首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nerve growth factor (NGF) controls sensorineural development and responsiveness and modulates immunoinflammatory reactions. Respiratory syncytial virus (RSV) potentiates the proinflammatory effects of sensory nerves in rat airways by upregulating the substance P receptor, neurokinin 1 (NK(1)). We investigated whether the expression of NGF and its trkA and p75 receptors in the lungs is age dependent, whether it is upregulated during RSV infection, and whether it affects neurogenic inflammation. Pathogen-free rats were killed at 2 (weanling) to 12 (adult) wk of age; in addition, subgroups of rats were inoculated with RSV or virus-free medium. In pathogen-free rats, expression of NGF and its receptors in the lungs declined with age, but RSV doubled expression of NGF, trkA, and p75 in weanling and adult rats. Exogenous NGF upregulated NK(1) receptor expression in the lungs. Anti-NGF antibody inhibited NK(1) receptor upregulation and neurogenic inflammation in RSV-infected lungs. These data indicate that expression of NGF and its receptors in the lungs declines physiologically with age but is upregulated by RSV and is a major determinant of neurogenic inflammation.  相似文献   

2.
3.
The mechanisms by which respiratory syncytial virus (RSV) infection causes airway hyperresponsiveness (AHR) are not fully established. We hypothesized that RSV infection may alter the expression of airway sensory neuropeptides, thereby contributing to the development of altered airway function. BALB/c mice were infected with RSV followed by assessment of airway function, inflammation, and sensory neuropeptide expression. After RSV infection, mice developed significant airway inflammation associated with increased airway resistance to inhaled methacholine and increased tracheal smooth muscle responsiveness to electrical field stimulation. In these animals, substance P expression was markedly increased, whereas calcitonin gene-related peptide (CGRP) expression was decreased in airway tissue. Prophylactic treatment with Sendide, a highly selective antagonist of the neurokinin-1 receptor, or CGRP, but not the CGRP antagonist CGRP(8-37), inhibited the development of airway inflammation and AHR in RSV-infected animals. Therapeutic treatment with CGRP, but not CGRP(8-37) or Sendide, abolished AHR in RSV-infected animals despite increased substance P levels and previously established airway inflammation. These data suggest that RSV-induced airway dysfunction is, at least in part, due to an imbalance in sensory neuropeptide expression in the airways. Restoration of this balance may be beneficial for the treatment of RSV-mediated airway dysfunction.  相似文献   

4.
In the present study, the effect of intestinal schistosomiasis on the extrinsic sensory innervation of the murine ileum was investigated. Immunocytochemical techniques to localize calcitonin gene-related peptide (CGRP), substance P (SP), and vanilloid receptor 1 (VR1) were combined with retrograde tracing techniques and capsaicin treatment. Neurochemical characterization of extrinsic primary afferent neurons (EPANs) in normal and capsaicin-treated mice, revealed that CGRP and VR1, but not SP, were expressed in extrinsic afferents. Immunocytochemical analysis using the above-mentioned antibodies yielded three different populations of neurons in both dorsal root and nodose ganglia, namely CGRP/--, SP/--, and CGRP/SP-expressing neurons. Retrograde tracing revealed that only CGRP/--expressing neurons projected to the ileum. Intestinal schistosomiasis resulted in an upregulation of the number of CGRP-immunoreactive (ir) nerve fibers in the lamina propria of the villi, coinciding with an increase in mucosal mast cells in acutely and chronically infected animals. In infected animals, mucosal mast cells were found closely associated with a dense mucosal CGRP-ir fiber network. Neonatal capsaicin treatment led to a 70% reduction in the number of mucosal mast cells. In conclusion, the present study provides evidence that CGRP is a valid marker for EPANs in the mouse ileum, which are involved in the recruitment of mucosal mast cells. Morphological evidence is provided of a neuroimmune interaction between mucosal mast cells and EPANs in schistosoma-infected mice.  相似文献   

