首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Glycogen synthase kinase-3 was isolated from rabbit skeletal muscle by an improved procedure. The purification was estimated to be 67000-fold and 0.2 mg of enzyme was isolated from 5000 g muscle, corresponding to an overall yield of 7%. The preparation was homogeneous by ultracentrifugal and electrophoretic criteria. The enzyme had a relative molecular mass of 47 kDa by sedimentation equilibrium centrifugation and 51 kDa by SDS-polyacrylamide gel electrophoresis. These values demonstrate that glycogen synthase kinase-3 is monomeric. The Stokes radius of 37 nm suggests the molecule to be asymmetric. The activating factor of the Mg-ATP dependent form of protein phosphatase-1 coeluted with glycogen synthase kinase-3 activity at the final step, establishing that these two activities reside in the same protein. Glycogen synthase kinase-3 phosphorylates glycogen synthase at sites-3, while casein kinase-II phosphorylates site-5, just C-terminal to sites-3 (Picton, C., Aitken, A., Bilham, T. and Cohen, P. (1982) Eur. J. Biochem. 124, 37-45). The basis for the substrate specificities of these protein kinases was investigated using chymotryptic peptides that contain the sites phosphorylated by each enzyme. These studies showed that efficient phosphorylation of sites-3, required the presence of phosphate in site-5 and a region of polypeptide more than 20 residues C-terminal to site-5. In contrast, efficient phosphorylation by casein kinase-II does not require this C-terminal region, and the results are consistent with the view that the enzyme recognises acidic residues immediately C-terminal to site-5.  相似文献   

2.
The serine-170 (S170) calcium-dependent protein kinase phosphorylation site of maize (Zea mays L.) sucrose synthase (SUS) (EC 2.4.1.13) has been implicated in the post-translational regulation of SUS protein stability. To clarify the proteolytic process and the role of phosphorylation, SUS degradation and proteasome activities were studied in the maize leaf elongation zone. Size-exclusion chromatography resolved two peaks of proteasome-like proteolytic activity. The large molecular mass ( approximately 1350 kDa) peak required Mg(2+) and ATP for maximal activity and was inhibited by the proteasome inhibitors MG132 and NLVS. Anion-exchange chromatography resolved a similar proteolytic activity that was activated by ATP, characteristics that are consistent with those of a 26S-proteasome. Appropriately, immunoblotting revealed the presence of a 26S-proteasome subunit and highly ubiquitinated proteins within the active fractions eluted from both columns. The smaller molecular mass ( approximately 600 kDa) peak represented only 40% of the total proteasome-like activity and is likely a maize 20S-proteasome as it was activated in vitro by low levels of sodium dodecyl sulfate (SDS). S170 phosphorylated SUS (pS170-SUS) was detected as both high molecular mass (HMM) forms and proteolytic fragments that co-eluted with 26S-proteasome activities on both size-exclusion and anion-exchange columns. Conditions that maintained maximal 26S-proteasome activity reduced the amounts of pS170-SUS recovered. In vitro, the 26S-proteasome degraded SUS and proteasome-specific inhibitors reduced SUS proteolysis. HMM-SUS conjugates were produced in vitro and immunoprecipitations suggested that some SUS might be ubiquitinated in vivo. The results suggest that S170 phosphorylation promotes the formation of HMM, ubiquitin-SUS conjugates that can be targeted for 26S-proteasome-dependent degradation.  相似文献   

3.
A C-terminally modified ubiquitin (Ub) derivative, ubiquitin vinyl sulfone (UbVS), was synthesized as an active site-directed probe that irreversibly modifies a subset of Ub C-terminal hydrolases (UCHs) and Ub-specific processing proteases (UBPs). Specificity of UbVS for deubiquitylating enzymes (DUBs) is demonstrated not only by inhibition of [(125)I]UbVS labeling with N-ethylmaleimide and Ub aldehyde, but also by genetic analysis. [(125)I]UbVS modifies six of the 17 known and putative yeast deubiquitylating enzymes (Yuh1p, Ubp1p, Ubp2p, Ubp6p, Ubp12p and Ubp15p), as revealed by analysis of corresponding mutant strains. In mammalian cells, greater numbers of polypeptides are labeled, most of which are likely to be DUBs. Using [(125)I]UbVS as a probe, we report the association of an additional DUB with the mammalian 26S proteasome. In addition to the 37 kDa enzyme reported to be part of the 19S cap, we identified USP14, a mammalian homolog of yeast Ubp6p, as being bound to the proteasome. Remarkably, labeling of 26S-associated USP14 with [(125)I]UbVS is increased when proteasome function is impaired, suggesting functional coupling between the activities of USP14 and the proteasome.  相似文献   

