首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To find the cause of the skinning-induced fragility of frog skeletal muscle, the transverse relaxation process of 1H-NMR signals from skinned muscle was observed. A set of four characteristic exponentials well described the process. Aside from the extremely slow exponential component (time constant T2 > 0.4 s) representing surplus solution, the process was generally slower than that in living muscle. It had larger amplitudes of slow (T2 approximately 0.15 s) and intermediate (0.03 < T2 < 0.06 s) exponentials and had smaller amplitude and faster T2 in the rapid one (T2 < 0.03 s), suggesting that skinned muscle is more sol-like than intact myoplasm. To resolve their causes, we traced the exponentials following a stepwise treatment of living whole muscle to an isolated skinned fiber. Osmotic expansion of living muscle comparable to skinned muscle increased the intermediate exponential and decreased the rapid one without affecting T2. Subsequent chemical skinning markedly increased the slow exponential, decreased the rapid one, and slowed the intermediate one. The fiber isolation had no appreciable effect. Because l-carnosine at physiological concentration could not recover the skinning-induced difference, the difference would reflect the dilution and efflux of larger macromolecules, which stabilize myoplasm as a gel.  相似文献   

2.
In previous efforts to characterize sarcoplasmic reticulum function in human muscles, it has not been possible to distinguish the relative contributions of fast-twitch and slow-twitch fibers. In this study, we have used light scattering and 45Ca to monitor Ca accumulation by the sarcoplasmic reticulum of isolated, chemically skinned human muscle fibers in the presence and absence of oxalate. Oxalate (5 mM) increased the capacity for Ca accumulation by a factor of 35 and made it possible to assess both rate of Ca uptake and relative sarcoplasmic reticulum volume in individual fibers. At a fixed ionized Ca concentration, the rate and maximal capacity (an index of sarcoplasmic reticulum volume) both varied over a wide range, but fibers fell into two distinct groups (fast and slow). Between the two groups, there was a 2- to 2.5-fold difference in oxalate-supported Ca uptake rates, but no difference in average sarcoplasmic reticulum volumes. Intrinsic differences in sarcoplasmic reticulum function (Vmax, K0.5, and n) were sought to account for the distinction between fast and slow groups. In both groups, rate of Ca accumulation increased sigmoidally as [Ca++] was increased from 0.1 to 1 microM. Apparent affinities for Ca++ (K0.5) were similar in the two groups, but slow fibers had a lower Vmax and larger n values. Slow fibers also differed from fast fibers in responding with enhanced Ca uptake upon addition of cyclic AMP (10(-6) M, alone or with protein kinase). Acceleration by cyclic AMP was adequate to account for adrenaline-induced increases in relaxation rates previously observed in human muscles containing mixtures in fast- twitch and slow-twitch fibers.  相似文献   

3.
Mechanisms of stimulated 45Ca efflux in skinned skeletal muscle fibers   总被引:2,自引:0,他引:2  
Excitation-contraction (E-C) coupling in skeletal muscle can be studied in skinned fibers by direct assay of 45Ca efflux and simultaneous isometric force, under controlled conditions. Recent work provides evidence that such studies can address major current questions about the mechanisms of signal transmission between transverse tubules and sarcoplasmic reticulum and sarcoplasmic reticulum calcium release, as well as operation of the sarcoplasmic reticulum active Ca transport system in situ. Stimulation by imposed ion gradients at constant [K+][Cl-] product results in 45Ca release with two components: a large Ca2+-dependent efflux, responsible for contractile activation, and a small Ca2+-insensitive efflux. The Ca2+-insensitive stimulation is sustained, consistent with sustained depolarization, and appears to gradate the Ca2+-dependent stimulation; this component is likely to reflect intermediate steps in E-C coupling. Several lines of evidence suggest that the depolarizing stimulus acts on the transverse tubules. It is inhibited by the impermeant glycoside ouabain applied before skinning, which should specifically inhibit polarization of subsequently sealed transverse tubules. Sealed polarized transverse tubules also are the only plausible target for stimulation of 45Ca release by monensin and gramicidin D, which can rapidly dissipate Na+ and K+ gradients; a protonophore and the K+-specific ionophore valinomycin are ineffective. Ionophore stimulation is prevented by the permeant glycoside digitoxin; it is also highly Ca2+ dependent. Stimulation of 45Ca release by imposed ion gradients is potentiated by perchlorate, which potentiates charge movements and activation in intact fibers, and is inhibited selectively in highly stretched fibers, presumably by transverse tubule-sarcoplasmic reticulum uncoupling. These results relate the Ca2+-dependent sarcoplasmic reticulum efflux channel to the physiological transverse tubule-sarcoplasmic reticulum coupling pathway, which also could involve Ca2+.  相似文献   