5.
Systemic production and mobilization of inflammatory cells and formation of hepatic periovular granulomas were studied in Schistosoma mansoni-infected mice with deficient interferon gamma (IFN-gamma) receptor (IFN-gammaR(o/o)). The impaired IFN-gamma signaling did not cause a significant modification of the overall kinetics of inflammatory cells, but mutant mice developed smaller hepatic periovular granulomas with a two-fold reduction in all the cell lineages. In granulomas of normal mice, the fully differentiated macrophages were progressively predominant, whilst in IFN-gammaR(o/o) mice, the granulomas contained a higher percentage of immature and proliferating monocytes. Granulomas of IFN-gammaR(o/o) mice had an enhanced and accelerated fibrotic reaction, corresponding to an increased content of proliferative and activated connective tissue cells. Simultaneously, their granulomas had an increased ratio of T over B cells, with an increase in CD8(+) and a reduction in CD4(+) T cells. The functional IFN-gamma receptor was not required for initial recruitment of monocytes and lymphocytes into granulomas, but it was necessary for the maturation of macrophages, upregulation of major histocompatibility class 2 (MHC-II) expression and consequent stimulation of lymphocyte subpopulations depending upon the MHC-II-mediated antigen presentation.  相似文献   

6.
Human T lymphocytes subpopulations from subjects not acutely infected with EBV have been selected and examined for ability to inhibit the outgrowth of autologous B lymphocytes that have undergone in vitro infection with EB virus. The results show that only TG lymphocytes are inhibitory. TG lymphocytes from subjects who are EBV antibody-negative inhibit as well as those from subjects who have EBV antibody. TG lymphocyte populations, as well as other T cell fractions obtained from neonatal subjects, fail to inhibit the outgrowth of infected, autologous lymphocytes under the conditions tested. We propose that NK cells are responsible for the inhibitory effects described in this report.  相似文献   

7.
In juvenile wild rats, bronchus-associated lymphoid tissue (BALT) development was similar to that seen in adult specified-pathogen-free rats. In adult wild rats the BALT was widespread. In one animal infected with a mycoplasma-like organism, a region of bronchoepithelium overlying a large BALT nodule was seen, through which lymphocytes appeared able to pass to make direct contact with the bronchial lumen: the significance of this observation is discussed. There was no evidence of infection in lungs from any of the specified-pathogen-free animals, where small foci of BALT were seen.  相似文献   

8.
Bovine peripheral blood mononuclear cells (PBMC) were infected with the pathogenic Saudi isolate of rinderpest virus (RPV) in order to identify the cell subpopulation(s) susceptible to active replication of this virus. Flow cytometry analysis, using a monoclonal antibody recognizing the H glycoprotein of RPV, showed that monocytes were the main subpopulation in which the virus replicated, whereas <2% of lymphocytes expressed viral antigen. The activation of PBMC with concanavalin A before infection resulted in an increase in the capacity of lymphocytes to support RPV replication; >90% of CD4+ and CD8+ T lymphocytes expressed viral antigen at 3 days postinfection, although < or = 40% of gamma/delta T cells were productively infected. B-lymphocyte activation with pokeweed mitogen also resulted in increased replication of this virus in these cells, involving up to 40% of B lymphocytes. An enhancement of lymphocyte susceptibility to infection and active replication by RPV was observed upon coculture of RPV-infected PBMC on bovine endothelial cells. Such enhancement was most marked with the B-cell and CD4+ T-cell subpopulations. Contact between lymphocytes and extracellular matrix components did not alter the capacity of RPV to replicate in lymphocytes. This intercellular contact with endothelial cells increased the viability of certain lymphocyte subpopulations, but it alone could not explain the increased sensitivity to RPV. Intercellular signalling, which resulted in interleukin-2 receptor upregulation, probably played a role. In summary, monocytes are the main target for active, productive infection by RPV. Similar replication in lymphocytes depends on their activation state and on contact with accessory cells such as endothelial cells. These characteristics have important implications for virus traffic in vivo and the pathogenesis of this disease.  相似文献   

