首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Tromp 《Plant and Soil》1983,71(1-3):401-413
Summary In trees, nutrient reserves built up in the previous year are of primary importance for early spring growth. Despite the relatively great importance of roots for nutrient storage, the root system should not be regarded as a special storage organ. Quantitatively, carbohydrates predominate in these reserves, but qualitatively N and other minerals are of more than minor significance. In roots carbohydrates are usually stored in insoluble form, mainly as starch; sorbitol is the predominant soluble compound in apple and peach. For nitrogen reserves, the soluble form predominates in roots, especially arginine in apple and peach, followed by asparagine. The level of reserves usually becomes maximal early in the winter. During leafing-out the reserves are drawn on until, later in the season, the supply of newly produced or absorbed nutrients exceeds the demand and replenishment occurs. The initial carbohydrate reserves do not determine the amount of new growth, whereas reserve nitrogen is of decisive importance for shoot growth vigour. Environmental factors such as light intensity and temperature affect the level of carbohydrates in roots; the concentration can be reduced by defoliation and summer pruning and increased by ample supply of nitrogen fertilizer in the autumn. The main cultural factors that influence nitrogen reserves are the amount and the time of nitrogen fertilization.  相似文献   

2.
Four-year-old citrus trees ( Citrus unshiu Marcovitch) were fed via the roots with (15NH4)2sO4 or K15NO3 as a nitrogen source. Nitrogenous compounds and their isotopic abundances in fine roots and xylem sap from trunks were assayed in order to obtain information on the species of nitrogen released by the root system into the ascending xyiem stream.
Arginine, asparagine, nitrate and proline in xylem sap accounted for 48, 21, 13 and 10%, respectively, of the total nitrogenous constituents tested in the sap. However, in the trees fed with labelled ammonium the main nitrogenous compound labelled with 15N in the xylem sap was asparagine and glutamine, which accounted for 79% and 18%, respectively, of total labelled nitrogen. In the xylem sap of trees fed with labelled nitrate, nitrate accounted for 94% of total labelled nitrogen. Nitrate and asparagine followed by glutamine showed the highest ratios of isotopic abundance in xylem sap as compared to fine roots. Proline and arginine had much lower ratios. These results indicate that nitrate, asparagine and glutamine are the main nitrogenous compounds released by the roots to the xylem stream, whereas arginine and proline are released into the xylern vessels by the trunk tissues. Furthermore, nitrate and asparagine are probably in steady movement upward in the trunk xylem, whereas glutamine is more easily taken up by the trunk tissues than nitrate and asparagine.  相似文献   

3.
The role of the host in the nitrogen nutrition of Striga hermonthica (Del.) Benth. (Scrophulariaceae) parasitic on Sorghum bicolor cv. SH4 Arval has been investigated using (15)N-nitrate as the tracer. It is shown that, when nitrate is absorbed only by the roots of the host plant, a rapid transfer of nitrogen to the parasite can be detected. The xylem sap of S. hermonthica contained approximately equal amounts of nitrate and amino acids, mostly glutamine and asparagine. Infection altered the free amino acid profile of the host tissues, leading notably to a large increase in asparagine and a decrease in glutamine. The haustoria of S. hermonthica, although rich in nitrate, showed a low concentration of free amino acids, particularly lacking in asparagine and glutamine. The roots of S. hermonthica, in contrast, were rich in both asparagine and glutamine while, in the shoots, asparagine constituted 80% of the total FAA pool. Asparagine was also found to be the primary (15)N-enriched amino acid in the shoots of S. hermonthica while, interestingly, it was glutamate that was most strongly enriched in the roots. It is concluded that nitrogen nutrition in S. hermonthica is based on a supply of both nitrate and amino acids from the host. This implies a non-specific transfer in the transpiration stream. Nitrate reduction probably occurs mainly in the leaves of the parasite. Assimilation also occurs in S. hermonthica and excess nitrogen is stored as the non-toxic nitrogen-rich compound, asparagine. This specific trait of nitrogen metabolism of the parasite is discussed in relation to the effect of nitrogen fertilization on reducing infestation.  相似文献   

