首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the isolation of a novel human gene, NSD1, from the 5q35 breakpoint of t(5;8)(q35; q24.1) in a patient with Sotos syndrome, and NSD1 mutation analysis. Of 112 (95 Japanese and 17 non-Japanese) patients analyzed, 16 (14%) had a heterozygous NSD1 point mutation (10 protein truncation types and six missense types) and 50 (45%) a approximately 0.7-Mb microdeletion involving NSD1. The results indicated that haploinsufficiency of NSD1 is the major cause of Sotos syndrome, and NSD1 plays a role in growth and brain development in humans. Detailed clinical examinations provided a genotype-phenotype correlation in Sotos syndrome, i.e. in patients with deletions, overgrowth is less obvious and mental retardation is more severe than in those with point mutations, and major anomalies were exclusively seen in the former. The results also indicated that Sotos syndrome due to a deletion falls into a contiguous gene syndrome, while Sotos syndrome due to an NSD1 point mutation is a single gene defect, occasionally with an autosomal dominant mode of inheritance. The genomic structure around the deleted and flanking regions revealed the presence of two sets of low copy repeats through which the microdeletion in Sotos syndrome is mediated.  相似文献   

2.
Sotos syndrome is a developmental disorder characterized by a suite of clinical features. In children, the three cardinal features of Sotos syndrome are a characteristic facial appearance, learning disability and overgrowth (height and/or head circumference > 2 SDs above average). These features are also evident in adults with this syndrome. Over 90% of Sotos syndrome patients are haploinsufficient for the gene encoding nuclear receptor‐binding Su(var)3‐9, Enhancer‐of‐zesteand Trithorax domain‐containing protein 1 (NSD1). NSD1 is a histone methyltransferase that catalyzes the methylation of lysine residue 36 on histone H3. However, although the symptomology of Sotos syndrome is well established, many aspects of NSD1 biology remain unknown. Here, we assessed the expression of Nsd1 within the mouse brain, and showed a predominantly neuronal pattern of expression for this histone‐modifying factor. We also generated a mouse strain lacking one allele of Nsd1 and analyzed morphological and behavioral characteristics in these mice, showing behavioral characteristics reminiscent of some of the deficits seen in Sotos syndrome patients.  相似文献   

3.
We describe a girl with Sotos syndrome presenting at two and a half years age with developmental delay. She has camptodactyly which has not previously been reported in Sotos syndrome but is a common finding in Weaver syndrome. Both these conditions have been reported to have NSD1 gene mutations. This report is consistent with the conditions being allelic.  相似文献   

4.
Sotos syndrome is an overgrowth syndrome characterized by pre- and postnatal overgrowth, macrocephaly, advanced bone age, variable degrees of mental retardation, and typical facial features. Defects of the NSD1 gene account for >or=60% of cases of Sotos syndrome, whereas the disease-causing mechanism of other cases remains unknown. Beckwith-Wiedemann syndrome (BWS) is a distinct overgrowth condition characterized by macroglossia, abdominal-wall defects, visceromegaly, embryonic tumors, hemihyperplasia, ear anomalies, renal anomalies, and neonatal hypoglycemia. Deregulation of imprinted growth-regulatory genes within the 11p15 region is the major cause of BWS, whereas the molecular defect underlying a significant proportion of sporadic BWS cases remains unknown. Owing to clinical overlaps between the two syndromes, we investigated whether unexplained cases of Sotos syndrome could be related to 11p15 anomalies and, conversely, whether unexplained BWS cases could be related to NSD1 deletions or mutations. Two 11p15 anomalies were identified in a series of 20 patients with Sotos syndrome, and two NSD1 mutations were identified in a series of 52 patients with BWS. These results suggest that the two disorders may have more similarities than previously thought and that NSD1 could be involved in imprinting of the chromosome 11p15 region.  相似文献   