9.
Previous studies of the rapid rejection of MHC-disparate lymphocytes in rats, named allogeneic lymphocyte cytotoxicity, have indicated that rat NK cells express activating receptors for nonclassical MHC class I allodeterminants from the RT1-C/E/M region. Using an expression cloning system that identifies activating receptors associated with the transmembrane adapter molecule DAP12, we have cloned a novel rat Ly-49 receptor that we have termed Ly-49 stimulatory receptor 3 (Ly-49s3). A newly generated anti-Ly-49s3 Ab, mAb DAR13, identified subpopulations of resting and IL-2-activated NK cells, but not T or B lymphocytes. Depletion of Ly-49s3-expressing NK cells drastically reduced alloreactivity in vitro, indicating that this subpopulation is responsible for a major part of the observed NK alloreactivity. DAR13-mediated blockade of Ly-49s3 inhibited killing of MHC-congenic target cells from the av1, n, lv1, and c haplotypes, but not from the u or b haplotypes. A putative ligand was mapped to the nonclassical MHC class I region (RT1-C/E/M) using intra-MHC recombinant strains. Relative numbers of Ly-49s3(+) NK cells were reduced, and surface levels of Ly-49s3 were lower, in MHC congenic strains expressing the putative Ly-49s3 ligand(s). In conclusion, we have identified a novel Ly-49 receptor that triggers rat NK cell-mediated responses.  相似文献   

10.
We used human tuberculosis as a model to investigate the role of NK cytotoxic mechanisms in the immune response to intracellular infection. Freshly isolated NK cells and NK cell lines from healthy donors lysed Mycobacterium tuberculosis-infected monocytes to a greater extent than uninfected monocytes. Lysis of infected monocytes was associated with increased expression of mRNA for the NKp46 receptor, but not the NKp44 receptor. Antisera to NKp46 markedly inhibited lysis of infected monocytes. NK cell-mediated lysis was not due to reduced expression of MHC class I molecules on the surface of infected monocytes or to enhanced production of IL-18 or IFN-gamma. NK cell lytic activity against M. tuberculosis-infected monocytes and NKp46 mRNA expression were reduced in tuberculosis patients with ineffective immunity to M. tuberculosis compared with findings in healthy donors. These observations suggest that 1) the NKp46 receptor participates in NK cell-mediated lysis of cells infected with an intracellular pathogen, and 2) the reduced functional capacity of NK cells is associated with severe manifestations of infectious disease.  相似文献   

11.
NK cells are innate lymphocytes that mediate early host defense against viruses, such as cytomegalovirus. IL-15 is upregulated during viral infections and drives the expansion of NK cells. However, the influence of IL-15 on murine NK cell division and death rates has not been quantitatively studied. Therefore, we developed a series of two-compartment (representing quiescent and dividing NK cell subpopulations) mathematical models, incorporating different assumptions about the kinetic parameters regulating NK cell expansion. Using experimentally derived division and death rates, we tested each model's assumptions by comparing predictions of NK cell numbers with independent experimental results and demonstrated that the kinetic parameters are distinct for nondividing and dividing NK cell subpopulations. IL-15 influenced NK cell expansion by modulating recruitment and division rates to a greater extent than death rates. The observed time delay to first division could be accounted for by differences in the kinetic parameters of nondividing and dividing subsets of NK cells. Although the duration of the time delay to first division was not significantly influenced by IL-15, the recruitment of nondividing NK cells into the replicating subpopulation increased with greater IL-15 concentrations. Our model quantitatively predicted changes in NK cell accumulation when IL-15 stimulation was reduced, demonstrating that NK cell divisional commitment was interrupted when cytokine stimulation was removed. In summary, this quantitative analysis reveals novel insights into the in vitro regulation of NK cell proliferation and provides a foundation for modeling in vivo NK cell responses to viral infections.  相似文献   

12.
The precise nature of neurokin receptor involvement in human immune cell chemotaxis is unclear. This study therefore sought to directly compare the chemotactic effects of neurokinins on human T lymphocytes and monocytes. Substance P was found to have a similar dose-dependent chemotactic action on T lymphocyte and monocyte populations. In contrast, T lymphocytes were found to be more responsive than monocytes both to the highly selective NK-1 agonist, [Sar(9)Met O(2)(11)]-substance P, and also to the NK-2 selective agonist, beta-alanine neurokinin A((4-10)). Consistent with these findings, substance P-induced chemotaxis of both T lymphocyte and monocytes was attenuated by the selective NK-1 antagonist LY303870. However, the selective NK-2 antagonist MEN 10,376 was only effective in inhibiting the T lymphocyte response. The study confirms that neurokinins have chemotactic actions on immune cells and indicates important functional differences between human T lymphocyte and monocyte responses. This provides a potential mechanism by which the nervous system can selectively influence cellular recruitment in inflammatory disease.  相似文献   

