共查询到20条相似文献,搜索用时 0 毫秒
1.
Drosophila tyrosine hydroxylase (DTH) is a key enzyme in dopamine (DA) biosynthesis, which is expressed in neural and hypodermal DA-synthesizing cells. We previously reported that two DTH isoforms are produced in flies through tissue-specific alternative splicing that show distinct regulatory properties. We have now selectively expressed each DTH isoform in vivo in a pale (ple, i.e., DTH-deficient) mutant background. We show that the embryonic lethality of ple can be rescued by expression of the hypodermal, but not the neural, DTH isoform in all DA cells, indicating that the hypoderm- isoform is absolutely required for cuticle biosynthesis and survival in Drosophila. In addition, we report new observations on the consequences of DTH overexpression in the CNS and hypoderm. Our results provide evidence that tissue-specific alternative splicing of the DTH gene is a vital process in Drosophila development. 相似文献
2.
The linotte mutant was isolated on the basis of its learning and memory deficit. Interestingly, linotte individuals carrying a null mutation are viable, indicating that the linotte gene is not required for vital functions. We show here that the linotte gene encodes a putative receptor tyrosine kinase, homologous to the human protein RYK. These products are unique among receptor tyrosine kinases, since they possess a short extra cellular domain, and a modified intracellular catalytic domain. In particular, the subdomains directly involved in ATP binding and phosphotransfer reaction display remarkable variations. These results suggest that linotte is part of a novel signal transduction cascade involved in learning and memory. 相似文献
3.
Previous studies identified a group of proteins localized to the endoplasmic reticulum (ER) that bind calcium and direct protein folding. Three of these proteins, CaBP1, CaBP2, and protein disulfide isomerase, have been purified from rat microsomes and analyzed biochemically. However, their function in vivo has not been determined. Here, we report the isolation of a homologue of the CaBP1 gene from the fruitfly Drosophila melanogaster (DmCaBP1). The predicted sequence of the Drosophila protein is very similar to that of rat CaBP1 and retains motifs thought to be functionally important in the mammalian protein. We show that DmCaBP1 is expressed in a specific spatiotemporal pattern during embryogenesis. In particular, it is expressed in midline precursor cells in the developing CNS. This is the first demonstration of tissue-specific expression for a member of this group of ER proteins and suggests a possible role for DmCABP1 as a molecular chaperone involved in nervous system development. The identification of the DmCaBP1 gene provides a basis for future genetic studies of its function. Dev. Genet. 23:104–110, 1998. © 1998 Wiley-Liss, Inc. 相似文献
4.
5.
6.
Shoko Fujino Sayuri Hamano Atsushi Tomokiyo Tomohiro Itoyama Daigaku Hasegawa Hideki Sugii Shinichiro Yoshida Ayako Washio Aoi Nozu Taiga Ono Naohisa Wada Chiaki Kitamura Hidefumi Maeda 《Journal of cellular physiology》2020,235(5):4376-4387
Dopamine (DA) is produced from tyrosine by tyrosine hydroxylase (TH). A recent study has reported that DA promotes the mineralization of murine preosteoblasts. However, the role of DA in odontoblasts has not been examined. Therefore, in this investigation, we researched the expression of TH and DA in odontoblasts and the effects of DA on the differentiation of preodontoblasts (KN-3 cells). Immunostaining showed that TH and DA were intensely expressed in odontoblasts and preodontoblasts of rat incisors and molars. KN-3 cells expressed D1-like and D2-like receptors for DA. Furthermore, DA promoted odontoblastic differentiation of KN-3 cells, whereas an antagonist of D1-like receptors and a PKA signaling blocker, inhibited such differentiation. However, antagonists of D2-like receptors promoted differentiation. These results suggested that DA in preodontoblasts and odontoblasts might promote odontoblastic differentiation through D1-like receptors, but not D2-like receptors, and PKA signaling in an autocrine or paracrine manner and plays roles in dentinogenesis. 相似文献
7.
8.
Zhaobing Ding Irmgard Haussmann Michael Ottiger Eric Kubli 《Developmental neurobiology》2003,55(3):372-384
Sex‐Peptide (SP) and the peptide DUP99B elicit two postmating responses in Drosophila melanogaster females: receptivity is reduced and oviposition is increased. Both are synthesized in the male genital tract and transferred into the female during copulation. To elucidate their function, we characterized the binding properties of SP and DUP99B in females. Cryostat sections of adult females were incubated with alkaline phosphatase (AP)‐tagged peptides. In virgin females, both peptides have specific target sites in the nervous system and in the genital tract. The binding pattern is almost identical for both peptides. Incubation of sections of mated females confirm that some of these target sites correspond to the in vivo targets of the two peptides. Neuronal binding is dependent on an intact C‐terminal sequence of SP, binding in the genital tract is less demanding in terms of amino acid sequence requirement. On affinity blots the AP–SP probe binds to membrane proteins extracted from abdomen and head plus thorax, respectively. The binding proteins in the nervous system and the genital tract differ in their molecular properties. Calculation of dissociation constants (Kd), and also determination of the minimal peptide concentrations necessary for binding, indicate that SP is the more important peptide inducing the postmating responses. Our results suggest that binding of SP in the nervous system is responsible for eliciting the postmating responses, whereas binding in the genital tract reflects the presence of a peptide transporter. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 372–384, 2003 相似文献
9.
