首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper reports the first cytogenetic study of the two closely related species of noctuid moths, Spodoptera latifascia and S. descoinsi. Chromosomes were prepared using a spreading technique on warm slides. Both gonads and larval brains, which are innovating in the Lepidoptera, were used. Out of 100 specimens observed, 35 showed mitotic metaphases, which allowed chromosomes to be counted. For both species and F1 hybrids, the diploid chromosome number was 2n = 62. The chromosomes of the two species appeared dot-shaped, more rarely rod-shaped, showing little variation in size or morphology. The preparations from larval brains also suggested the existence of two levels of ploidy (haploidy and diploidy) in some nuclei. This result will need further investigation. For the first time in the Lepidoptera, in situ hybridization with Drosophila rDNA as a probe was carried out on S. latifascia and S. descoinsi. It revealed the presence of nucleolar organizing regions located at the distal part of one chromosome pair. Though no sophisticated characterization of S. latifascia and S. descoinsi was possible, it seemed that there was no major chromosomal difference. No karyotypic element could be identified as being involved in reproductive isolation between the two species.  相似文献   

3.
A species-specific RNA colony blot hybridization protocol was developed for enumeration of culturable Vibrio cholerae and Vibrio mimicus bacteria in environmental water samples. Bacterial colonies on selective or nonselective plates were lysed by sodium dodecyl sulfate, and the lysates were immobilized on nylon membranes. A fluorescently labeled oligonucleotide probe targeting a phylogenetic signature sequence of 16S rRNA of V. cholerae and V. mimicus was hybridized to rRNA molecules immobilized on the nylon colony lift blots. The protocol produced strong positive signals for all colonies of the 15 diverse V. cholerae-V. mimicus strains tested, indicating 100% sensitivity of the probe for the targeted species. For visible colonies of 10 nontarget species, the specificity of the probe was calculated to be 90% because of a weak positive signal produced by Grimontia (Vibrio) hollisae, a marine bacterium. When both the sensitivity and specificity of the assay were evaluated using lake water samples amended with a bioluminescent V. cholerae strain, no false-negative or false-positive results were found, indicating 100% sensitivity and specificity for culturable bacterial populations in freshwater samples when G. hollisae was not present. When the protocol was applied to laboratory microcosms containing V. cholerae attached to live copepods, copepods were found to carry approximately 10,000 to 50,000 CFU of V. cholerae per copepod. The protocol was also used to analyze pond water samples collected in an area of cholera endemicity in Bangladesh over a 9-month period. Water samples collected from six ponds demonstrated a peak in abundance of total culturable V. cholerae bacteria 1 to 2 months prior to observed increases in pathogenic V. cholerae and in clinical cases recorded by the area health clinic. The method provides a highly specific and sensitive tool for monitoring the dynamics of V. cholerae in the environment. The RNA blot hybridization protocol can also be applied to detection of other gram-negative bacteria for taxon-specific enumeration.Vibrio cholerae is autochthonous to the aquatic environment, but some strains produce enterotoxins and are capable of causing epidemics of the human disease cholera. Strains of V. cholerae are classified by their O antigen, with over 210 serogroups recognized to date. Seven cholera pandemics have occurred since 1832: while microbiologic data on the earlier pandemics are not available, the last two are known to have been caused by strains within serogroup O1, with the major pathogenic factor being production of cholera toxin. The genes encoding cholera toxin and other pathogenic factors have been shown to reside in a mobile genetic element of phage origin, designated CTXΦ (20).Standard microbiologic methods for isolation of V. cholerae present in natural waters rely primarily on a method originally developed for clinical diagnosis, namely, enrichment in alkaline peptone water, followed by subculture on selective media and confirmation using selected biochemical and immunological tests (7). The alkaline nature of the enrichment broth allows differential multiplication of Vibrio species but renders this method inappropriate for enumeration. PCR methods and oligonucleotide hybridization have been used to detect and enumerate toxigenic V. cholerae bacteria (3, 11, 12, 14, 15, 21). These methods typically rely on amplification of or hybridization to pathogenic markers, such as O1/O139 wbe, tcpA, and ctxA DNA sequences.However, occasional localized outbreaks of cholera have been caused by non-O1, non-O139 V. cholerae, which may be toxigenic or nontoxigenic. Conversely, many environmental V. cholerae O1 strains isolated from areas of endemicity do not harbor ctx genes (9). It has also been shown that CTXΦ is capable of lysogenic conversion of strains that are CTXΦ negative (20). Additionally, the cholera toxin (CTX) prophage has also been detected in clinical strains of V. mimicus, and V. mimicus has been proposed as a natural reservoir for CTXΦ (2). Furthermore, ecological studies of V. cholerae are often hampered by the fact that toxigenic strains represent only a small percentage of the total V. cholerae population in the environment, especially in areas where cholera is not endemic. These facts underline the need for a method of detection of the total number of V. cholerae bacteria present in environmental samples.The many copies of 16S rRNA molecules in each V. cholerae cell offer appropriate targets for species-specific enumeration. In this study, the probe Vchomim1276, previously described by Heidelberg et al. (4-6), was employed in an RNA colony blot hybridization protocol. The specificity and sensitivity of the probe were tested using type strains and environmental and clinical isolates. The method was evaluated using laboratory microcosms to which cells of V. cholerae were added, and the protocol was used to enumerate V. cholerae bacteria in samples collected from ponds in a region of cholera endemicity in Bangladesh.  相似文献   