13.
IL-2 and IL-15 are lymphocyte growth factors produced by different cell types with overlapping functions in immune responses. Both cytokines costimulate lymphocyte proliferation and activation, while IL-15 additionally promotes the development and survival of NK cells, NKT cells, and intraepithelial lymphocytes. We have investigated the effects of IL-2 and IL-15 on proliferation, cytotoxicity, and cytokine secretion by human PBMC subpopulations in vitro. Both cytokines selectively induced the proliferation of NK cells and CD56(+) T cells, but not CD56(-) lymphocytes. All NK and CD56(+) T cell subpopulations tested (CD4(+), CD8(+), CD4(-)CD8(-), alphabetaTCR(+), gammadeltaTCR(+), CD16(+), CD161(+), CD158a(+), CD158b(+), KIR3DL1(+), and CD94(+)) expanded in response to both cytokines, whereas all CD56(-) cell subpopulations did not. Therefore, previously reported IL-15-induced gammadelta and CD8(+) T cell expansions reflect proliferations of NK and CD56(+) T cells that most frequently express these phenotypes. IL-15 also expanded CD8alpha(+)beta(-) and Valpha24Vbeta11 TCR(+) T cells. Both cytokines stimulated cytotoxicity by NK and CD56(+) T cells against K562 targets, but not the production of IFN-gamma, TNF-alpha, IL-2, or IL-4. However, they augmented cytokine production in response to phorbol ester stimulation or CD3 cross-linking by inducing the proliferation of NK cells and CD56(+) T cells that produce these cytokines at greater frequencies than other T cells. These results indicate that IL-2 and IL-15 act at different stages of the immune response by expanding and partially activating NK receptor-positive lymphocytes, but, on their own, do not influence the Th1/Th2 balance of adaptive immune responses.  相似文献   

14.
Type I interferon (IFN-I)-dependent orchestrated mobilization of innate cells in inflamed tissues is believed to play a critical role in controlling replication and CNS-invasion of herpes simplex virus (HSV). However, the crucial regulators and cell populations that are affected by IFN-I to establish the early environment of innate cells in HSV-infected mucosal tissues are largely unknown. Here, we found that IFN-I signaling promoted the differentiation of CCL2-producing Ly-6Chi monocytes and IFN-γ/granzyme B-producing NK cells, whereas deficiency of IFN-I signaling induced Ly-6Clo monocytes producing CXCL1 and CXCL2. More interestingly, recruitment of Ly-6Chi monocytes preceded that of NK cells with the levels peaked at 24 h post-infection in IFN-I–dependent manner, which was kinetically associated with the CCL2-CCL3 cascade response. Early Ly-6Chi monocyte recruitment was governed by CCL2 produced from hematopoietic stem cell (HSC)-derived leukocytes, whereas NK cell recruitment predominantly depended on CC chemokines produced by resident epithelial cells. Also, IFN-I signaling in HSC-derived leukocytes appeared to suppress Ly-6Ghi neutrophil recruitment to ameliorate immunopathology. Finally, tissue resident CD11bhiF4/80hi macrophages and CD11chiEpCAM+ dendritic cells appeared to produce initial CCL2 for migration-based self-amplification of early infiltrated Ly-6Chi monocytes upon stimulation by IFN-I produced from infected epithelial cells. Ultimately, these results decipher a detailed IFN-I–dependent pathway that establishes orchestrated mobilization of Ly-6Chi monocytes and NK cells through CCL2-CCL3 cascade response of HSC-derived leukocytes and epithelium-resident cells. Therefore, this cascade response of resident–to-hematopoietic–to-resident cells that drives cytokine–to-chemokine–to-cytokine production to recruit orchestrated innate cells is critical for attenuation of HSV replication in inflamed tissues.  相似文献   