4.
The proteasome is involved in the progression of the meiotic cell cycle in fish oocytes. We reported that the alpha4 subunit of the 26S proteasome, which is a component of the outer rings of the 20S proteasome, is phosphorylated in immature oocytes and dephosphorylated in mature oocytes. To investigate the role of the phosphorylation, we purified the protein kinase from immature oocytes using a recombinant alpha4 subunit as substrate. A protein band which well corresponded to the kinase activity was identified as casein kinase Ialpha (CKIalpha). Two-dimensional (2D) PAGE analysis showed that part of the alpha4 subunit was phosphorylated by CKIalpha in vitro. This spot was detected in purified immature 26S proteasome but not in mature 26S proteasome, demonstrate that the alpha4 subunit is phosphorylated by CKIalpha meiotic cell cycle dependently.  相似文献   

5.
The 26S proteasome complex, which consists of a 20S proteasome and a pair of 19S regulatory particles, plays important roles in the degradation of ubiquitinated proteins in eukaryotic cells. The alpha7 subunit of the budding yeast 20S proteasome is a major phosphorylatable subunit; serine residue(s) in its C-terminal region are phosphorylated in vitro by CKII. However, the exact in vivo phosphorylation sites have not been identified. In this study, using electrospray ionization quadrupole time-of-flight mass spectrometry analysis, we detected a mixture of singly, doubly, and triply phosphorylated C-terminal peptides isolated from a His-tagged construct of the alpha7 subunit by nickel-immobilized metal affinity chromatography. In addition, we identified three phosphorylation sites in the C-terminal region using MS/MS analysis and site-directed mutagenesis: Ser258, Ser263, and Ser264 residues. The MS/MS analysis of singly phosphorylated peptides showed that phosphorylation at these sites did not occur successively.  相似文献   

6.
泛素化是存在于真核生物中一种重要的翻译后修饰过程,参与调控包括蛋白质降解在内的多种生命活动。实现这一调控过程需要将一个由76个氨基酸组成的泛素蛋白共价连接到底物蛋白上。同时,泛素本身也存在多种翻译后修饰,包括泛素化、磷酸化、乙酰化等,进一步丰富了泛素的修饰类型,决定了底物蛋白不同的命运。近年来,伴随着第65位丝氨酸磷酸化泛素蛋白参与调控线粒体自噬这一突破性进展,泛素蛋白其余磷酸化位点的功能研究也获得越来越多的关注。本文根据目前已有的国内外研究和报道,总结了泛素蛋白已知的磷酸化修饰位点,梳理了泛素蛋白第12位和66位苏氨酸、第57位和65位丝氨酸等位点的磷酸化修饰对其生物物理特性带来的改变,并对相应修饰位点所涉及的生物学功能调控进行了综述。  相似文献   

7.
《BBA》1987,893(2):333-341
The level of phosphorylation of the 24 kDa and the 25 kDa light-harvesting chlorophyll a/b binding protein complex (LHC) II polypeptides in isolated spinach thylakoids has been determined by quantitative SDS-polyacrylamide gel electrophoresis. The time-course of phosphorylation, after correction for the molar abundance of these two polypeptides, shows that (a) the rate of phosphorylation of the 24 kDa polypeptide is at least 3-fold faster compared with the 25 kDa polypeptide, (b) the final extent of phosphorylation for both the polypeptides is very similar, and (c) the final extent of phosphorylation is typically between 0.15 and 0.25 mol phosphate per mol polypeptide. The low extent of phosphorylation is not simply a consequence of inactivation of the kinase and / or LHC II substrate or ATP depletion. These observations suggest that there are at least three different sub-populations of LHC II in isolated thylakoids: (i) phosphorylated ‘mobile’, (ii) phosphorylated ‘PS II-coupled’ and (iii) non-phosphorylated. Furthermore, the reported differences in the specific activity of phosphorylation for the ‘mobile’ and the ‘PS II-coupled’ LHC II sub-populations (Kyle, D.J. et al. (1984) Biochim. Biophys. Acta 765, 89–96) are no longer observed following correction for the non-phosphorylated LHC-II population.  相似文献   