4.
Ionic gradients imposed by choline Cl replacement of K methanesulfonate (Mes) at constant [K][Cl] product stimulate 45Ca efflux from skinned muscle fibers; a small, sustained Ca2+-insensitive efflux component, observed in EGTA, appears to grade a much larger Ca2+-dependent component responsible for contractile activation and is likely to reflect intermediate steps in excitation-contraction coupling. The present studies examined ATP-related effects on the Ca2+-insensitive stimulation. 45Ca efflux was measured on segments of frog semitendinosus muscle skinned by microdissection, with isometric force monitored continuously. The Ca2+-insensitive component was potentiated by quercetin, a flavonoid thought to inhibit the sarcoplasmic reticulum (SR) Ca pump by stabilizing a phosphorylated intermediate. Quercetin increased the stimulated net 45Ca release in the absence of EGTA, as expected from inhibition of reaccumulation, but its effectiveness in EGTA indicated potentiation of unidirectional efflux as such. Quercetin also increased unstimulated (control) 45Ca efflux in EGTA, to a smaller extent; potentiation appeared to be a function of efflux, with stimulation above control loss increased approximately 2.6-fold. ATP removal before stimulation, which led to rigor force and increased stiffness, prevented all quercetin effects in EGTA. ATP removal by itself inhibited ionic stimulation of the Ca2+-insensitive component, with little residual increase above the parallel control loss. Addition of the nonhydrolyzable ATP analogue AMP-PCP ([adenylyl-beta,gamma-methylene]diphosphate) (0.8 mM) after ATP removal gave similar results to ATP-free solution, which suggests that adenine nucleotide binding alone does not support stimulation by choline Cl. These results imply a fundamental role for ATP in the excitation of skinned fibers by imposed diffusion potentials; they also suggest that ATP regulates the SR Ca efflux channel, in a manner that could provide the positive feedback in Ca2+-dependent Ca release.  相似文献   

5.
In this study, we investigated the effect of the anticancer drug doxorubicin on Ca2+ fluxes of isolated highly purified sarcoplasmic reticulum fractions (longitudinal tubules and terminal cisternae (Saito, A., Seiler, S., Chu, A., and Fleischer, S. (1984) J. Cell Biol. 99, 875-885] and of chemically skinned skeletal muscle fibers of the rabbit. In terminal cisternae, doxorubicin inhibits Ca2+ uptake (IC50 at 0.5 microM) and increases 2.6-fold Ca2+-dependent ATPase rate (half-maximal activation at 3 microM) and unidirectional Ca2+ efflux (8-fold stimulation at 25 microM). On the contrary, doxorubicin is without effect on longitudinal tubules. In skinned muscle fibers, doxorubicin induces rapid and transient Ca2+ release, as measured by tension development (half-maximal stimulation at 6 microM), which is completely and reversibly inhibited by ruthenium red, a known inhibitor of Ca2+ release from isolated terminal cisternae. Doxorubicin has no effect on the sarcoplasmic reticulum Ca2+ pump and on the contractile apparatus of skinned muscle fibers. It is concluded that doxorubicin activates Ca2+ release from sarcoplasmic reticulum and opens a Ca2+ efflux pathway (Ca2+ channel) selectively localized in terminal cisternae. Doxorubicin might interact with Ca2+ channels involved in physiological Ca2+ release.  相似文献   

