane protein that is present in the plasma membrane and secondary granules of neutrophils and functions as a major adhesion molecule. Upon cellular activation, there is translocation of intracellular pools of CD11b/CD18 to the plasma membrane in concert with enhanced cellular adhesion. Although much is known about the function of CD11b/CD18, how this protein is transported within the cell is less well defined. Here we report that CD11b/CD18 specifically binds to BAP31, a member of a novel class of sorting proteins regulating cellular anterograde transport. Through experiments aimed at identifying CD11b/CD18-binding proteins, we produced a monoclonal antibody termed E1B2 that recognizes a 28-kDa membrane protein that co-precipitates with CD11b/CD18. Microsequence analysis of the E1B2 antigen revealed that it is BAP31. Co-association of CD11b/CD18 and BAP31 was confirmed in co-immunoprecipitation and protein binding assays. Additional experiments revealed that the binding of BAP31 to CD11b/CD18 was not dependent on divalent cations nor mediated by the I-domain of CD11b. Using glutathione S-transferase fusion chimeras, we determined that binding of CD11b/CD18 to BAP31 is mediated through interactions with the cytoplasmic tail of BAP31. Immunolocalization studies revealed colocalization of BAP31 and CD11b/CD18 within neutrophil secondary granules. Subcellular fractionation studies in polymorphonuclear leukocytes (PMN) revealed similar patterns of redistribution of BAP31 and CD11b/CD18 from fractions enriched in secondary granules to the plasma membrane following stimulation with formylmethionylleucylphenylalanine (fMLP). Given the known sorting properties of BAP31, these findings suggest that BAP31 may play a role in regulating intracellular trafficking of CD11b/CD18 in neutrophils.  相似文献   

2.

Background

CD11b/CD18 is a key adhesion receptor that mediates leukocyte adhesion, migration and immune functions. We recently identified novel compounds, leukadherins, that allosterically enhance CD11b/CD18-dependent cell adhesion and reduce inflammation in vivo, suggesting integrin activation to be a novel mechanism of action for the development of anti-inflammatory therapeutics. Since a number of well-characterized anti-CD11b/CD18 activating antibodies are currently available, we wondered if such biological agonists could also become therapeutic leads following this mechanism of action.

Methods

We compared the two types of agonists using in vitro cell adhesion and wound-healing assays and using animal model systems. We also studied effects of the two types of agonists on outside-in signaling in treated cells.

Results

Both types of agonists similarly enhanced integrin-mediated cell adhesion and decreased cell migration. However, unlike leukadherins, the activating antibodies produced significant CD11b/CD18 macro clustering and induced phosphorylation of key proteins involved in outside-in signaling. Studies using conformation reporter antibodies showed that leukadherins did not induce global conformational changes in CD11b/CD18 explaining the reason behind their lack of ligand-mimetic outside-in signaling. In vivo, leukadherins reduced vascular injury in a dose-dependent fashion, but, surprisingly, the anti-CD11b activating antibody ED7 was ineffective.

Conclusions

Our results suggest that small molecule allosteric agonists of CD11b/CD18 have clear advantages over the biologic activating antibodies and provide a mechanistic basis for the difference.

General significance

CD11b/CD18 activation represents a novel strategy for reducing inflammatory injury. Our study establishes small molecule leukadherins as preferred agonists over activating antibodies for future development as novel anti-inflammatory therapeutics.  相似文献   

3.
4.
5.
6.
LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) are members of the beta2 integrins involved in leukocyte function during immune and inflammatory responses. We aimed to determine a minimized beta2 subunit that forms functional LFA-1 and Mac-1. Using a series of truncated beta2 variants, we showed that the subregion Q23-D300 of the beta2 subunit is sufficient to combine with the alphaL and alphaM subunits intracellularly. However, only the beta2 variants terminating after Q444 promote cell surface expression of LFA-1 and Mac-1. Thus, the major cysteine-rich region and the three highly conserved cysteine residues at positions 445, 447, and 449 of the beta2 subunit are not required for LFA-1 and Mac-1 surface expression. The surface-expressed LFA-1 variants are constitutively active with respect to ICAM-1 adhesion and these variants express the activation reporter epitope of the mAb 24. In contrast, surface-expressed Mac-1, both the wild type and variants, require 0. 5 mM MnCl2 for adhesion to denatured BSA. These results suggest that the role of the beta2 subunit in LFA-1- and Mac-1-mediated adhesion may be different.  相似文献   