15.
Respiratory syncytial virus (RSV) bronchiolitis triggers a strong innate immune response characterized by excessive neutrophil infiltration which contributes to RSV induced pathology. The cytokine IL-17A enhances neutrophil infiltration into virus infected lungs. IL-17A is however best known as an effector of adaptive immune responses. The role of IL-17A in early immune modulation in RSV infection is unknown. We aimed to elucidate whether local IL-17A facilitates the innate neutrophil infiltration into RSV infected lungs prior to adaptive immunity. To this end, we studied IL-17A production in newborns that were hospitalized for severe RSV bronchiolitis. In tracheal aspirates we measured IL-17A concentration and neutrophil counts. We utilized cultured human epithelial cells to test if IL-17A regulates RSV infection-induced IL-8 release as mediator of neutrophil recruitment. In mice we investigated the cell types that are responsible for early innate IL-17A production during RSV infection. Using IL-17A neutralizing antibodies we tested if IL-17A is responsible for innate neutrophil infiltration in mice. Our data show that increased IL-17A production in newborn RSV patient lungs correlates with subsequent neutrophil counts recruited to the lungs. IL-17A potentiates RSV-induced production of the neutrophil-attracting chemokine IL-8 by airway epithelial cells in vitro. Various lung-resident lymphocytes produced IL-17A during early RSV infection in Balb/c mice, of which a local population of CD4 T cells stood out as the predominant RSV-induced cell type. By removing IL-17A during early RSV infection in mice we showed that IL-17A is responsible for enhanced innate neutrophil infiltration in vivo. Using patient material, in vitro studies, and an animal model of RSV infection, we thus show that early local IL-17A production in the airways during RSV bronchiolitis facilitates neutrophil recruitment with pathologic consequences to infant lungs.  相似文献   

16.
Highly purified recombinant human interleukin 2 (rIL 2) markedly augments the natural killer (NK) cell-mediated cytotoxicity of peripheral blood lymphocytes. In this study, we examined the cellular and metabolic basis of rIL 2-mediated activation of human lymphocyte subpopulations expressing the NK cell-associated surface antigens Leu 7 and Leu 11. All rIL 2-responsive cytotoxic NK cells were found within the subset of lymphocytes expressing the Leu 11 marker, an antigen associated with the Fc-IgG receptor on human NK cells. Cells lacking the Leu 11 antigen, including cells expressing another NK cell-associated marker, Leu 7, did not express NK cell-mediated cytotoxicity either before or after rIL 2 treatment. By contrast, rIL 2 augmented the NK activity of both Leu7-,11+ and Leu 7+,11+ subpopulations. Activation of Leu 11+ NK cells resulted from a direct effect of rIL 2 on these cells and neither required nor was amplified by the presence of T lymphocytes. Enhanced NK cell-mediated cytotoxicity occurred within 4 hr after exposure to rIL 2, and was blocked by the protein synthesis inhibitor cyclohexamide, but not by the DNA synthesis inhibitor mitomycin C or 1500 rad of x-irradiation. Neither Tac antigen, a high-affinity receptor for IL 2, nor other activation markers, such as transferrin receptor or HLA-DR antigen, were detectable on a significant proportion of Leu 11+ cells, either before or after incubation with rIL 2 for 48 hr. In addition, saturating concentrations of antibodies to each of these markers had no effect on the enhancement of NK activity by rIL 2. Finally, preliminary experiments with neutralizing antibodies to gamma- and alpha-interferons also failed to prevent rIL 2 enhancement of NK cell-mediated cytotoxicity, suggesting that rIL 2 does not mediate its effect via release of these cytokines.  相似文献   

17.
Rapid separation of large numbers of human peripheral blood mononuclear cells into fractions enriched for B lymphocytes, T lymphocytes, or monocytes was accomplished by counterflow centrifugal elutriation (CCE). The first fraction contained 98% of the platelets. Ten additional fractions containing subpopulations of mononuclear cells were collected by sequential increases in the flow rate while maintaining a constant centrifuge speed. Analysis of the fractions using monoclonal antibodies revealed that fraction 2, which was free of esterase-positive monocytes, was highly enriched for B cells. T lymphocytes (OKT3+) were the predominant cell type found in fraction 4. No enrichment for T-lymphocyte-helper (OKT4+) or -suppressor (OKT8+) subpopulations was observed in the lymphocyte containing fractions. Three fractions (7-9), highly enriched for esterase-positive cells, were predominantly OKM1+ monocytes with no evidence of selective separation of monocyte subpopulations. Thus, cell fractions enriched for B cells, T cells, and monocytes could be obtained, by utilizing CCE, in large enough quantities to enable analysis of their functional properties. Of particular interest was the ability to separate small, resting B lymphocytes from monocytes.  相似文献   