4.
Urtica dioica plants were grown on a nitrogen supply of 3, 15and 22 mM with nitrate and ammonium as nitrogen source. In contrastto nitrate reductions amino acid synthesis occurred in roottissue. At 3 mM ammonium obviously the amino acids were rathertransported via xylem upwards to the shoots than stored in theroots. Particularly increased ammonium supply led to stimulatedstorage of free amino acids in the roots, mainly as asparagineand arginine. In xylem asparagine was the dominant nitrogentransporting compound, while arginine was hardly translocated.With the enhancement of nitrogen supply, the second amide, glutamine,became more and more important with respect to the transportof nitrogen. (Received September 3, 1984; Accepted November 2, 1984)  相似文献   

5.
Amino acid uptake and utilization of various nitrogen sources (amino acids, nitrite, nitrate and ammonia) were studied in Nostoc ANTH and i ts mu tant (Het(-)Nif(-)) isolate defective in heterocyst formation and N2-fixation. Both parent and its mutant grew at the expense of glutamine, asparagine and arginine as a source of fixed-nitrogen. Growth was better in glutamine-and asparagine-media as compared to that in arginine media. Glutamine and asparagine repressed heterocyst formation, N2-fixation and nitrate reduction in Nostoc ANTH, but arginine did so only partially. The poor growth in arginine-medium was not due to poor uptake rates, since the uptake rates were not significantly different from those for glutamine or asparagine. The glutamine synthetase activity remained unaffected during cultivation in media containing any one of the three amino acids tested. The uptake of amino acids was substrate-inducible, energy-dependent and required de novo protein synthesis. Nitrate and ammonium repressed ammonium uptake, but did not repress uptake of amino acids. In N2-medium (BG-11(0)), the uptake of ammonium and amino acids in the mutant was significantly higher than its parent strain. This was apparently due to nitrogen limitation since the mutant was unable to fix N2 and the growth medium lacked combined-N.  相似文献   

6.
张烁  张宇  吴海波  刘洋荥  张鹏 《植物研究》2018,38(3):384-390
以小黑杨当年播种苗为材料,研究了不同施氮量(12,24和48 mg·株-1)和不同形态氮素(有机氮和无机氮)施肥对小黑杨幼苗生长的影响,以探讨小黑杨对氮基酸类有机氮素施肥的生长响应。结果表明:无论施无机氮(硝酸铵)还是有机氮(精氨酸),小黑杨幼苗的苗高、地径、总生物量都是随施氮量的增加而增加,但是中等施氮量处理的幼苗氮利用效率最高。无机氮(硝酸铵)和有机氮(精氨酸)处理的幼苗在相同施氮水平下生长表现无明显差异,施用有机氮可以与施用无机氮获得相同的促进苗木生长的效果。不同氨基酸及其组合肥料施用对小黑杨幼苗生长的影响显著。单一氨基酸施肥情况下,施用精氨酸促进苗木生长的效果最好,谷氨酸次之,甘氨酸最差;氨基酸组合施肥情况下,有精氨酸的组合施肥苗木生长好,有甘氨酸的组合施肥苗木生长差。不同氨基酸施肥处理对小黑杨幼苗各器官氮含量没有明显影响。  相似文献   

7.
Nitrogen and Cation Nutrition of Three Ecologically Different Plant Species   总被引:1,自引:0,他引:1  
Apple rootstocks M.7 were given a nitrogen application either in the spring or in the preceding autumn. At the time of the spring application some rootstocks were ringed. During the 50-day experimental period from bud-break, shoot growth and the amount of nitrogen incorporated into the new shoots were slightly reduced in the spring-treated trees and strongly reduced in the ringed trees of both treatments. Roots of unringed autumn-fertilized trees showed higher levels of total and amino nitrogen than those of similar trees in the spring treatment; to a lesser degree, the reverse held for xylem sap from the stem. Ringing increased the amino-nitrogen level in the roots, which suggests a reduced translocation rate. The nitrogen treatments led to marked differences in the percentage composition of the amino-nitrogen fraction of roots and xylem sap. The distribution of amino acids and amides in the roots and that in xylem sap of the same trees was divergent, but arginine and asparagine often were the most important constituents. Aspartic acid was rather abundant in xylem sap. Ringing did not affect the composition of the amino-nitrogen fraction in the roots quantitatively but increased the proportion of arginine in the sap. The possible relationship between the composition of xylem sap and soluble nitrogen in the roots is discussed. It is argued that especially in spring-fertilized trees appreciable amounts of nitrogen must be translocated via the phloem in addition to the transport in the xylem.  相似文献   