7.
Abstract This study investigates the effect of some components of the Staphylococcus aureus cell wall [lipoteichoic acid (LTA), N -acetyl-muramyl-alanyl- d -isoglutamine (MD), muramic acid (MA) and protein A (PA)] in modulating expression of cell-surface adhesion molecules CD11a/CD18, CD11b/CD18 on monocytes qualitatively and quantitatively. Monocytes incubated with bacterial components presented different CD11b/CD18 expressions which were dose-dependent in contrast to controls. The results obtained demonstrated that lymphocytes incubated with bacterial components also increased the expression of CD11a/CD18. The modifications in activation of CD11a/CD18 and CD11b/CD18 expression are probably correlated with modifications of membrane fluidity measured as polarisation fluorescence (P).  相似文献   

8.
Intercellular adhesion molecule-4 (ICAM-4, LW blood group antigen), a member of the immunoglobulin superfamily expressed on red cells, has been reported to bind to CD11a/CD18 and CD11b/CD18 leukocyte integrins. The location of the ICAM-4 binding sites on CD11a/CD18 and CD11b/CD18 are not known. CD11/CD18 integrin I domains have been found to act as major binding sites for physiological ligands and a negatively charged glutamic acid in ICAMs is considered important for binding. ICAM-4 lacks such a residue, which is replaced by an arginine. However, we demonstrate here that ICAM-4 in red cells and transfected fibroblasts interacts specifically with the I domains of CD11a/CD18 and CD11b/CD18 integrins. The binding was inhibited by anti-I domain and anti-ICAM-4 antibodies and it was dependent on divalent cations. Interestingly, ICAM-4 negative red cells were still able to bind to the CD11b/CD18 I domain but the binding of these cells to the CD11a/CD18 I domain was clearly reduced. Using a solid phase assay, we were able to show that isolated I domains directly and specifically bind to purified recombinant ICAM-4 in a cation dependent manner. Competition experiments indicated that the binding sites in ICAM-4 for the CD11a and CD11b I domains are different. However, the ICAM-4 binding region in both I domains seems to overlap with the regions recognized by the ICAM-1 and ICAM-2. Thus we have established that the I domains contain an ICAM-4 binding region in CD11a/CD18 and CD11b/CD18 leukocyte integrins.  相似文献   

9.
The role of beta2-integrins CD11b/CD18 and CD 11c/CD 18 in adhesion and migration of leukocytes on fibrinogen was studied. The monoclonal antibodies against CD11b inhibited the spontaneous adhesion of monocytic THP-1 cells on fibrinogen, whereas antibodies to CD11c more effectively inhibited the adhesion stimulated by chemokine MCP-1. By the RNA-interference method the clones of THP-1 with reduced expression of CD11b and general beta2-subunit CD18 were obtained. MCP-I stimulated the adhesion to fibrinogen of THP-1 cells of wild-type and mutant cells with reduced expression of CD11b (THP-1-CD11b-low), but not of cells with low expression of CD18 (THP-1-CD18-low). THP-1-CD18-low cells were also characterized by the impaired chemotaxis in presence of MCP-1. The data obtained suggest that spontaneous cell adhesion to fibrinogen is mediated to a greater extent by CD11b/CD18 integrins, while chemokine-stimulated adhesion and migration is mostly dependent on CD11c/CD18 molecules.  相似文献   