6.
Calcium efflux from sarcoplasmic reticulum vesicles that have been equilibrated with 1-100 mM CaCl2 in the absence of ATP has two apparently first order components. The initial calcium content of each component increases with the total Ca content of the sarcoplasmic reticulum, which reaches 5, 24, and 80 nmol/mg of protein after equilibration with 1, 10, and 100 mM CaCl2, respectively. Initial rates of Ca efflux into a medium containing 10 mM EGTA increase in proportion to Ca in the loading medium up to 20 mM. Above 20 mM, efflux from the slow component clearly saturates, whereas efflux from the fast component continues to increase. The rate constant for the smaller, faster component to efflux (k congruent to 0.5 min-1) is not affected by changing the concentration of Ca either inside or outside the vesicles. The rate constant of the larger, slower component (k congruent to 0.05 min-1) is also unaffected by changes in internal Ca concentration. However, external [Ca2+] diminishes the rate constant of the slow component 6-10-fold. Inhibition by external [Ca2+] is characterized by cooperative interaction between two sites with an apparent Kd of 5.3 X 10(-6) M. The two components may represent two populations of sarcoplasmic reticulum vesicles that differ 10-fold in passive permeability to Ca when external [Ca2+] is less than 10(-6) M, and 60-100-fold when external [Ca2+] is greater than 10(-5) M. The passive permeability in one of these populations seems to be regulated by external, high affinity Ca binding sites.  相似文献   

7.
Isometric force and 45Ca loss from fiber to bath were measured simultaneously in skinned fibers from frog muscle at 19 degrees C. In unstimulated fibers, 45Ca efflux from the sarcoplasmic reticulum (SR) was very slow, with little or no dependence on EGTA (0.1-5 mM) or Mg++ (20 micrometer-1.3 mM). Stimulation by high [Cl] at 0.11 mM Mg++ caused rapid force transients (duration approximately 10 s) and 45Ca release. This response was followed for 55 s, with 5 mM EGTA added to chelate myofilament space (MFS) Ca either (a) after relaxation, (b) near the peak of the force spike, or (c) before or with the stimulus. When EGTA was present during Cl application, stimulation of 45Ca release was undetectable. Analysis of the time-course of tracer loss during the three protocols showed that when EGTA was absent, 16% of the fiber tracer was released from the SR within approximately 3 s, and 70% of the tracer still in the MFS near the peak of the force spike was subsequently reaccumulated. The results suggest that (a) the Cl response is highly Ca-dependent; (b) stimulation increases 45Ca efflux from the SR at least 100-200-fold; and (c) the rate of reaccumulation is much slower than the influx predicted from published data on resting fibers, raising the possibility that depolarization inhibits active Ca transport by the SR.  相似文献   

8.
Tension responses to ramp stretches of 1-3% Lo (fiber length) in amplitude were examined in resting muscle fibers of the rat at temperatures ranging from 10 degrees C to 36 degrees C. Experiments were done using bundles of approximately 10 intact fibers isolated from the extensor digitorum longus (a fast muscle) and the soleus (a slow muscle). At low temperatures (below approximately 20 degrees C), the tension response consisted of an initial rise to a peak during the ramp followed by a complex tension decay to a plateau level; the tension decay occurred at approximately constant sarcomere length. The tension decay after a standard stretch at approximately 3-4.Lo/s contained a fast, an intermediate, and a (small amplitude) slow component, which at 10 degrees C (sarcomere length approximately 2.5 microns) were approximately 2000.s-1, approximately 150.s-1, and approximately 25.s-1 for fast fibers and approximately 2000.s-1, approximately 70.s-1 and approximately 8.s-1 for slow fibers, respectively. The fast component may represent the decay of interfilamentary viscous resistance, and the intermediate component may be due to viscoelasticity in the gap (titin, connectin) filament. The two- to threefold fast-slow muscle difference in the rate of passive tension relaxation (in the intermediate and the slow components) compares with previously reported differences in the speed of their active contractions; this suggests that "passive viscoelasticity" is appropriately matched to contraction speed in different muscle fiber types. At approximately 35 degrees C, the fast and intermediate components of tension relaxation were followed by a delayed tension rise at approximately 10.s-1 (fast fibers) and 2.5.s-1 (slow fibers); the delayed tension rise was accompanied by sarcomere shortening. BDM (5-10 mM) reduced the active twitch and tetanic tension responses and the delayed tension rise at 35 degrees C; the results indicate stretch sensitive activation in mammalian sarcomeres at physiological temperatures.  相似文献   