8.
Weissman , Gerard S. (Rutgers U., Camden, N. J.) Influence of ammonium and nitrate on the protein- and amino acids in shoots of wheat seedlings. Amer. Jour. Bot. 46(5): 339–346. 1959.—Total and protein nitrogen per shoot of wheat seedlings grown with endosperm attached increased at a steady rate during a 96-hr. growth period, and protein nitrogen, as a percentage of total nitrogen, remained constant at about 53%. Total and protein nitrogen concentration was greatest for 24-hr. shoots and declined as the shoots became older. Total and protein nitrogen were determined in 96-hr. shoots of seedlings grown with endosperm attached but also supplied with ammonium, nitrate, or both in the culture solution. Total nitrogen was greatest in shoots supplied with ammonium, but only 38% was in the form of protein. Maximum protein synthesis occurred in shoots grown in both ammonium and nitrate and protein nitrogen as a percentage of total nitrogen approximated that achieved in shoots lacking nitrogen in the culture solution. The protein amino acid composition of 48-, 72-, and 96-hr. shoots was very similar but differed from 24-hr. shoots which contained higher percentages of arginine and lysine and lower percentages of alanine and threonine. This may be correlated with the higher proportion of meristematic cells in 24-hr. shoots. The protein amino acids in shoots grown with ammonium resembled that of shoots lacking nitrogen in the culture solution, but nitrate shoot protein contained a higher percentage of arginine and a lower percentage of lysine. Nitrate may stimulate the formation of enzymes, possibly of a nitrate-reducing system, with high arginine- low lysine content. Free asparagine and glutamine were both at a maximum in ammonium shoots and at a minimum in nitrate shoots, but asparagine predominated in shoots supplied with ammonium while glutamine was greatest in nitrate shoots. Aspartic acid, asparagine, and glutamine appeared to have ammonia-storage functions, but glutamic acid appeared to be primarily concerned with protein synthesis. Amino acid accumulation was greatest in shoots supplied with both ammonium and nitrate. Protein synthesis in these appeared to be limited by inadequate concentrations of glutamic acid and proline. A hypothesis is proposed in explanation of the high glutamic acid concentration in shoots provided with ammonium and nitrate.  相似文献   

9.
The uptake of amino acids and inorganic nitrogen by roots of Puccinellia phryganodes was examined to assess the potential contribution of soluble organic nitrogen to plant nitrogen uptake in Arctic coastal marshes, where free amino acids constitute a substantial fraction of the soil‐soluble N pool. Short‐term excised root uptake experiments were performed using tillers grown hydroponically under controlled conditions in the field. The percentage reductions in ammonium uptake at moderate salinity (150 mm NaCl) compared with uptake at low salinity (50 mm NaCl) were double those of glycine, but glycine uptake was more adversely affected than ammonium uptake by low temperatures. Glycine uptake was higher at pH 5·7 than at pH 7·0 or 8·2. The glycine uptake was up‐regulated in response to glycine, whereas ammonium uptake was up‐regulated in response to ammonium starvation. Nitrate uptake was strongly down‐regulated when tillers were grown on either ammonium or glycine. In contrast to N‐starved roots, which absorbed ammonium ions more rapidly than glycine, the roots grown on glycine, ammonium and nitrate and not N‐starved prior to uptake absorbed glycine as rapidly as ammonium and nitrate ions combined. Overall, the results indicate that amino acids are probably an important source of nitrogen for P. phryganodes in Arctic coastal marshes.  相似文献   

10.
In numerous locations in Europe spruce trees are exposed to high loads of nitrogen. The present study was performed to characterize the distribution of nitrogen compounds under these conditions. For this purpose Norway spruce ( Picea abies [L.] Karst.) trees were cultivated under close-to-natural conditions of a forest understory in soil from an apparently nitrogen-limited field site in the Black Forest either with, or without supplementation of nitrogen as ammonium nitrate. After 11 and 20 months, growth, total nitrogen contents of the biomass, and total soluble non-proteinogenic nitrogen compounds (TSNN, i.e. nitrate, ammonium, soluble proteinogenic and non-proteinogenic amino compounds) in needles, xylem sap and phloem exudate were analysed. After 20 months of growth, N-fertilization had slightly enhanced the biomass of current-, but not of 1-year-old shoots. At both harvests, total N-content of 1-year-old needles was increased by N-fertilization, whereas current-year needles were not significantly affected. By contrast, TSNN was elevated by N-fertilization in both current-year and 1-year-old needles. The increase in TSNN was mainly attributed to an accumulation of arginine. Xylem sap analysis showed that the increase in TSNN of the needles was a consequence of enhanced nitrogen assimilation of the roots rather than the shoot. Since also TSNN in phloem exudates was enhanced, it appears that N-fertilization elevates the cycling pool of amino compounds in young Norway spruce trees. However, this pool seems to be subject to metabolic interconversion, since mainly glutamine and aspartate are transported in the xylem from the roots to the shoot, but arginine accumulated in the needles and the phloem.  相似文献   