10.
The F11 receptor (F11R) (a.k.a. Junctional Adhesion Molecule, JAM) was first identified in human platelets as a 32/35 kDa protein duplex that serves as receptor for a functional monoclonal antibody that activates platelets. We have sequenced and cloned the F11R and determined that it is a member of the immunoglobulin (Ig) superfamily of cell adhesion molecules. The signaling pathways involved in F11R-induced platelet activation were examined in this investigation. The binding of M.Ab.F11 to the platelet F11R resulted in granule secretion and aggregation. These processes were found to be dependent on the crosslinking of F11R with the FcγRII by M.Ab.F11. This crosslinking induced actin filament assembly with the conversion of discoidal platelets to activated shapes, leading to the formation of platelet aggregates. We demonstrate that platelet secretion and aggregation through the F11R involves actin filament assembly that is dependent on phosphoinositide-3 kinase activation, and inhibitable by wortmannin. Furthermore, such activation results in an increase in the level of free intracellular calcium, phosphorylation of the 32 and 35 kDa forms of the F11R, F11R dimerization coincident with a decrease in monomeric F11R, and association of the F11R with the integrin GPIIIa and with CD9. On the other hand, F11R-mediated events resulting from the binding of platelets to an immobilized surface of M.Ab.F11 lead to platelet adhesion and spreading through the development of filopodia and lammelipodia. These adhesive processes are induced directly by interaction of M.Ab.F11 with the platelet F11R and are not dependent on the FcγRII. We also report here that the stimulation of the F11R in the presence of nonaggregating (subthreshold) concentrations of the physiological agonists thrombin and collagen, results in supersensitivity of platelets to natural agonists by a F11R-mediated process independent of the FcγRII. The delineation of the two separate F11R-mediated pathways is anticipated to reveal significant information on the role of this cell adhesion molecule in platelet adhesion, aggregation and secretion, and F11R-dependent potentiation of agonist-induced platelet aggregation. The participation of F11R in the formation and growth of platelet aggregates and plaques in cardiovascular disorders, resulting in enhanced platelet adhesiveness and hyperaggregability, may serve in the generation of novel therapies in the treatment of inflammatory thrombosis, heart attack and stroke, and other cardiovascular disorders.  相似文献   

11.
Upon stimulation with C5a, TNF, or phorbol dibutyrate (PDB), polymorphonuclear leukocytes (PMN) exhibit first an increase then a decrease in adhesion to unstimulated endothelial cells (EC). Essentially all of this adhesion is mediated by the CD18 family of leukocyte integrins on PMN. To determine the individual roles of CD11a/CD18 (LFA-1), CD11b/CD18 (CR3, Mac-1) and CD11c/CD18 (p150,95) in adhesion of PDB-stimulated PMN to unstimulated EC, mAb against the CD11 chains were used. mAb against CD11a or CD11b each blocked adhesion of PMN to EC by approximately 50%, but mAb against CD11c had no effect. Inasmuch as a combination of anti-CD11a and CD11b mAb completely blocked adhesion, it appears that CD11a/CD18 and CD11b/CD18 make approximately equal contributions to binding, and CD11c does not participate. Anti-CD11a or CD11b each blocked adhesion by about 50% throughout the transient time course of PDB-stimulated adhesion, indicating that the capacity of each of these receptors to bind EC is transiently activated by PDB. We next examined the role of ICAM-1 on EC as a ligand for CD18. Two anti-ICAM-1 mAb (LB-2 and 84H10) each inhibited PMN adhesion in a dose-dependent fashion, reaching a maximal inhibition of approximately 50%. Anti-ICAM-1 mAb blocked the CD11a/CD18-dependent portion of adhesion because concomitant use of anti-CD11a and anti-ICAM-1 did not cause additive inhibition. In contrast, anti-CD11b plus anti-ICAM-1 resulted in complete blockade of adhesion. This result suggests that CD11a/CD18 recognizes ICAM-1 on EC, but CD11b/CD18 recognizes a different ligand(s). To determine if CD11b CD18 has the ability to recognize ICAM-1, human macrophages were plated on culture surfaces coated with purified ICAM-1. Interaction of CD11a/CD18 with the surface-bound ICAM-1 resulted in selective down-modulation of CD11a/CD18 from the apical portion of the macrophages. In contrast, ICAM-1-coated surfaces did not down-modulate CD11b/CD18. The data suggest that CD11b/CD18 does not recognize ICAM-1, and that this receptor functions in adhesion of PMN to EC by recognizing novel ligand(s) on EC.  相似文献   