5.
Sotos syndrome is a childhood overgrowth syndrome characterized by a distinctive facial appearance, height and head circumference >97th percentile, advanced bone age, and developmental delay. Weaver syndrome is characterized by the same criteria but has its own distinctive facial gestalt. Recently, a 2.2-Mb chromosome 5q35 microdeletion, encompassing NSD1, was reported as the major cause of Sotos syndrome, with intragenic NSD1 mutations identified in a minority of cases. We evaluated 75 patients with childhood overgrowth, for intragenic mutations and large deletions of NSD1. The series was phenotypically scored into four groups, prior to the molecular analyses: the phenotype in group 1 (n=37) was typical of Sotos syndrome; the phenotype in group 2 (n=13) was Sotos-like but with some atypical features; patients in group 3 (n=7) had Weaver syndrome, and patients in group 4 (n=18) had an overgrowth condition that was neither Sotos nor Weaver syndrome. We detected three deletions and 32 mutations (13 frameshift, 8 nonsense, 2 splice-site, and 9 missense) that are likely to impair NSD1 functions. The truncating mutations were spread throughout NSD1, but there was evidence of clustering of missense mutations in highly conserved functional domains between exons 13 and 23. There was a strong correlation between presence of an NSD1 alteration and clinical phenotype, in that 28 of 37 (76%) patients in group 1 had NSD1 mutations or deletions, whereas none of the patients in group 4 had abnormalities of NSD1. Three patients with Weaver syndrome had NSD1 mutations, all between amino acids 2142 and 2184. We conclude that intragenic mutations of NSD1 are the major cause of Sotos syndrome and account for some Weaver syndrome cases but rarely occur in other childhood overgrowth phenotypes.  相似文献   

6.

Background

Research investigating cognition and behaviour in Sotos syndrome has been sporadic and to date, there is no published overview of study findings.

Method

A systematic review of all published literature (1964–2015) presenting empirical data on cognition and behaviour in Sotos syndrome. Thirty four journal articles met inclusion criteria. Within this literature, data relating to cognition and/or behaviour in 247 individuals with a diagnosis of Sotos syndrome were reported. Ten papers reported group data on cognition and/or behaviour. The remaining papers employed a case study design.

Results

Intelligence quotient (IQ) scores were reported in twenty five studies. Intellectual disability (IQ < 70) or borderline intellectual functioning (IQ 70–84) was present in the vast majority of individuals with Sotos syndrome. Seven studies reported performance on subscales of intelligence tests. Data from these studies indicate that verbal IQ scores are consistently higher than performance IQ scores. Fourteen papers provided data on behavioural features of individuals with Sotos syndrome. Key themes that emerged in the behavioural literature were overlap with ASD, ADHD, anxiety and high prevalence of aggression/tantrums.

Conclusion

Although a range of studies have provided insight into cognition and behaviour in Sotos syndrome, specific profiles have not yet been fully specified. Recommendations for future research are provided.  相似文献   

7.
Sotos syndrome with a balanced reciprocal translocation t(2;12)(q33.3;q15)   总被引:2,自引:0,他引:2  
A balanced reciprocal translocation, 46,XY, t(2;12), was detected in a male infant who had the characteristic features of Sotos syndrome. His father's karyotype was normal, but his mother and an older brother had the same chromosomal abnormality without a history or clinical features of Sotos syndrome.  相似文献   

8.
BACKGROUND: Deletions and mutations in the NSD1 gene are the major cause of Sotos syndrome. We wanted to evaluate the genotype-phenotype correlation in patients suspected of having Sotos syndrome and determine the best discriminating parameters for the presence of a NSD1 gene alteration. METHODS: Mutation and fluorescence in situ hybridization analysis was performed on blood samples of 59 patients who were clinically scored into 3 groups. Clinical data were compared between patients with and without NSD1 alterations. With logistic regression analysis the best combination of predictive variables was obtained. RESULTS: In the groups of typical, dubious and atypical Sotos syndrome, 81, 36 and 0% of the patients, respectively, showed NSD1 gene alterations. Four deletions were detected. In 23 patients (2 families) 19 mutations were detected (1 splicing defect, 3 non-sense, 7 frameshift and 8 missense mutations). The best predictive parameters for a NSD1 gene alteration were frontal bossing, down-slanted palpebral fissures, pointed chin and overgrowth. Higher incidences of feeding problems and cardiac anomalies were found. The parameters, delayed development and advanced bone age, did not differ between the 2 subgroups. CONCLUSIONS: In our patients suspected of having Sotos syndrome, facial features and overgrowth were highly predictive of a NSD1 gene aberration, whereas developmental delay and advanced bone age were not.  相似文献   

9.
Mechanisms predisposing to childhood overgrowth and cancer   总被引:1,自引:0,他引:1  
Several overgrowth conditions are believed to be associated with elevated risks of cancer, particularly in childhood. Beckwith-Wiedemann syndrome and Sotos syndrome are the most common overgrowth conditions, and both carry increased risks of certain tumors. In recent years, the identification of both the gene causing Sotos syndrome and the epigenetic subgroups underlying Beckwith-Wiedemann syndrome have enabled clarification of the cancer types and risks associated with these conditions. This has revealed striking differences in the cancer phenotypes associated with different molecular abnormalities. Elucidation of the mechanisms underlying cancer in overgrowth syndromes might yield important insights into the molecular basis of childhood tumors.  相似文献   