11.
Nitrogen assimilation in citrus trees   总被引:1,自引:0,他引:1  
Assimilation of 15N-ammonium and 15N-nitrate was examined in 3-year-old satsuma mandarin (Citrus unshiu Marcovitch) trees. Experiments were designed to establish the time course of incorporation of nitrogen just taken up into amino compounds. In fine roots, absorbed 15N-ammonium was actively incorporated into glutamine and then into glutamic acid and asparagine. When feeding 15N-nitrate, glutamic acid and asparagine were actively synthesized, but glutamine synthesis was comparatively low as compared with that in ammonium feeding. In current leaves and fruits, a clear difference in the labelling patterns of amino acids was found between the ammonium and nitrate feedings. The amino acid most markedly labelled was asparagine in the ammonium feeding and glutamine in the nitrate feeding. Considering the most heavily labelled component in leaves and fruits, the main form of the nitrogen components transported upward in the xylem was discussed.  相似文献   

12.
Radin JW 《Plant physiology》1975,55(2):178-182
The induction of nitrate reductase activity in root tips of cotton (Gossypium hirsutum L.) was regulated by several amino acids and by ammonium. Glycine, glutamine, and asparagine strongly inhibited induction of activity by nitrate and also decreased growth of sterile-cultured roots on a nitrate medium. Methionine, serine, and alanine weakly inhibited induction, and 11 other amino acids had little or no effect. Ammonium also decreased induction in root tips, but was most effective only at pH 7 or higher. The optimum conditions for ammonium regulation of induction were identical to those for growth of sterile-cultured roots on ammonium as the sole nitrogen source. Aspartate and glutamate strongly stimulated induction, but several lines of evidence indicated that the mechanism of this response was different from that elicited by the other amino acids. The effects of amino acids on induction appeared to be independent of nitrate uptake.  相似文献   

13.
Young apple trees ( Malus pumila Mill. cv. Cox's Orange Pippin) given nitrogen either at or 40 days after bud-break were kept at a root temperature of 6, 18 or 30°C under otherwise constant conditions. Twelve weeks after the start of the experiment leaves from successive shoot segments and roots were collected and in most cases analysed to assess total nitrogen, protein nitrogen, and the main amides and amino acids. The percentage composition of the amino-nitrogen fraction of the roots was not or was hardly at all affected by the treatments; asparagine predominated, followed by arginine. In contrast, in the leaves the share of arginine dropped from about 90% at 6°C to about 30% at 30°C in favour of especially asparagine. This pattern was mainly attributable to the situation in the basal sections of the shoot. In the middle and top segments the temperature effects were small. In general, a high level of amino nitrogen corresponded to a high contribution of arginine. Soluble nitrogen was higher after the late than after the early application of nitrogen. Shoot growth was reduced at 6°C root temperature, but little difference was seen between 18 and 30°C. It was concluded that with respect to nitrogen metabolism roots and shoots function more or less independently of each other. The hypothesis that the roots affect leaf nitrogen metabolism via the supply of growth substances produced in the roots, presumably cytokinins, is discussed.  相似文献   

14.
Utilization of assimilates for growth and maintenance of tops and roots of Lolium multiflorum was determined for plants supplied with either nitrate or ammonium. Carbon dioxide exchange rates were measured continuously for tops and roots separately. Three-day periods were applied for two irradiation levels. On the last day of each three-day period no nitrogen was supplied to the two treatments. In the nitrate treatment, the coefficient of utilization for converting assimilates into constructive growth (YG) remained unaffected in absence of nitrate. However, in absence of nitrate the maintenance respiration (M) for both tops and roots was only one third of that in presence of nitrate. In the treatment with ammonium the maintenance respiration of the plants was not influenced by the absence of ammonium. However, especially for the tops YG increased in absence of ammonium. In both the treatments, growth respiration of the roots was inefficient compared to that of the tops. Only in the case of absence of nitrate, maintenance respiration of the roots was similar to that of the tops.  相似文献   