4.
AIMS: To determine the host range of the Vibrio harveyi myovirus-like bacteriophage (VHML) and the cholera toxin conversion bacteriophage (CTX Phi) within a range of Vibrio cholerae and V. mimicus and V. harveyi, V. cholerae and V. mimicus isolates respectively. METHODS AND RESULTS: Three V. harveyi, eight V. cholerae and five V. mimicus isolates were incubated with VHML and CTX Phi. Polymerase chain reaction (PCR) was used to determine the presence of VHML and CTX Phi in infected isolates. We demonstrated that it was possible to infect one isolate of V. cholerae (isolate ACM #2773/ATCC #14035) with VHML. This isolate successfully incorporated VHML into its genome as evident by positive PCR amplification of the sequence coding part of the tail sheath of VHML. Attempts to infect all other V. cholerae and V. mimicus isolates with VHML were unsuccessful. Attempts to infect V. cholerae non-01, V. harveyi and V. mimicus isolates with CTX Phi were unsuccessful. CONCLUSIONS: Bacteriophage infection is limited by bacteriophage-exclusion systems operating within bacterial strains and these systems appear to be highly selective. One system may allow the co-existence of one bacteriophage while excluding another. VHML appears to have a narrow host range which may be related to a common receptor protein in such strains. The lack of the vibrio pathogenicity island bacteriophage (VPI Phi) in the isolates used in this study may explain why infections with CTX Phi were unsuccessful. SIGNIFICANCE AND IMPACT OF THE STUDY: The current study has demonstrated that Vibrio spp. bacteriophages may infect other Vibrio spp.  相似文献   

5.
Vibrio cholerae, the causative agent of cholera, is endemic in many parts of the world, especially in countries poor in resources. Molecular subtyping of V. cholerae is useful to trace the regional spread of a clone or multidrug-resistant strains during outbreaks of cholera. Current available PCR-based fingerprinting methods such as Random Amplified Polymorphic DNA (RAPD)-PCR, Enterobacterial Repetitive Intergenic Consensus Sequence (ERIC)-PCR, and Repetitive Extragenic Palindromic (REP)-PCR were used to subtype V. cholerae. However, there are problems for inter-laboratory comparison as these PCR methods have their own limitations especially when different PCR methods have been used for molecular typing. In this study, a Vibrio cholerae Repeats-PCR (VCR-PCR) approach which targets the genetic polymorphism of the integron island of Vibrios was used and compared with other PCR-based fingerprinting methods in subtyping. Forty-three V. cholerae of different serogroups from various sources were tested. The PCR-fingerprinting approaches were evaluated on typeability, reproducibility, stability and discriminatory power. Overall, Malaysian non-O1/non-O139 V. cholerae were more diverse than O1 strains. Four non-O1/non-O139 strains were closely related with O1 strains. The O139 strain in this study shared similarity with strains of both O1 and non-O1/non-O139 serogroups. ERIC-PCR was the most discriminative approach (D value = 0.996). VCR-PCR was useful in discriminating non-O1/non-O139 strains. RAPD-PCR and REP-PCR were less suitable for efficient subtyping purposes as they were not reproducible and lacked stability. The combination of the ERIC-PCR and VCR-PCR may overcome the inadequacy of any one approach and hence provide more informative data.  相似文献   