8.
The 26S proteasome complex plays a major role in the non-lysosomal degradation of intracellular proteins. Purified 26S proteasomes give a pattern of more than 40 spots on 2D-PAGE gels. The positions of subunits have been identified by mass spectrometry of tryptic peptides and by immunoblotting with subunit-specific antipeptide antibodies. Two-dimensional polyacrylamide gel electrophoresis of proteasomes immunoprecipitated from [32P]phosphate-labelled human embryo lung L-132 cells revealed the presence of at least three major phosphorylated polypeptides among the regulatory subunits as well as the C8 and C9 components of the core 20S proteasome. Comparison with the positions of the regulatory polypeptides revealed a minor phosphorylated form to be S7 (MSS1). Antibodies against S4, S6 (TBP7) and S12 (MOV34) all cross-reacted at the position of major phosphorylated polypeptides suggesting that several of the ATPase subunits may be phosphorylated. The phosphorylation of S4 was confirmed by double immunoprecipitation experiments in which 26S proteasomes were immunoprecipitated as above and dissociated and then S4 was immunoprecipitated with subunit-specific antibodies. Antibodies against the non-ATPase subunit S10, which has been suggested by others to be phosphorylated, did not coincide with the position of a phosphorylated polypeptide. Some differences were observed in the 2D-PAGE pattern of proteasomes immunoprecipitated from cultured cells compared to purified rat liver 26S proteasomes suggesting possible differences in subunit compositions of 26S proteasomes.  相似文献   

9.
10.
Efficient elimination of misfolded proteins by the proteasome system is critical for proteostasis. Inadequate proteasome capacity can lead to aberrant aggregation of misfolded proteins and inclusion body formation, a hallmark of neurodegenerative disease. The proteasome system cannot degrade aggregated proteins; however, it stimulates autophagy-dependent aggregate clearance by producing unanchored lysine (K)63-linked ubiquitin chains via the proteasomal deubiquitinating enzyme Poh1. The canonical function of Poh1, which removes ubiquitin chains en bloc from proteasomal substrates prior to their degradation, requires intact 26S proteasomes. Here we present evidence that during aggresome clearance, 20S proteasomes dissociate from protein aggregates, while Poh1 and selective subunits of 19S proteasomes are retained. The dissociation of 20S proteasome components requires the molecular chaperone Hsp90. Hsp90 inhibition suppresses 26S proteasome remodeling, unanchored ubiquitin chain production, and aggresome clearance. Our results suggest that 26S proteasomes undergo active remodeling to generate a Poh1-dependent K63-deubiquitinating enzyme to facilitate protein aggregate clearance.  相似文献   