12.
L1 neural cell adhesion molecule is the founding member of the L1 subfamily of the immunoglobulin superfamily and plays an important role in the overall development of both the central and peripheral nervous systems, making it an attractive candidate for promoting neural regeneration following injury. Currently, L1 used for experimental studies is primarily mammalian-derived; however, the insect cell expression system described here provides an alternative source of recombinant L1 with equivalent bioactivity. A 140 kDa L1 fragment based on a physiological plasmin cleavage site in the extracellular domain was cloned and expressed with a C-terminal 6x histidine tag. Recombinant insect cell-derived L1 was analyzed by Western blot using an antibody to human L1 to confirm immunogenicity and to optimize infection conditions for recombinant L1 production. The recombinant protein was secreted by insect cells, efficiently purified under non-denaturing conditions using dialysis followed by metal affinity chromatography, and analyzed by SDS-PAGE to produce a single band of the expected approximate 140 kDa size. The bioactivity of insect cell-derived L1 was compared to mammalian-derived L1-Fc and poly-L-lysine (PLL) using chick embryonic forebrain neurons. The results show comparable, robust neurite outgrowth at 24h on insect cell-derived L1 and mammalian-derived L1-Fc, with significantly longer neurites than those observed on PLL. Future studies will examine the immobilization of L1 to biomaterial surfaces in physiologically appropriate orientation via the C-terminal 6x histidine tag and will investigate their application in promoting axonal regeneration in the injured nervous system.  相似文献   

13.
In vivo responsiveness to epinephrine, expression of L-selectin on neutrophils, changes in intracellular calcium ([Ca2+]i), sulfatide-induced superoxide production and tyrosine phosphorylation in neutrophils were evaluated to elucidate the role of L-selectin-associated functions of normal and CD18-deficient bovine neutrophils. The number of neutrophils in peripheral blood was significantly increased (P < 0.05) in four normal calves at 5-20 min after in vivo administration of epinephrine; however, no significant increase of neutrophils was found in three calves with bovine leucocyte adhesion deficiency (BLAD). Expression of L-selectin on neutrophils from three calves with BLAD was 61-77% of that of normal calves. Pretreatment of neutrophils with phorbol myristate acetate caused a marked decrease in the expression of L-selectin on neutrophils from both normal and BLAD calves. The sulfatide-induced sustained phase of [Ca2+]i concentration in neutrophils from calves with BLAD was significantly (P < 0.05) decreased. Following stimulation with aggregated IgG, the transient phase of [Ca2+]i in neutrophils from normal and BLAD calves was increased; however, the sustained phase of [Ca2+]i in BLAD neutrophils was significantly lower (P < 0.05) than that of controls. Sulfatide-induced O2- production and chemiluminescent response in neutrophils from calves with BLAD were 48-51% of those of normal calves and were inhibited by genistein and wortmannin, respectively, in a dose-dependent manner. The amount of tyrosine phosphorylated 100 kDa protein in neutrophils from BLAD calves stimulated with sulfatides was 57% of that of controls. The degree of L-selectin expression on neutrophils was correlated with the intracellular signalling events and the related superoxide production.  相似文献   

14.
The integrin receptor CD11b/CD18 is normally kept in a low adhesive state and can be activated by many different agents. However, the mechanism underlying receptor activation is not yet fully understood. We hypothesized that the extracellular, membrane-proximal regions of CD11b/CD18 are critically involved in modulation of its adhesive functions. To test our hypothesis, we perturbed the extracellular, membrane-proximal regions of individual CD11b and CD18 subunits and studied their effect on ligand binding, receptor clustering, and lipid raft association. We report here three major findings: 1) perturbation of the extracellular, membrane-proximal region of either subunit leads to enhanced adhesion, caused by changes in receptor conformation, but not the state of receptor clustering or lipid raft association; 2) the CD11b subunit plays a more important role in confining the receptor in an inactive state; and 3) upon modification of the extracellular, membrane-proximal region, the mutant CD11b/CD18 acquires the ability to respond to stimulation by "inside-out" signaling. Our results suggest that the extracellular, membrane-proximal region of the receptor plays an important role in integrin activation and therefore could be targeted by certain cell surface proteins as a conduit to control the integrin "inside-out" signaling process.  相似文献   