9.
The birefringence of isolated skinned fibers from rabbit psoas muscle was measured continuously during relaxation from rigor produced by photolysis of caged ATP at sarcomere length 2.8-2.9 microns, ionic strength 0.1 M, 15 degrees C. Birefringence, the difference in refractive index between light components polarized parallel and perpendicular to the fiber axis, depends on the average degree of alignment of the myosin head domain with the fiber axis. After ATP release birefringence increased by 5.8 +/- 0.7% (mean +/- SE, n = 6) with two temporal components. A small fast component had an amplitude of 0.9 +/- 0.2% and rate constant of 63 s-1. By the completion of this component, the instantaneous stiffness had decreased to about half the rigor value, and the force response to a step stretch showed a rapid (approximately 1000 s-1) recovery phase. Subsequently a large slow birefringence component with rate constant 5.1 s-1 accompanied isometric force relaxation. Inorganic phosphate (10 mM) did not affect the fast birefringence component but accelerated the slow component and force relaxation. The fast birefringence component was probably caused by formation of myosin.ATP or myosin.ADP.Pi states that are weakly bound to actin. The average myosin head orientation at the end of this component is slightly more parallel to the fiber axis than in rigor.  相似文献   

10.
Twitch and slow muscle fibers, identified morphologically in the garter snake, have been examined in the electron microscope. The transverse tubular system and the sarcoplasmic reticulum are separate entities distinct from each other. In twitch fibers, the tubular system and the dilated sacs of the sarcoplasmic reticulum form triads at the level of junction of A and I bands. In the slow fibers, the sarcoplasmic reticulum is severely depleted in amount and the transverse tubular system is completely absent. The junctional folds of the postsynaptic membrane of the muscle fiber under an "en grappe" ending of a slow fiber are not so frequent or regular in occurrence or so wide or so long as under the "en plaque" ending of a twitch fiber. Some physiological implications of these differences in fine structure of twitch and slow fibers are discussed. The absence of the transverse tubular system and reduction in amount of sarcoplasmic reticulum, along with the consequent disposition of the fibrils, the occurrence of multiple nerve terminals, and the degree of complexity of the post junctional folds of the sarcolemma appear to be the morphological basis for the physiological reaction of slow muscle fibers.  相似文献   

11.
Fine structure of fast-twitch and slow-twitch guinea pig muscle fibers   总被引:3,自引:0,他引:3  
The guinea pig soleus muscle is a convenient model for the study of slow-twitch intermediate (STI) fiber ultrastructure because it is composed entirely of fibers of this class. Such fibers were compared with fast-twitch red (FTR) and fast-twitch white (FTW) fibers from the vastus lateralis muscle. FTW fibers are characterized by small, sparse mitochondria, a narrow Z line and, an extensive sarcoplasmic reticulum arranged primarily in longitudinal profiles at the A band and with numerous expansions at the I band. Abundant mitochondria with a dense matrix and subsarcolemmal and perinuclear aggregations are typical of FTR fibers. These fibers contain a plexus of sarcoplasmic reticulum at the A band and a less extensive network at the I band. The Z lines are wider (890 ± 74 Å) than those of FTW fibers (582 ± 62 Å). STI intermediate fibers are distinguished from other types by wide Z lines (1205 ± 58 Å), a faint M band, and a less extensive sarcoplasmic reticulum. Compared to FTR fibers, STI fiber mitochondria are usually smaller with less notable subsarcolemmal accumulations. FTW fibers have a more limited capillary supply, rarely contain lipid inclusions, and thus may be restricted to phasic activity. Extensive capillarity, mitochondrial and lipid context, and fast contraction times indicate possible phasic and tonic roles for FTR fibers. STI fibers, characterized by numerous lipid inclusions, extensive capillarity, relatively numerous mitochondria, but slow contraction-relaxation cycles, are morphologically suited for tonic muscle activity.  相似文献   