11.
Two classes of human cDNA encoding the insulin/mitogen-activated p70 S6 kinase have been isolated; the two classes differ only in the 5' region, such that the longer polypeptide (p70 S6 kinase alpha I; calculated Mr 58,946) consists of 525 amino acids, of which the last 502 residues are identical in sequence to the entire polypeptides encoded by the second cDNA (p70 S6 kinase alpha II; calculated Mr 56,153). Both p70 S6 kinase polypeptides predicted by these cDNAs are present in p70 S6 kinase purified from rat liver, and each is thus expressed in vivo. Moreover, both polypeptides are expressed from a single mRNA transcribed from the (longer) p70 S6 kinase alpha I cDNA through the utilization of different translational start sites. Although the two p70 S6 kinase polypeptides differ by only 23 amino acid residues, the slightly longer alpha I polypeptide exhibits anomalously slow mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), migrating at an apparent Mr of 90,000 probably because of the presence of six consecutive Arg residues immediately following the initiator methionine. Transient expression of p70 alpha I and alpha II S6 kinase cDNA in COS cells results in a 2.5- to 4-fold increase in overall S6 kinase activity. Upon immunoblotting, the recombinant p70 polypeptides appear as a closely spaced ladder of four to five bands between 65 and 70 kDa (alpha II) and 85 and 90 kDa (alpha I). Transfection with the alpha II cDNA yields only the smaller set of bands, while transfection with the alpha I cDNA generates both sets of bands. Mutation of Met-24 in the alpha I cDNA to Leu or Thr suppresses synthesis of the alpha II polypeptides. Only the p70 alpha I and alpha II polypeptides of slowest mobility on SDS-PAGE comigrate with the 70- and 90-kDa proteins observed in purified rat liver S6 kinase. Moreover, it is the recombinant p70 polypeptides of slowest mobility that coelute with S6 kinase activity on anion-exchange chromatography. The slower mobility and higher enzymatic activity of these p70 proteins is due to Ser/Thr phosphorylation, inasmuch as treatment with phosphatase 2A inactivates kinase activity and increases the mobility of the bands on SDS-PAGE in an okadaic acid-sensitive manner. Thus, the recombinant p70 S6 kinase undergoes multiple phosphorylation and partial activation in COS cells. Acquisition of S6 protein kinase catalytic function, however, is apparently restricted to the most extensively phosphorylated recombinant polypeptides.  相似文献   

12.
Stromal serine protein kinase activity in spinach chloroplasts   总被引:1,自引:0,他引:1  
At least twelve 32P-labeled stromal proteins were detected by electrophoresis under denaturing conditions when intact chloroplasts were incubated with 32Pi, in the light but only three were detected in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) or in the dark. Incubation of isolated stroma with [gamma-32P]ATP resulted in the preferential phosphorylation of one of them, a 70-kDa polypeptide, in serine residues. Thylakoid membranes in the dark promoted the phosphorylation of two additional stromal polypeptides of 55 and 40 kDa. Illumination during the phosphorylation of stroma in the presence of thylakoids stimulated severalfold the labeling of the 40-kDa polypeptide but not when DCMU was added. The protein kinase activity present in isolated stroma phosphorylated exogenous substrates like histone III, phosvitin, histone II, and casein with specific activities of 3, 1.8, 0.7, and 0.2 pmol X mg-1 X min-1. Histone III polypeptides were phosphorylated differently by stroma and by thylakoids in the dark. Moreover, histone III phosphorylated by thylakoids in the dark yielded a pattern of phosphopeptides after V8 protease treatment that was different from the pattern obtained when histone III was phosphorylated by stroma.  相似文献   

13.
植物泛素/26S蛋白酶体途径研究进展   总被引:6,自引:0,他引:6  
泛素/26S蛋白酶体途径是最重要的,有高度选择性的蛋白质降解途径,由泛素激活酶、泛素结合酶、泛素蛋白连接酶和26S蛋白酶体组成,参与调控植物生长发育的多个方面。泛素蛋白酶体途径参与植物体内的众多生理过程,如植物激素信号,光形态建成、自交不亲和反应和细胞周期等。本文就泛素/26S蛋白酶体途径以及在植物生长发育中的作用的研究近况做一综述。  相似文献   

14.
The binding and assembly of clathrin triskelions on vesicle membranes seem to be mediated by certain assembly polypeptides (Keen, J.H., Willingham, M.C., and Pastau, I.H. (1979) Cell 16, 303-312). These assembly polypeptides were further purified into two distinct complexes using hydroxylapatite chromatography. Peak 1 consists of two major bands of 98 and 112 kDa, two minor bands of 103 and 118 kDa, and a polypeptide of 46 kDa. Peak 2 consists of one major band of 100 kDa, two minor bands of 103 and 115 kDa, and a polypeptide of 50 kDa. Both complexes have a native molecular mass of 290 kDa as determined by gel filtration. Each 290-kDa complex contains two polypeptides of 98-118/100-115 kDa and two polypeptides of 46/50 kDa. The 46-kDa polypeptide is not phosphorylated, whereas the 50-kDa polypeptide is. Both peaks contain 50-kDa kinase-like activity. Time courses of the 50-kDa phosphorylation show that the activity in peak 1 saturates much faster than the activity in peak 2; there may be two 50-kDa kinase activities in coated vesicles. A kinase that phosphorylates the polypeptides in 98-118-kDa group is present in peak 1 but not in peak 2. Both peaks assemble clathrin triskelions into cages under conditions in which the clathrin alone would not assemble. Both rotary shadowed and negatively stained preparations of these reassembled cages as well as the purified complexes were examined by electron microscopy. Thus, two complexes have been identified that differ in their polypeptide composition and kinase activities, but are similar in their ability to assemble clathrin triskelions into cages.  相似文献   