6.
枯草芽孢杆菌近缘种群鉴定方法研究进展   总被引:10,自引:1,他引:10  
枯草芽孢杆菌近缘种群(简称枯草群)是一群表型相似的革兰氏阳性、产芽孢的杆菌,目前该群已包括10个有效发表种。该群细菌广泛应用于生物技术、工业和农业等领域,因此实现菌株的快速准确鉴别与鉴定,确保其使用的安全性和有效性是首要条件。本文在本研究室进行的枯草群鉴定研究基础上,总结提出了基于形态和生化特性测定的传统经典方法和以分子生物学技术为基础的基因序列分析技术、特异PCR技术,并在实践上进行了大量的验证,对指导该种群的准确鉴定与快速鉴别具有重要应用价值。  相似文献   

7.
Vibrio cholerae identification based on molecular sequence data has been hampered by a lack of sequence variation from the closely related Vibrio mimicus. The two species share many genes coding for proteins, such as ctxAB, and show almost identical 16S DNA coding for rRNA (rDNA) sequences. Primers targeting conserved sequences flanking the 3' end of the 16S and the 5' end of the 23S rDNAs were used to amplify the 16S-23S rRNA intergenic spacer regions of V. cholerae and V. mimicus. Two major (ca. 580 and 500 bp) and one minor (ca. 750 bp) amplicons were consistently generated for both species, and their sequences were determined. The largest fragment contains three tRNA genes (tDNAs) coding for tRNAGlu, tRNALys, and tRNAVal, which has not previously been found in bacteria examined to date. The 580-bp amplicon contained tDNAIle and tDNAAla, whereas the 500-bp fragment had single tDNA coding either tRNAGlu or tRNAAla. Little variation, i.e., 0 to 0.4%, was found among V. cholerae O1 classical, O1 El Tor, and O139 epidemic strains. Slightly more variation was found against the non-O1/non-O139 serotypes (ca. 1% difference) and V. mimicus (2 to 3% difference). A pair of oligonucleotide primers were designed, based on the region differentiating all of V. cholerae strains from V. mimicus. The PCR system developed was subsequently evaluated by using representatives of V. cholerae from environmental and clinical sources, and of other taxa, including V. mimicus. This study provides the first molecular tool for identifying the species V. cholerae.  相似文献   

8.
In this study, we demonstrated that analyzed strains of Vibrio mimicus and Vibrio cholerae could be separated in two groups by using multilocus enzyme electrophoresis (MEE) data from 14 loci. We also showed that the combination of four enzymatic loci enables us to differentiate these two species. Our results showed that the ribosomal intergenic spacer regions PCR-mediated identification system failed, in some cases, to differentiate between V. mimicus and V. cholerae. On the other hand, MEE proved to be a powerful molecular tool for the discrimination of these two species even when atypical strains were analyzed.  相似文献   

9.
Fluid accumulation at 4 h in the intestines of suckling mice enabled us to distinguish non-O-1 Vibrio cholerae, V. mimicus, and V. fluvialis clinical isolates from environmental isolates. Enterotoxin production was culture medium dependent. Filtrates of cultures grown in tryptic soy broth without glucose but with added 0.5% NaCl did not exhibit marked enterotoxin activity in the assay. Culture filtrates of all clinical strains grown in brain heart infusion broth supplemented with 0.5% NaCl induced large amounts of fluid accumulation in mouse intestines. However, most environmental strains grown in brain heart infusion broth amended as described above were unable to induce fluid accumulation. The enterotoxin present in culture filtrates lost activity at 56 degrees C and appeared to be distinct from previously described virulence factors, including the well-described cholera toxin. The new enterotoxin could represent an important virulence mechanism common to all three species.  相似文献   