12.
Chloride-induced Ca release in skinned muscle fibers was studied by measuring isometric force transients and 45Ca loss from fiber to washout solutions. Skinned fibers prepared from muscles soaked in normal Ringer solution made large force transients in 120 mM Cl solution with 5 mM ATP and 1 mM Mg, but 3 mM Mg was inhibitory. Mg inhibition was antagonized by low temperature and by Cd, agents which slow active Ca uptake by the sarcoplasmic reticulum (SR). In low Mg++, Cl stimulated rapid 45Ca release from the SR in sufficient amounts to account for the force response. The increased 45Ca release was inhibited by EGTA, suggesting that release requires free Ca under these conditions. The 45Ca initially released was partially reaccumulated later. Reaccumulation was increased in higher Mg++. These results provide additional evidence that the Ca uptake rate is an important determinant of net release, and suggest that Mg++ acts primarily on this mechanism. Skinned fibers prepared from muscles soaked in low Cl solutions could give force responses to Cl solutions with 3 mM and 6 mM Mg. This observation suggests that the Cl stimulus varies with the [Cl] gradient across the internal membranes, and supports the hypothesis that applied Cl causes membrane depolarization.  相似文献   

13.
Isometric force and 45Ca efflux from the sarcoplasmic reticulum were measured at 19 degrees C in frog skeletal muscle fibers skinned by microdissection. After Ca2+ loading, application of the ionophores monensin, an Na+(K+)/H+ exchanger, or gramicidin D, an H+ greater than K+ greater than Na+ channel-former, evoked rapid force development and stimulated release of approximately 30% of the accumulated 45Ca within 1 min, whereas CCCP (carbonyl cyanide pyruvate p-trichloromethoxyphenylhydrazone), a protonophore, and valinomycin, a neutral, K+-specific ionophore, did not. When monensin was present in all bathing solutions, i.e., before and during Ca2+ loading, subsequent application failed to elicit force development and to stimulate 45Ca efflux. 5 min pretreatment of the skinned fibers with 50 microM digitoxin, a permeant glycoside that specifically inhibits the Na+,K+ pump, inhibited monensin and gramicidin D stimulation of 45Ca efflux; similar pretreatment with 100 microM ouabain, an impermeant glycoside, was ineffective. Monensin stimulation of 45Ca efflux was abolished by brief pretreatment with 5 mM EGTA, which chelates myofilament-space calcium. These results suggest that: monensin and gramicidin D stimulate Ca2+ release from the sarcoplasmic reticulum that is mediated by depolarization of the transverse tubules, which seal off after sarcolemma removal and form closed compartments; a transverse tubule membrane potential (myofilament space-negative) is maintained and/or established by the operation of the Na+,K+ pump in the transverse tubule membranes and is sensitive to the permeant inhibitor digitoxin; the transverse tubule-mediated stimulation of 45Ca efflux appears to be entirely Ca2+ dependent.  相似文献   

14.
In mechanically skinned fibers of the semitendinosus muscle of bullfrogs, we examined the role of membrane sulfhydryl groups on Ca2+ release from the sarcoplasmic reticulum (SR). Hg2+, a sulfhydryl reagent (20-100 microM), induced a repetitive contracture of skinned fibers, and this contracture did not occur in skinned fibers in which the SR had been disrupted by treatment with a detergent (Brij 58). Procaine (10 mM), Mg2+ (5 mM), or dithiothreitol (1 mM) blocked the Hg2+-induced contracture. Ag+ or p-chloromercuribenzenesulfonic acid produced similar contractures to that induced by Hg2+. We conclude that Hg2+ releases Ca2+ from SR of a skinned fiber by modifying sulfhydryl groups on the SR membrane, and suggest that the Ca2+ released by Hg2+ may trigger a greater release of Ca2+ from SR to develop tension.  相似文献   