10.
We identified 266 individuals with intragenic NSD1 mutations or 5q35 microdeletions encompassing NSD1 (referred to as "NSD1-positive individuals"), through analyses of 530 subjects with diverse phenotypes. Truncating NSD1 mutations occurred throughout the gene, but pathogenic missense mutations occurred only in functional domains (P < 2 x 10(-16)). Sotos syndrome was clinically diagnosed in 99% of NSD1-positive individuals, independent of the molecular analyses, indicating that NSD1 aberrations are essentially specific to this condition. Furthermore, our data suggest that 93% of patients who have been clinically diagnosed with Sotos syndrome have identifiable NSD1 abnormalities, of which 83% are intragenic mutations and 10% are 5q35 microdeletions. We reviewed the clinical phenotypes of 239 NSD1-positive individuals. Facial dysmorphism, learning disability, and childhood overgrowth were present in 90% of the individuals. However, both the height and head circumference of 10% of the individuals were within the normal range, indicating that overgrowth is not obligatory for the diagnosis of Sotos syndrome. A broad spectrum of associated clinical features was also present, the occurrence of which was largely independent of genotype, since individuals with identical mutations had different phenotypes. We compared the phenotypes of patients with intragenic NSD1 mutations with those of patients with 5q35 microdeletions. Patients with microdeletions had less-prominent overgrowth (P = .0003) and more-severe learning disability (P = 3 x 10(-9)) than patients with mutations. However, all features present in patients with microdeletions were also observed in patients with mutations, and there was no correlation between deletion size and the clinical phenotype, suggesting that the deletion of additional genes in patients with 5q35 microdeletions has little specific effect on phenotype. We identified only 13 familial cases. The reasons for the low vertical transmission rate are unclear, although familial cases were more likely than nonfamilial cases (P = .005) to carry missense mutations, suggesting that the underlying NSD1 mutational mechanism in Sotos syndrome may influence reproductive fitness.  相似文献   

11.
Tall stature is less often experienced as an important problem than short stature. However, a correct diagnosis may be of eminent importance, especially when interventions are planned, or to know the natural history. Overgrowth can be caused by endocrine disorders and skeletal dysplasias, but also by several genetic syndromes. Despite a systematic diagnostic approach, there will be patients with tall stature who do not fit a known diagnosis. In this group of patients possibilities of genetic analysis do exist, but are not common practice. The FMR1 gene should be analyzed in patients with tall stature and mental retardation, and in these patients the NSD1 gene can be considered whenever some features of Sotos syndrome do exist. In tall patients without mental retardation and some features of Sotos or Beckwith-Wiedemann syndrome it may still be useful to look for mutations in the NSD1 gene, but also for changes in the 11p15 region. The various possibilities are discussed and placed in a flowchart.  相似文献   

12.
Two cases of cerebral gigantism occurring in related boys (cousins of 3rd degree) are discussed. It is difficult to argue from these cases in favour of a precise type of hereditary transmission. The hypothesis of a dominant trait with weak penetrance cannot be excluded. A genetic heterogeneity of the Sotos syndrome is very likely.  相似文献   

13.
Haploinsufficiency of the human 5q35 region spanning the NSD1 gene results in a rare genomic disorder known as Sotos syndrome (Sotos), with patients displaying a variety of clinical features, including pre- and postnatal overgrowth, intellectual disability, and urinary/renal abnormalities. We used chromosome engineering to generate a segmental monosomy, i.e., mice carrying a heterozygous 1.5-Mb deletion of 36 genes on mouse chromosome 13 (4732471D19Rik-B4galt7), syntenic with 5q35.2?Cq35.3 in humans (Df(13)Ms2Dja +/? mice). Surprisingly Df(13)Ms2Dja +/? mice were significantly smaller for their gestational age and also showed decreased postnatal growth, in contrast to Sotos patients. Df(13)Ms2Dja +/? mice did, however, display deficits in long-term memory retention and dilation of the pelvicalyceal system, which in part may model the learning difficulties and renal abnormalities observed in Sotos patients. Thus, haploinsufficiency of genes within the mouse 4732471D19Rik?CB4galt7 deletion interval play important roles in growth, memory retention, and the development of the renal pelvicalyceal system.  相似文献   

14.