15.
Here, we document for the first time the presence of the 26S proteasome and the ubiquitin pathway in a protozoan parasite that is in an early branch in the eukaryotic lineage. The 26S proteasome of Trypanosoma cruzi epimastigotes was identified as a high molecular weight complex (1400 kDa) with an ATP-dependent chymotrypsin-like activity against the substrate Suc-LLVY-Amc. This activity was inhibited by proteasome inhibitors and showed same electrophorectic migration pattern as yeast 26S proteasome in nondenaturating gels. About 30 proteins in a range of 25-110 kDa were detected in the purified T. cruzi 26S proteasome. Antibodies raised against the AAA family of ATPases from eukaryotic 26S proteasome and the T. cruzi 20S core specifically recognized components of T. cruzi 26S. To confirm the biological role of 26S in this primitive eukaryotic parasite, we analyzed the participation of the ubiquitin (Ub)-proteasome system in protein degradation during the time of parasite remodeling. Protein turnover in trypomastigotes was proteasome and ATP-dependent and was enhanced during the transformation of the parasites into amastigotes. If 20S proteasome activity is inhibited, ubiquitinated proteins accumulate in the parasites. As expected from the profound morphological changes that occur during transformation, cytoskeletal proteins associated with the flagellum are targets of the ubiquitin-proteasome pathway.  相似文献   

16.
A gene pknA, coding for an eukaryotic-type protein Ser/Thr kinase, was cloned from the Streptomyces coelicolor A3(2) chromosome. The PknA protein kinase, containing the C-terminal eukaryotic-type kinase domain with an N-terminal extension, was expressed in Escherichia coli and Streptomyces lividans. The affinity purified MBP-PknA fusion protein was assayed for kinase activity that showed its ability to autophosphorylate in vitro in the presence of [gamma-32P]ATP. The activity was Mn2+ dependent. The preautophosphorylated kinase phosphorylated at least two proteins (sizes 30 and 32 kDa) in the S. coelicolor J1501 cell-free extracts of all developmental stages. The larger of them was also phosphorylated in vitro by an endogenous protein kinase in late stages extracts, but not earlier. Although Mn2+ dependent protein phosphorylation has previously been described in Streptomyces, this is the first report of a gene encoding such an enzyme in this genus.  相似文献   

17.
Regulation of p90RSK phosphorylation by SARS-CoV infection in Vero E6 cells   总被引:2,自引:0,他引:2  
The 90 kDa ribosomal S6 kinases (p90RSKs) are a family of broadly expressed serine/threonine kinases with two kinase domains activated by extracellular signal-regulated protein kinase in response to many growth factors. Our recent study demonstrated that severe acute respiratory syndrome (SARS)-coronavirus (CoV) infection of monkey kidney Vero E6 cells induces phosphorylation and dephosphorylation of signaling pathways, resulting in apoptosis. In the present study, we investigated the phosphorylation status of p90RSK, which is a well-known substrate of these signaling pathways, in SARS-CoV-infected cells. Vero E6 mainly expressed p90RSK1 and showed weak expression of p90RSK2. In the absence of viral infection, Ser221 in the N-terminal kinase domain was phosphorylated constitutively, whereas both Thr573 in the C-terminal kinase domain and Ser380 between the two kinase domains were not phosphorylated in confluent cells. Ser380, which has been reported to be involved in autophosphorylation by activation of the C-terminal kinase domain, was phosphorylated in confluent SARS-CoV-infected cells, and this phosphorylation was inhibited by , which is an inhibitor of p38 mitogen-activated protein kinases (MAPK). Phosphorylation of Thr573 was not upregulated in SARS-CoV-infected cells. Thus, in virus-infected cells, phosphorylation of Thr573 was not necessary to induce phosphorylation of Ser380. On the other hand, Both Thr573 and Ser380 were phosphorylated by treatment with epidermal growth factor (EGF) in the absence of p38 MAPK activation. Ser220 was constitutively phosphorylated despite infection. These results indicated that phosphorylation status of p90RSK by SARS-CoV infection is different from that by stimulation of EGF. This is the first detailed report regarding regulation of p90RSK phosphorylation by virus infection.  相似文献   