15.
Skeletal muscle relaxation with diazo-2: the effect of altered pH.   总被引:2,自引:0,他引:2  
In a fatigued muscle fibre, the concentrations of ADP, Pi and H+ are all increased and relaxation is slowed. We have used the technique of laser flash photolysis of the caged calcium-chelator, diazo-2, to investigate the direct effect of changes in pH (pH 6.5, 7.0, 7.5) upon tension during relaxation of single chemically skinned fibres, when the effects of the sarcoplasmic reticulum are absent. The relaxation transients were closely fitted with 2 exponentials, a fast (42.3 +/- 1.4; pH 7.0) and a slow process (12.0 +/- 0.7; pH 7.0). The fast phase of relaxation was pH sensitive; lowering pH leading to a slowing of the rate of force decline and raising pH leading to an increase of the rate. The rate of the slow phase was unaltered by changing pH over the range investigated. Thus the slowing of relaxation in fatigued muscle may be due, in part, to the direct action of protons on the myofilaments independent of any effects upon the sarcoplasmic reticulum.  相似文献   

16.
Ca2+ binding and internalization in sarcoplasmic reticulum ATPase can be investigated by the use of La3+ as a Ca2+ analog. Displacement kinetics of Ca2+ bound by La3+ in native vesicles is a slow biphasic process (k1 = 0.55 s-1 and k2 = 0.05 s-1) that is consistent with the existence of two Ca2+ binding populations whereas in leaky vesicles there appears to be a single population (k = 0.57 s-1). Rapid quench experiments demonstrate that Ca2+ internalization occurs with an initial burst (approximately 8 nmol/mg protein) associated with the presence of a phosphate-donor substrate in the reaction medium. While acid quenching for measurements of phosphoenzyme is instantaneous, La3+ quenching allows completion of one catalytic and transport cycle due to the slow La3+ exchange with Ca2+. This explains the apparent inconsistencies in the kinetics and stoichiometry of phosphoenzyme formation and Ca2+ internalization that are observed under certain experimental conditions.  相似文献   

17.
In the course of our study on the function of sarcoplasmic reticulum (SR) in skeletal muscle, the stimulatory action of phosphatidylinositol 4,5-bisphosphate (PIP2) on the Ca2+ release from SR was demonstrated by using chemically skinned fibers and fragmented SR vesicles. PIP2 induced a tension spike followed by sustained contraction in skinned fibers. PIP2 enhanced the caffeine-induced Ca2+ release from SR vesicles at low concentrations and triggered Ca2+ release by itself at high concentrations. PIP2 also enhanced 45Ca2+ efflux from SR vesicles. However, inositol 1,4,5-triphosphate never produced these effects. The Ca2+-releasing action of PIP2 was only weakly affected by ruthenium red or procaine. These observations suggest that PIP2 activates an SR Ca2+ release channel whose properties are different from those of the Ca2+-induced Ca2+ release channel.  相似文献   

18.
Functionally skinned and electrochemically shunted myocytes were prepared by perfusing rat hearts with collagenase in order to obtain a technically improved measurement of sarcomere dynamics and to evaluate the role of sarcoplasmic reticulum in situ with respect to contractile activation. In the presence of micromolar calcium, the myocytes exhibited phasic and propagated contraction waves beginning at one end and proceeding along the myocyte. Beating rates, the propagation velocity of the activation wave, and single sarcomere shortening and relaxation velocities were obtained by manual or automated analysis of 16-mm film recorded at 170 frames/s from a camera attached to a microscope that was equipped with a temperature-controlled stage. In parallel experiments, calcium accumulation by the sarcoplasmic reticulum of the myocytes in situ was measured by direct isotopic tracer methods. The frequency (10-38 min-1) of spontaneous contractions, the velocity (1.9-7.4 microns . s-1) of sarcomere shortening, and the velocity (1.7-6.8 microns . s-1) of sarcomere relaxation displayed identical temperature dependences (Q10 = 2.2), which are similar to that of the calcium pump of sarcoplasmic reticulum and are consistent with a rate limit imposed by enzyme-catalyzed mechanisms on all these parameters. On the other hand, the velocity (77- 159 microns . s-1) of sequential sarcomere activation displayed a lower temperature dependence (Q10 = 1.5), which is consistent with a diffusion-limited and self-propagating release of calcium from one sarcomere to the other. The phasic contractile activity of the dissociated myocytes was inhibited by 10(-8)-10(6) M ryanodine (and not by myolemmal calcium blockers) under conditions in which calcium accumulation by sarcoplasmic reticulum in situ was demonstrated to proceed optimally. The effect of ryanodine is attributed to an interaction of this drug with sarcotubular structures, producing inhibition of calcium release from the sarcoplasmic reticulum. The consequent lack of sarcomere activation underlines the role of sarcoplasmic reticulum uptake and release in the phasic contractile activation of the electrochemically shunted myocytes.  相似文献   