15.
Kinhult J  Egesten A  Uddman R  Cardell LO 《Peptides》2002,23(10):1735-1739
Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide with strong bronchodilator capacity, present in the human airways. There is recent evidence that PACAP decreases the release of proinflammatory cytokines. We have previously shown that PACAP inhibits neutrophil chemotaxis, but altogether little is known about the effects of PACAP on granulocytes. The present study was designed to investigate if PACAP and the closely related peptide vasoactive intestinal peptide (VIP) could affect the cell surface expression of CD11b, CD63 and CD66b in human neutrophils. Neutrophils isolated from 12 healthy blood donors were incubated with either PACAP or VIP, and the expression of neutrophil cell surface markers was assessed using flowcytometry. Neutrophils incubated with PACAP38 exhibited a marked, concentration-dependent increase in their expression of CD11b, CD63 and CD66b. In contrast, neutrophils incubated with VIP showed no increase of the investigated surface markers. This indicates a role for PACAP in granulocyte activation, mediated via a pathway not shared with VIP. Together with the previously presented data on leukocyte migration it suggests that PACAP acts as a regulator of neutrophil inflammation.  相似文献   

16.
《The Journal of cell biology》1995,129(4):1143-1153
beta 2 integrin (CD11a,b,c/CD18)-mediated cell adhesion is required for many leukocyte functions. Under normal circumstances, the integrins are nonadhesive, and become adhesive for their cell surface ligands, the intercellular adhesion molecules (ICAMs), or soluble ligands such as fibrinogen and iC3b, when leukocytes are activated. Recently, we defined a peptide derived from ICAM-2, which specifically binds to purified CD11a/CD18. Furthermore, this peptide strongly induces T cell aggregation mainly mediated by CD11a/CD18-ICAM-1 interaction, and natural killer cell cytotoxicity. In the present study, we show that the same ICAM-2 peptide also avidly binds to purified CD11b/CD18, but not to CD11c/CD18. This binding can be blocked by the CD11b antibody OKM10. The peptide strongly stimulates CD11b/CD18-ICAM-1-mediated cell aggregations of the monocytic cell lines THP-1 and U937. The aggregations are energy and divalent cation-dependent. The ICAM-2 peptide also induces CD11b/CD18 and CD11c/CD18-mediated binding of THP- 1 cells to fibrinogen and iC3b coated on plastic. These findings indicate that in addition to induction of CD11a/CD18-mediated cell adhesion, the ICAM-2 peptide may also serve as a "trigger" for high avidity ligand binding of other beta 2 integrins.  相似文献   

17.
The expression of ICAM-1 (CD54), β1 integrin (CD29), and CD44 on cytomegalovirus (CMV)-infected human embryonic fibroblasts (HEF) was analyzed by flow cytometry. The expression of these adhesion molecules increased significantly on CMV-infected HEF, on days 2 and 5 after inoculation, compared to uninfected HEF. However, the expression of these adhesion molecules decreased on herpes simplex virus (HSV)-1 and varicella-zoster virus (VZV)-infected HEF. Increased expression was not observed on HEF treated either with inactivated CMV or with supernatant fluid of CMV-infected cells. The addition of anti-cytokine (TNF-α, IL-1β, or IFN-γ) antibodies had no effect on the increase of these adhesion molecules. This suggests that the increase in CD54, CD29, and CD44 on CMV-infected cells requires active virus replication and was not mediated by a soluble factor released from CMV-infected cells. Changes in adhesion molecules on CMV-infected fibroblasts may contribute to inflammation induced by CMV infection.  相似文献   