15.
Total activities of nitrate and nitrite reductases were higher in 4 to 20 day old maize plants in the leaves than in the roots. The ratio of activities found in the leaves and in the roots respectively was much higher in the case of nitrate reductase than in the case of nitrite reductase. On the other hand higher glutamate dehydrogenase activity in the roots than in the leaves clearly indicates that the roots play a more important role in the assimilation of ammonium than in the assimilation of nitrate. When comparing the distribution of seminal and nodal adventitious roots of maize seedlings with the assimilation of inorganic nitrogen on the basis of enzyme levels, it could be deduced that during the first 20 days of seedling growth seminal roots were more involved in the assimilation of nitrate whereas nodal adventitious roots were more active in ammonium assimilation.  相似文献   

16.
We studied the response of maize (Zea mays L. cv. Anjou 256)to a simultaneous, but separated supply of ammonium and nitrate(localized supply, LS). A split-root system was used to supplyhalf of the roots with ammonium and the other half with nitrate.A homogeneously distributed supply of both nitrogen forms (HS)was the control treatment. Seedlings were grown for 12 d fromthe two-leaf to the three-leaf stage in hydroponics at threepH levels (4, 5·5 and 7). The total N concentration was3 mol m-3. The split-root system was established by removingthe seminal root system and using only four nodal roots perplant. Total root length and root surface area were recordedautomatically with a modified Delta- T area meter. Other morphologicalroot traits (such as main axis length and diameter, number,density, and length of laterals) were recorded manually. Uptakeof ammonium and nitrate was measured by the depletion of thenutrient solution. As compared with LS, HS was superior in shootand root DM, total root length and root surface area, ammoniumand nitrate uptake and shoot nitrogen concentration, irrespectiveof pH level. This indicates that, also under field conditions,mixed ammonium and nitrate fertilization is only beneficialto plant growth if both N forms are evenly distributed in thesoil. At both HS and LS, ascending pH increased the ammonium:nitrateuptake ratio. At LS, declining pH induced a considerable shiftin the distribution of root DM, root length, and root surfacearea the nitrate-fed compartment.Copyright 1993, 1999 AcademicPress Maize, Zea may L., ammonium, nitrate, pH, root morphology, split-root  相似文献   

17.
The concentration of free amino acids and total nitrogen was studied in needles, stems and roots of seedlings of Pinus sylvestris L. for five weeks during the second growth period ("summer"). In one group of seedlings the source/sink relation was disturbed through removal of the terminal buds. The seedlings were cultivated in artificial year-cycles in a climate chamber.
Total nitrogen increased in needles and sterns of intact seedlings in the beginning of the "summer" and decreased during shoot growth. In seedlings, from which the buds had been removed, nitrogen remained at high levels in the primary needles and accumulated in steins and roots. The results are consistent with utilization of nitrogen in older needles and in the stem during shoot elongation.
The pool of free amino acids increased in the beginning of the "summer" and decreased after bud break in primary needles, stems and roots. Arginine and glutamine, in the roots also asparagine, were the dominating amino acids (amides included). Together, these compounds (plus glutamate and aspartate) contributed about 90% of the nitrogen in the amino acid pool in all organs. In primary needles and in the stem, arginine predominated at the end of hardening (75–85% of the amino acid nitrogen). Free amino acids contributed at most ca 10% of the total nitrogen in primary needles, where the ratio of free amino acid nitrogen: total nitrogen was highest at the end of dormancy and in the early "summer". Free amino acids accumulated after bud removal in primary needles and especially in stems and roots. Glutamine became relatively more dominant than arginine in the different organs.
The observations are consistent with the role of arginine and glutamine for storage and transport of nitrogen in conifers. Because of the low concentrations of amino acid nitrogen in the primary needles, arginine is not considered a major nitrogen reserve in needles of Scots pine seedlings.  相似文献   