19.
Summary Precipitation of Ca oxalate in the sarcoplasmic reticulum of chemically skinned rabbit psoas fibers caused an increase in light scattering which was proportional to the amount of Ca accumulated per unit fiber volume. The increase in scattering was used to measure net accumulation rates and steady-state Ca capacities of the sarcoplasmic reticulum in single fibers. The data obtained were qualitatively and quantitatively similar to those reported for isolated vesicle preparations.Under conditions in which Ca was not depleted from the medium, Ca accumulation was linear with time over much of its course. Steady-state capacities were independent of the Ca concentration; uptake rates were half-maximal at 0.5 m Ca++ and saturated above about 1.0 m. Both rate and capacity varied with the oxalate concentration, being maximal at oxalate concentrations >=5mm and decreasing in proportion to one another at lower concentrations, with a threshold near 0.25mm. At the lower loads, electron micrographs showed many sarcoplasmic reticulum elements empty of precipitate alongside others that were full, whereas virtually all were filled in maximally loaded fibers. These data indicate that the Ca oxalate capacity of each fiber varies with the number and volume of elements in which Ca oxalate crystals can form at a given oxalate concentration, and that individual regions of the sarcoplasmic reticulum within each sarcomere differ in their ability to support Ca oxalate precipitation. Our working hypothesis is that this range in ability to form Ca oxalate crystals involves differences in ability to accumulate and retain ionized Ca inside the sarcoplasmic reticulum.  相似文献   

20.
In order to obtain information with regard to behavior of the Ca2+ receptor, troponin C (TnC), in intact myofilament lattice of cardiac muscle, we investigated Ca2+-binding properties of canine ventricular muscle fibers skinned with Triton X-100. Analysis of equilibrium Ca2+-binding data of the skinned fibers in ATP-free solutions suggested that there were two distinct classes of binding sites which were saturated over the physiological range of negative logarithm of free calcium concentration (pCa): class I (KCa = 7.4 X 10(7) M-1, KMg = 0.9 X 10(3) M-1) and class II (KCa = 1.2 X 10(6) M-1, KMg = 1.1 X 10(2) M-1). The class I and II were considered equivalent, respectively, to the Ca2+-Mg2+ and Ca2+-specific sites of TnC. The assignments were supported by TnC content of the skinned fibers determined by electrophoresis and 45Ca autoradiograph of electroblotted fiber proteins. Dissociation of rigor complexes by ATP caused a downward shift of the binding curve between pCa 7 and 5, an effect which could be largely accounted for by lowering of KCa of the class II sites. When Ca2+ binding and isometric force were measured simultaneously, it was found that the threshold pCa for activation corresponds to the range of pCa where class II sites started to bind Ca2+ significantly. We concluded that the low affinity site of cardiac TnC plays a key role in Ca2+ regulation of contraction under physiological conditions, just as it does in the regulation of actomyosin ATPase. Study of kinetics of 45Ca washout from skinned fibers and myofibrils revealed that cardiac TnC in myofibrils contains Ca2+-binding sites whose off-rate constant for Ca2+ is significantly lower than the Ca2+ off-rate constant hitherto documented for the divalent ion-binding sites of either cardiac/slow muscle TnC or fast skeletal TnC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号