Haploinsufficiency of the human 5q35 region spanning the NSD1 gene results in a rare genomic disorder known as Sotos syndrome (Sotos), with patients displaying a variety of clinical features, including pre- and postnatal overgrowth, intellectual disability, and urinary/renal abnormalities. We used chromosome engineering to generate a segmental monosomy, i.e., mice carrying a heterozygous 1.5-Mb deletion of 36 genes on mouse chromosome 13 (4732471D19Rik-B4galt7), syntenic with 5q35.2–q35.3 in humans (Df(13)Ms2Dja +/− mice). Surprisingly Df(13)Ms2Dja +/− mice were significantly smaller for their gestational age and also showed decreased postnatal growth, in contrast to Sotos patients. Df(13)Ms2Dja +/− mice did, however, display deficits in long-term memory retention and dilation of the pelvicalyceal system, which in part may model the learning difficulties and renal abnormalities observed in Sotos patients. Thus, haploinsufficiency of genes within the mouse 4732471D19RikB4galt7 deletion interval play important roles in growth, memory retention, and the development of the renal pelvicalyceal system.

  相似文献   

15.
The diagnostic approach to tall stature in children is based on collecting birth data (macrosomia), sizes and family puberty, a family history of constitutional or pathological tall stature, search for a delay of development, dysmorphia, disproportion, analysis of the growth velocity (normal or accelerated), general and pubertal assessment, and bone age. When there is psychomotor retardation, a family history of pathological tall stature, or a disproportion in the clinical examination, the genetic causes of tall stature will be mentioned. The most frequent causes are Marfan syndrome and similar, Sotos syndrome, Beckwith–Wiedemann syndrome, Klinefelter syndrome, and MEN2B. These different genetic syndromes with tall stature justify a consultation with the geneticist. When the speed of growth is accelerated, first of all, it evokes puberty and early pseudopuberty, obesity and acromegaly. Finally, when the speed of growth is regular, and the parents are of tall stature, it evokes constitutional tall stature: this is the most frequent diagnosis to retain after having rejected pathological tall statures.  相似文献   

16.
A higher incidence of depression has been described in adults with primary oxidative phosphorylation disease. We evaluated the psychological characteristics of eighteen non-retarded pediatric patients diagnosed with a disorder of the oxidative phosphorylation. We found significantly higher rate of withdrawn, depressive behaviour compared to population norm scores, to children with other types of inborn errors of metabolism and also in comparison to patients with Sotos syndrome. The occurrence of depressive behaviour showed no correlation with the degree of mitochondrial dysfunction. These findings support the hypothesis that mood disorders could be associated to abnormal cerebral energy metabolism.  相似文献   

17.
18.
Megencephaly, enlarged brain, occurs in several acquired and inherited human diseases including Sotos syndrome, Robinow syndrome, Canavan's disease, and Alexander disease. This defect can be distinguished from macrocephaly, an enlarged head, which usually occurs as a consequence of congenital hydrocephalus. The pathology of megencephaly in humans has not been well defined, nor has the defect been reported to occur spontaneously in any other species. In this report we describe a recessive mutation in the mouse that results in a 25% increase in brain size in the first 8 months of life. We have determined that the megencephaly is characterized by overall hypertrophy of the brain, and not by hyperplasia of particular cell types or by hypertrophy of a singular tissue compartment. Edema and hydrocephalus are absent. This mutation has been mapped to mid-distal mouse Chromosome (Chr) 6 in a region homologous with human Chr 12. Received: 14 April 1996 / Accepted: 12 August 1996  相似文献   

19.
20.
Sotos syndrome (SoS) is characterized by tall stature, characteristic craniofacial features and mental retardation. It is caused by haploinsufficiency of the NSD1 gene. In this study, our objective was to identify downstream effectors of NSD1 and to map these effectors in signaling pathways associated with growth. Genome-wide expression studies were performed on dermal fibroblasts from SoS patients with a confirmed NSD1 abnormality. To substantiate those results, phosphorylation, siRNA and transfection experiments were performed. A significant association was demonstrated with the Mitogen-Activated Protein Kinase (MAPK) pathway. Members of the fibroblast growth factor family such as FGF4 and FGF13 contributed strongly to the differential expression in this pathway. In addition, a diminished activity state of the MAPK/ERK pathway was demonstrated in SoS. The Ras Interacting Protein 1 (RASIP1) was identified to exhibit upregulated expression in SoS. It was shown that RASIP1 dose-dependently potentiated bFGF induced expression of the MAPK responsive SBE reporter providing further support for a link between NSD1 and the MAPK/ERK signaling pathway. Additionally, we demonstrated NSD1 expression in the terminally differentiated hypertrophic chondrocytes of normal human epiphyseal growth plates. In short stature syndromes such as hypochondroplasia and Noonan syndrome, the activation level of the FGF-MAPK/ERK-pathway in epiphyseal growth plates is a determining factor for statural growth. In analogy, we propose that deregulation of the MAPK/ERK pathway in SoS results in altered hypertrophic differentiation of NSD1 expressing chondrocytes and may be a determining factor in statural overgrowth and accelerated skeletal maturation in SoS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号