10.
In this study, we demonstrated that analyzed strains of Vibrio mimicus and Vibrio cholerae could be separated in two groups by using multilocus enzyme electrophoresis (MEE) data from 14 loci. We also showed that the combination of four enzymatic loci enables us to differentiate these two species. Our results showed that the ribosomal intergenic spacer regions PCR-mediated identification system failed, in some cases, to differentiate between V. mimicus and V. cholerae. On the other hand, MEE proved to be a powerful molecular tool for the discrimination of these two species even when atypical strains were analyzed.  相似文献   

11.
Monoclonal antibodies reacting with the B subunit of Vibrio cholerae O1 strain 569B cholera toxin (CT-B) were used to identify unique and common epitopes of V. cholerae non-O1 and Vibrio mimicus CT-B. Vibrio cholerae non-O1 strains produced CT-B showing three monoclonal antibody reaction patterns (epitypes), which corresponded with epitypes described previously for V. cholerae O1 classical biotype CT-B (CT1), El Tor biotype CT-B (CT2), and a unique V. cholerae non-O1 CT-B (CT3), which lacked an epitope located in or near the GM1 ganglioside binding site of 569B CT-B. Vibrio mimicus CT-B was immunologically indistinguishable from 569B CT-B. These and previous results define six epitopes on 569B CT-B, and a fourth epitope in or near the GM1 ganglioside binding site.  相似文献   

12.
We have examined the effect of complete cell recycle on the production of cholera toxin (CT) by Vibrio cholerae and CT-like toxin by Vibrio mimicus in continuous culture fermentations. Complete cell recycle was obtained by filtering culture fluids through Amicon hollow fibers with an exclusion limit of 100,000 daltons (H1P100-20) and returning the concentrated cell slurry to the fermentor. A single 1-liter laboratory fermentor system modified with this recycle loop was capable of producing over 20 liters of cell-free culture filtrate per day. Toxin production in this system was compared with yields obtained in traditional continuous cultures and in shake flask cultures. Yields of CT from V. cholerae 569B in the recycle fermentor were highest at the highest dilution rate employed (1.0 vol/vol per h). The use of complete cell recycle dramatically increased yields over those obtained in continuous culture and equaled those obtained in shake flasks. The concentration of CT in the filtrate was slightly less than half of that measured in culture fluids sampled at the same time. Similarly, V. mimicus 61892 grown in the presence of 50 micrograms of lincomycin per ml produced 280 ng of CT per ml in the recycle fermentor, compared with 210 ng/ml in shake flasks under optimal conditions. The sterile filtrate from this fermentation contained 110 ng/ml.  相似文献   

13.
Integrons confer a rapid adaptation capability to bacteria. Integron integrases are able to capture and shuffle novel functions embedded in cassettes. Here, we investigated cassette recruitment in the Vibrio cholerae chromosomal integron during horizontal transfer. We demonstrated that the endogenous integrase expression is sufficiently triggered, after SOS response induction mediated by the entry of cassettes during conjugation and natural transformation, to mediate significant cassette insertions. These insertions preferentially occur at the attIA site, despite the presence of about 180 attC sites in the integron array. Thanks to the presence of a promoter in the attIA site vicinity, all these newly inserted cassettes are expressed and prone to selection. We also showed that the RecA protein is critical for cassette recruitment in the V. cholerae chromosomal integron but not in mobile integrons. Moreover, unlike the mobile integron integrases, that of V. cholerae is not active in other bacteria. Mobile integrons might have evolved from the chromosomal ones by overcoming host factors, explaining their large dissemination in bacteria and their role in antibioresistance expansion.  相似文献   

14.
Abstract The presence of the zonula occludens toxin (ZOT) gene, which encodes an enterotoxin produced by serotype O1 strains of the pathogenic bacterium, Vibrio cholerae , in addition to cholera toxin, was investigated in selected strains of V. mimicus and the new pandemic V. cholerae non-O1 serotype O139. The zot gene was detected by polymerase chain reaction (PCR) amplification, using sets of primers based on the sequence of the V. cholerae O1 zot sequence. PCR amplification of genomic DNAs of both cholera toxin gene ( ctx ) positive and ctx strains of V. mimicus detected the presence of zot gene. An Acc -I- Eco RV V. cholerae zot gene fragment designed to overlap PCR products was used as a probe. Southern hybridization studies confirmed that the PCR fragments from V. mimicus and V. cholerae O139 were strongly homologous to the V. cholerae O1 zot gene. The zot gene was found with 3 to 5 strains of V. mimicus of which only one strain harbored the ctx gene. The presence of a zot gene in ctx toxigenic V. mimicus indicates a possible role of ZOT in the toxigenicity of this species. We conclude that, in addition to ctx, V. mimicus and V. cholerae O139 have the potential to produce ZOT.  相似文献   