18.
Neutrophil (PMN) transepithelial migration is dependent on the leukocyte beta(2) integrin CD11b/CD18, yet the identity of epithelial counterreceptors remain elusive. Recently, a JAM protein family member termed JAM-C was implicated in leukocyte adhesive interactions; however, its expression in epithelia and role in PMN-epithelial interactions are unknown. Here, we demonstrate that JAM-C is abundantly expressed basolaterally in intestinal epithelia and localizes to desmosomes but not tight junctions. Desmosomal localization of JAM-C was further confirmed by experiments aimed at selective disruption of tight junctions and desmosomes. In assays of PMN transepithelial migration, both JAM-C mAbs and JAM-C/Fc chimeras significantly inhibited the rate of PMN transmigration. Additional experiments revealed specific binding of JAM-C to CD11b/CD18 and provided evidence of other epithelial ligands for CD11b/CD18. These findings represent the first demonstration of direct adhesive interactions between PMN and epithelial intercellular junctions (desmosomes) that regulate PMN transepithelial migration and also suggest that JAM-C may play a role in desmosomal structure/function.  相似文献   

19.
Macrophage-like development of myeloid leukemia cells which can be induced by agents such as phorbol esters (TPA) is accompanied by integrin expression and cell adhesion. Thus, in differentiating myeloid leukemia cells CD11b is predominantly expressed which can associate with CD18 to form the functional heterodimeric integrin Mac-1. To elucidate the role of cell adhesion during macrophage-like differentiation, we transfected human U937 myeloid leukemia cells with a vector containing the CD11b gene in antisense orientation. Expression of the CD11b antisense gene in stably transfected U937 cells (as-CD11b cells) resulted in an attenuated response to TPA. As-CD11b cells demonstrated poor adhesion to solid substrate upon TPA treatment in contrast to U937 control cells. Constitutive expression of c-myc in as-CD11b transfectants was higher than in control cells and failed to be repressed by TPA treatment. Moreover, unlike control cells, antisense transfectants failed to induce expression of early response genes such as c-jun and the redox factor ref-1 upon TPA stimulation. Consequently, the induction of monocytic differentiation markers such as the activity of alpha-naphthyl acetate esterase, the capacity to reduce nitroblue tetrazolium and the expression of the vimentin gene was much lower in antisense transfectants than in control U937 cells. According to the failure to undergo a monocytic differentiation program, TPA treatment of as-CD11b cells resulted in a progressively increasing amount of apoptotic cells whereas the differentiated population of U937 control cells remained alive. Taken together, these data suggest that the integrin-mediated (particularly CD11b-mediated) adhesion of myeloid leukemia cells in the course of induced monocytic differentiation is crucial for cell attachment, development of a monocytic phenotype and subsequent survival.  相似文献   