18.
With the aims (1) to test whether the different natural occurrence of twoPlantago species in grasslands is explained by a different preference of the species for nitrate or ammonium; (2) to test whether the different occurrence is explained by differences in the flexibility of the species towards changes in the nitrogen form; (3) to find suitable parameters as a tool to study ammonium and nitrate utilization of these species at the natural sites in grasslands, plants ofPlantago lanceolata andP. major ssp.major were grown with an abundant supply of nitrate, ammonium or nitrate+ammonium as the nitrogen source (0.5 mM). The combination of ammonium and nitrate gave a slightly higher final plant weight than nitrate or ammonium alone. Ammonium lowered the shoot to root ratio inP. major. Uptake of nitrate per g root was faster than that of ammonium, but from the mixed source ammonium and nitrate were taken up at the same rate. In vivo nitrate reductase activity (NRA) was present in both shoot and roots of plants receiving nitrate. When ammonium was applied in addition to nitrate, NRA of the shoot was not affected, but in the root the activity decreased. Thus, a larger proportion of total NRA was present in the shoot than with nitrate alone. In vitro glutamate dehydrogenase activity (GDHA) was enhanced by ammonium, both in the shoot and in the roots.In vitro glutamine synthetase activity (GSA) was highest in roots of plants receiving ammonium. Both GDHA and GSA were higher inP. lanceolata than inP. major. The concentration of ammonium in the roots increased with ammonium, but it did not accumulate in the shoot. The concentration of amino acids in the roots was also enhanced by ammonium. Protein concentration was not affected by the form of nitrogen. Nitrate accumulated in both the shoot and the roots of nitrate grown plants. When nitrate in the solution was replaced by ammonium, the nitrate concentration in the roots decreased rapidly. It also decreased in the shoot, but slowly. It is concluded that the nitrogen metabolism of the twoPlantago species shows a similar response to a change in the form of the nitrogen source, and that differences in natural occurrence of these species are not related to a differential adaptation of nitrogen metabolism towards the nitrogen form. Suitable parameters for establishing the nitrogen source in the field are thein vivo NRA, nitrate concentrations in tissues and xylem exudate, and the fraction of total reduced nitrogen in the roots that is in the soluble form, and to some extent thein vitro GDHA and GSA of the roots. Grassland Species Research Group. Publ. no 118.  相似文献   

19.
合理施肥对保障土壤质量和粮食安全具有重要作用。有机肥促进土壤生物群落的发展已被认为是其优于化肥的重要方面, 然而有机肥影响下的土壤生物群落对作物生长的贡献却了解甚少。了解土壤生物因素对作物抗虫性的贡献不仅可以揭示施肥影响土壤功能的生物调控机制, 而且有助于制定土壤-作物的综合管理措施。本研究采集长期施用有机肥和化肥的水稻土, 通过制备灭活与否的土壤悬液, 在砂培条件下探究土壤生物群落对水稻生长及其抗虫性的影响。结果显示, 土壤生物群落和施肥措施均极显著地影响了土壤养分含量(P < 0.01)。土壤生物的存在降低了土壤铵态氮含量、水稻生物量、茎叶全氮含量以及褐飞虱(Nilaparvata lugens)生物量; 增加了土壤硝态氮含量、水稻的根冠比及水稻根系全氮、可溶性糖以及酚类含量(P < 0.05); 同时, 有机肥处理的土壤生物群落还能够促进水稻茎叶可溶性糖和酚类的合成。接入褐飞虱后, 土壤生物群落的存在显著降低了水稻整体的全氮含量, 促进了酚类的合成(P < 0.05)。研究结果表明, 土壤生物群落, 尤其是有机肥处理的土壤生物群落, 主要通过改变水稻养分向地下部的分配格局、增加根冠比、促进防御性代谢物质(如酚类)的合成来提高水稻地上部对害虫的 抗性。  相似文献   

20.
Summary The effect of ammonium, nitrate, and organic nitrogen on growth and sporulation of 18 Aspergilli was examined in a chemically defined medium in surface culture under controlled conditions. All three forms of nitrogen were metabolized by all the Aspergilli tested. Ammonium nitrogen was not good both for growth and fruiting. This was due to the sharp fall in the pH level which resulted due to the rapid utilization of anions of the ammonium nitrogen than cations. The effect of adding succinic acid in the medium containing ammonium nitrogen has been discussed.Good growth of Aspergilli in media containing nitrate nitrogen with the accompanying rise in the pH of the medium showed that these species are capable of reducing nitrate nitrogen to the level of ammonia. The role of succinic acid in the utilization of nitrate nitrogen was investigated. All fungi accomplished good growth on a medium containing asparagine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号