18.
We have characterized the lymphocyte subset and the receptor molecules involved in inducing the secretion of TNF by monocytic cells in vitro. The TNF secreted by monocytic cells was measured when they were co-cultured with either resting or IL-15-stimulated lymphocytes, T cells, B cells or natural killer (NK) cells isolated from the peripheral blood of healthy subjects and from the synovial fluid from patients with inflammatory arthropathies. Co-culture with IL-15-activated peripheral blood or synovial fluid lymphocytes induced TNF production by monocytic cells within 24 hours, an effect that was mainly mediated by NK cells. In turn, monocytic cells induced CD69 expression and IFN-gamma production in NK cells, an effect that was mediated mainly by beta2 integrins and membrane-bound IL-15. Furthermore, IFN-gamma increased the production of membrane-bound IL-15 in monocytic cells. Blockade of beta2 integrins and membrane-bound IL-15 inhibited TNF production, whereas TNF synthesis increased in the presence of anti-CD48 and anti-CD244 (2B4) monoclonal antibodies. All these findings suggest that the cross-talk between NK cells and monocytes results in the sustained stimulation of TNF production. This phenomenon might be important in the pathogenesis of conditions such as rheumatoid arthritis in which the synthesis of TNF is enhanced.  相似文献   

19.

Background

Neonatal Natural Killer (NK) cells show functional impairment and expansion of a CD56 negative population of uncertain significance.

Methods

NK cells were isolated from cord blood and from adult donors. NK subpopulations were identified as positive or negative for the expression of CD56 and characterized for expression of granzyme B and surface markers by multi-parameter flow cytometry. Cell function was assessed by viral suppression and cytokine production using autologous lymphocytes infected with HIV. Activating (NKp30, NKp46) and inhibitory (Siglec-7) markers in healthy infants and adults were compared with viremic HIV-infected adults.

Results

Cord blood contained increased frequencies of CD56 negative (CD56neg) NK cells with reduced expression of granzyme B and reduced production of IFNγ and the CC-class chemokines RANTES, MIP1α and MIP1β upon stimulation. Both CD56pos and CD56neg NK subpopulations showed impaired viral suppression in cord blood, with impairment most marked in the CD56neg subset. CD56neg NK cells from cord blood and HIV-infected adults shared decreased inhibitory and activating receptor expression when compared with CD56pos cells.

Conclusions

CD56neg NK cells are increased in number in normal infants and these effectors show reduced anti-viral activity. Like the expanded CD56neg population described in HIV-infected adults, these NK cells demonstrate functional impairments which may reflect inadequate development or activation.  相似文献   

20.
We have produced a monoclonal antibody, GRM1, against a prolymphocytic leukemia that defines an antigen present in neutrophilic granulocytes (PMN) and a lymphocyte subset with natural killer (NK) activity, which was identified as large granular lymphocytes. This monoclonal antibody recognizes FcR2 (CD16), an antigen composed of two polypeptides of 50 and 60 kilodaltons, respectively. This GRM1 monoclonal antibody was tested against normal T and B cells, neutrophilic granulocytes, monocytes, platelets, acute and chronic leukemias, and was positive only against granulocytes (95%) and cells with NK activity. GRM1 was able to deplete NK cell activity in complement-dependent lysis. However, GRM1 did not block NK activity nor peripheral blood lymphocyte- and PMN-mediated antibody-dependent cytotoxicity in healthy individuals. GRM1 also did not block Fc receptor in an erythrocyte antibody rosette assay. The immunochemical data and cell distribution patterns lead us to conclude that GRM1 recognizes and FcR2 receptor epitope which is not involved in the receptor's function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号