20.
Leukocyte β2-integrin CD11b/CD18 mediates the firm adhesion and subsequent transepithelial migration of polymorphonuclear leukocytes, but the identity of its counter-receptor(s) on epithelia remains elusive. Here we identified a monoclonal antibody, clone C3H7, which strongly bound to the basolateral membranes of epithelial cells and inhibited both the adhesion of epithelial cells to immobilized CD11b/CD8 and the transepithelial migration of PMNs in a physiologically relevant basolateral-to-apical direction. C3H7 antigen expression in epithelial monolayers was significantly increased by treatment with proinflammatory cytokine interferon-γ or a combination of interferon-γ and tumor necrosis factor-α. Up-regulation of C3H7 antigen was also observed in the epithelium of inflamed human colon tissues. Microsequencing and Western blotting of the purified antigen showed it to be CD44 variant 3 (CD44v3), a ∼160-kDa membrane glycoprotein. Further studies demonstrated that this epithelial CD44v3 specifically binds to CD11b/CD18 through its heparan sulfate moieties. In summary, our study demonstrates for the first time that the heparan sulfate proteoglycan form of epithelial CD44v3 plays a critical role in facilitating PMN recruitment during inflammatory episodes via directly binding to CD11b/CD18.A major component of many inflammatory diseases is the migration of large numbers of neutrophils (polymorphonuclear leukocytes, PMNs)2 across the epithelium and their accumulation within a lumen. Examples include inflammatory bowel disease (IBD), cholangitis, cholecystitis, bronchial pneumonia, bronchitis, pyelonephritis, and cystitis. Under these pathophysiological conditions, epithelial injury and disease symptoms parallel PMN infiltration of the mucosa (1, 2). The current paradigm for migration of PMN across epithelial monolayers envisions a process consisting of sequential molecularly defined events such as CD11b/CD18-mediated firm adhesion of PMN with epithelia (3) followed by CD47-SIRPα interactions at the post-adhesion stage (4). However, although PMN transepithelial migration (TEM) has been widely demonstrated to be CD11b/CD18-dependent, the epithelial counter-receptor(s) for CD11b/CD18 in mediating PMN-epithelia adhesion has not been identified.Function mapping studies using domain-specific antibodies have demonstrated that the inserted domain (I-domain), a stretch of 200 amino acids of the CD11b subunit, is a major binding domain for CD11b/CD18 ligands (5). The I-domain of CD11b is promiscuous in ligand binding and has many known receptors including ICAM-1 (6, 7), fibrinogen (8), collagen (9), Cyr61 (CCN1), and connective tissue growth factor (CCN2) (10), heparin/heparan sulfate (11, 12), elastase (13), iC3b (14), and platelet glycoprotein Ibα (15). However, none of these ligands appear to mediate the firm adhesion of PMNs to the basolateral surfaces of epithelial monolayers at early stages of transmigration. Thus far, no epithelial basolaterally expressed CD11b/CD18 counter-receptor has been identified. ICAM-1, the best characterized cellular ligand for CD11b/CD18, cannot be the intestinal epithelial CD11b/CD18 ligand that mediates PMN firm adhesion because: (a) ICAM-1 is normally not expressed on intestinal epithelia except under inflammatory conditions (16) and (b) when ICAM-1 expression is induced it is up-regulated on the apical rather than basolateral surface of intestine epithelia. In an effort to understand the mechanisms that govern CD11b/CD18-mediated PMN TEM, previous studies by us and others have found that epithelial surface-sulfated proteoglycans (17) and junction adhesion molecule C (JAM-C) play a significant role in regulating PMN transmigration via interaction with leukocyte CD11b/CD18 (18, 19). However, compared with functional inhibitory anti-CD11b antibodies that completely block PMN TEM, soluble carbohydrates or antibodies against JAM-C create only partial inhibition. These results clearly suggest the existence of unknown epithelial adhesion molecule(s) that bind to leukocyte CD11b/CD18 and regulate PMN TEM. Heparin and heparan sulfate have also been shown to block the adhesion and PMN TEM via binding to CD11b/CD18 (11, 12); thus it is reasonable to suggest that a basolateral membrane glycoprotein decorated with heparan sulfate moieties may serve as a counter-receptor for CD11b/CD18. However, the nature of this epithelial heparan sulfate proteoglycan has not been identified.Here we sought to identify novel epithelial adhesive ligand(s) important in PMN transmigration, in particular, a ligand that can bind to CD11b/CD18 on migrating PMNs and mediate the firm adhesion of PMNs to the epithelial basolateral surfaces. To do this, we screened a panel of monoclonal antibodies generated against epithelial plasma membranes. This screening identified one mAb, termed C3H7, that recognized a basolateral membrane protein and inhibited PMN TEM in a physiologically relevant basolateral-to-apical direction. Further study of these results identified the C3H7 antigen as a v3-type human epithelial CD44 variant, a ∼160-kDa glycoprotein that is decorated with heparan sulfate moieties. Subsequent studies revealed that the C3H7 antigen appears to function as a cellular ligand for CD11b/CD18 in regulating the firm adhesion of PMNs to the epithelium during their transmigration process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号