15.
16.
We have examined the effect of complete cell recycle on the production of cholera toxin (CT) by Vibrio cholerae and CT-like toxin by Vibrio mimicus in continuous culture fermentations. Complete cell recycle was obtained by filtering culture fluids through Amicon hollow fibers with an exclusion limit of 100,000 daltons (H1P100-20) and returning the concentrated cell slurry to the fermentor. A single 1-liter laboratory fermentor system modified with this recycle loop was capable of producing over 20 liters of cell-free culture filtrate per day. Toxin production in this system was compared with yields obtained in traditional continuous cultures and in shake flask cultures. Yields of CT from V. cholerae 569B in the recycle fermentor were highest at the highest dilution rate employed (1.0 vol/vol per h). The use of complete cell recycle dramatically increased yields over those obtained in continuous culture and equaled those obtained in shake flasks. The concentration of CT in the filtrate was slightly less than half of that measured in culture fluids sampled at the same time. Similarly, V. mimicus 61892 grown in the presence of 50 micrograms of lincomycin per ml produced 280 ng of CT per ml in the recycle fermentor, compared with 210 ng/ml in shake flasks under optimal conditions. The sterile filtrate from this fermentation contained 110 ng/ml.  相似文献   

17.
Satellite sequences of the VicTR-B family are specific for the genus Vicia (Leguminosae), but their abundance varies among the species, being the highest in Vicia sativa and Vicia grandiflora. In this study, we have sequenced multiple randomly cloned VicTR-B fragments from these two species and analyzed their sequence variability, periodicity, and chromosomal localization. We have found that V. sativa VicTR-B sequences are homogeneous with respect to their nucleotide sequences and periodicity (monomers of 38 bp), whereas V. grandiflora repeats are considerably more variable, occurring in at least four distinct sequence subfamilies. Although the periodicity of 38 bp was conserved in most of the V. grandiflora sequences, one of the subfamilies was composed of higher-order repeats of 186 bp, which originated from a pentamer of the basic repeated unit. Individual VicTR-B subfamilies were preferentially located in either intercalary or subtelomeric regions of chromosomes. Interestingly, two V. grandiflora subfamilies with the highest similarity to V. sativa VicTR-B sequences were located in intercalary heterochromatic bands, showing similar chromosomal distribution as the majority of VicTR-B repeats in V. sativa. The other two V. grandiflora subfamilies showing a considerable divergence from V. sativa sequences were found to be accumulated at subtelomeric regions of V. grandiflora chromosomes.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.Communicated by I. Schubert  相似文献   

18.
Twelve isolates of Pythium species (P. aphanidermatum, P. deliense, P. ultimum var. ultimum and P. ultimum var. sporangiiferum) from different hosts were compared from morphological, pathological and molecular viewpoints. Minimum, optimum and maximum temperatures of P. aphanidermatum and P. deliense were similar while those of P. ultimum var. ultimum and P. ultimum var. sporangiiferum were also similar. All tested isolates were highly virulent against cucumber seedlings with 100% damping-off. RAPD data using three different primers revealed that strains of P. ultimum var. ultimum and P. ultimum var. sporangiiferum are distinct from each other. This data can be used to separate those species from P. aphanidermatum and P. deliense. In contrast, RAPD data cannot be used to separate P. aphanidermatum and P. deliense. Sequence analysis of the ribosomal DNA internal transcribed spacers (ITS) was used to establish phylogenetic relationships among the tested isolates.  相似文献   

19.
20.
Vibrio cholerae O1 Amazonia is a pathogen that was isolated from cholera-like diarrhea cases in at least two countries, Brazil and Ghana. Based on multilocus sequence analysis, this lineage belongs to a distinct profile compared to strains from El Tor and classical biotypes. The genomic analysis revealed that it contains Vibrio pathogenicity island 2 and a set of genes related to pathogenesis and fitness, such as the type VI secretion system, present in choleragenic V. cholerae strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号