18.
《FEBS letters》1997,403(3):313-317
Proteasomes function mainly in the ATP-dependent degradation of proteins that have been conjugated with ubiquitin. To demonstrate the phosphorylation of proteasomes in plants, we conducted an enzymatic dephosphorylation experiment with a crude extract of rice cultured cells. The results indicated that the C2 subunit of the 20S proteasome is phosphorylated in vivo in cultured cells. An in-gel kinase assay and analysis of phosphoamino acids revealed that the C2 subunit is phosphorylated by a 40-kDa serine/threonine protein kinase, the activity of which is inhibited by heparin, a specific inhibitor of casein kinase II. The catalytic subunit of casein kinase II from Arabidopsis was also able to phosphorylate the C2 subunit. These results suggest that the C2 subunit in rice is probably phosphorylated by casein kinase II. Our demonstration of the phosphorylation of proteasomes in plants suggests that phosphorylation might be involved in the general regulation of the functions of proteasomes.© 1997 Federation of European Biochemical Societies.  相似文献   

19.
A calmodulin-dependent protein kinase has been purified from rat spleen. The enzyme showed a remarkably similar substrate specificity and kinetic parameters to those of rat brain calmodulin-dependent protein kinase II, and exhibited cross-reactivity to a monoclonal antibody against rat brain calmodulin-dependent protein kinase II, indicating that the enzyme might be a calmodulin-dependent protein kinase II isozyme. The sedimentation coefficient was 13.9S, the Stokes radius was 67 A, and the molecular weight was calculated to be 380,000. The purified enzyme gave five polypeptides bands, corresponding to molecular weights of 51,000, 50,000, 21,000, 20,000, and 18,000, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Incubation of the purified enzyme with Ca2+, calmodulin, and ATP under phosphorylating conditions induced the phosphorylation of all five polypeptides. When the logarithm of the velocity of the phosphorylation was plotted against the logarithm of the enzyme concentration (van't Hoff plot), slopes of 0.89, 0.94, and 1.1 were obtained for the phosphorylation of the 50/51-kDa doublet, 20/21-kDa doublet, and 18-kDa polypeptide, respectively. These results indicate that the phosphorylation of the five polypeptides is an intramolecular process, and further indicate that all five polypeptides are subunits of this enzyme. Of the five polypeptides, only the 50- and 51-kDa polypeptides bound to [125I]calmodulin, the other polypeptides not binding to it. A number of isozymic forms of calmodulin-dependent protein kinase II so far demonstrated in various tissues are known to be composed of subunits with molecular weights of 50,000 to 60,000 which can bind to calmodulin. Thus a new type of calmodulin-dependent protein kinase II was demonstrated in the present study.  相似文献   

20.
We investigated whether the assembly/disassembly of the 26S proteasome is regulated by phosphorylation/dephosphorylation. The regulatory complex disassembled from the 26S proteasome was capable of phosphorylating the p45/Sug1/Rpt6 subunit, suggesting that the protein kinase is activated upon dissociation of the 26S proteasome or that the phosphorylation site of p45 becomes susceptible to the protein kinase. In addition, the p45-phosphorylated regulatory complex was found to be incorporated into the 26S proteasome. When the 26S proteasome was treated with alkaline phosphatase, it was dissociated into the 20S proteasome and the regulatory complex. Furthermore, the p45 subunit and the C3/alpha2 subunit were cross-linked with DTBP, whereas these subunits were not cross-linked by dephosphorylating the 26S proteasome. These results indicate that the 26S proteasome is disassembled into the constituent subcomplexes by dephosphorylation and that it is assembled by phosphorylation of p45 by a protein kinase, which is tightly associated with the regulatory complex. It was also revealed that the p45 subunit is directly associated with the 20S proteasome alpha-subunit C3 in a phosphorylation-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号