The vertebrate hypothalamus and surrounding region contain a large population of cells expressing tyrosine hydroxylase (TH), the rate limiting enzyme for synthesis of dopamine and other catecholamines. Some of these populations are sexually dimorphic in rats. We here examined sex differences in TH‐immunoreactive populations in the forebrain of gonadally intact and gonadectomized prairie voles (Microtus ochrogaster), a species that sometimes shows unusual sexual differentiation of brain and behavior. A sex difference was found in the anteroventral periventricular preoptic area (AVPV; likely analogous to the rat rostral A14) only in gonadectomized subjects, which was due to a 50% reduction in the number of TH‐immunoreactive cells after castration in males. There was no significant sex difference or effects of gonadectomy on the number of TH‐immunoreactive cells in the anteroventral preoptic area (AVP), periventricular anterior hypothalamus (caudal A14), arcuate nucleus (A12), zona incerta (A13), or posterodorsal hypothalamus (A11). In a second experiment, testosterone propionate (TP; 500 μg), diethylstilbestrol (DES; 1 μg), or estradiol benzoate (EB; 30 μg) injected daily during the first week after birth each significantly reduced later TH expression in the AVPV of females by approximately 40–65% compared to oil‐treated controls. Unlike rats, therefore, a sex difference in TH expression in the prairie vole AVPV is found only after removal of circulating gonadal hormones in males. Furthermore, unlike our previous findings on the generation of sex differences in extra‐hypothalamic arginine‐vasopressin expression in prairie voles, TH expression in the AVPV of female prairie voles can be highly masculinized by neonatal exposure to either aromatizable androgens or estrogens. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2006 相似文献
10.
The present experiments were carried out to further elucidate the mechanism by which dopamine mediates the actions of Y-aminobutyric
acid on prolactin release from anterior pituitary following its intraventricular injection in overiectomized conscious rats,
Y-Aminobutyric acid significantly suppressed the prolactin levels at 0.1 Μmol concentration while at 4 Μmol dose, the level
was elevated. The activity of tyrosine hydroxylase was increased significantly in the anterior pituitary at the lower dose
while the higher concentration of Y-aminobutyric acid did not bring about any change in the activity both in the hypothalamus
and the anterior pituitary. The results presented suggest that intracellular dopamine in the anterior pituitary may directly
inhibit prolactin release; the plasma prolactin level is elevated by Y-aminobutyric acid, by way of either inhibiting dopaminergic
tone or possible stimulation of a physiological prolactin releasin g hormone. 相似文献
11.
Phenylalanine hydroxylase is assumed to be a key enzyme in drosopterin metabolism, but direct in vivo evidence to support this hypothesis is still absent.In the present study, we found a new natural reces-sive purple eye mutant of Drosophila melanogaster, Hnbp, which was a 45-nt insertion mutant in the second exon of Henna.The insertion resulted in a predicted protein with 15 additional amino acids as compared to the wild-type protein.Further analysis of protein structure showed that the predicted mutant protein probably had two more β-sheets, which may cause instability of two α-helices near the catalytic centre of the enzyme in the Biopterin-Hydroxyl binding domain.Hnbp mutant showed eye color defect with decrease of mRNA level, as well as drosopterin content reduction.The drosopterin defect could be fully rescued by expression of wild type Henna in the Hnbp background by GMR-GAL4 UAS-Henna/UAS-Henna:Hnbp/Hnbp transgenic line.All taken together, it can be concluded that the mu-tation in Henna is responsible for drosopterin reduction in mutant Hnbp, which provides key in vivo evidence to support the hypothesis that Henna is involved in drosopterin synthesis. 相似文献
12.
Daigo Homma Setsuko Katoh Hirofumi Tokuoka Hiroshi Ichinose 《Journal of neurochemistry》2013,126(1):70-81
Tyrosine hydroxylase (TH) is a rate‐limiting enzyme for dopamine synthesis and requires tetrahydrobiopterin (BH4) as an essential cofactor. BH4 deficiency leads to the loss of TH protein in the brain, although the underlying mechanism is poorly understood. To give insight into the role of BH4 in the developmental regulation of TH protein level, in this study, we investigated the effects of acute and subchronic administrations of BH4 or dopa on the TH protein content in BH4‐deficient mice lacking sepiapterin reductase. We found that BH4 administration persistently elevated the BH4 and dopamine levels in the brain and fully restored the loss of TH protein caused by the BH4 deficiency in infants. On the other hand, dopa administration less persistently increased the dopamine content and only partially but significantly restored the TH protein level in infant BH4‐deficient mice. We also found that the effects of BH4 or dopa administration on the TH protein content were attenuated in young adulthood. Our data demonstrate that BH4 and catecholamines are required for the post‐natal augmentation of TH protein in the brain, and suggest that BH4 availability in early post‐natal period is critical for the developmental regulation of TH protein level. 相似文献
13.
Guang‐Zhen Jin Su‐Jin Cho Young‐S Lee Myeong‐Ok Kim Dong‐Woo Cho Il‐Keun Kong 《Cell biology international》2010,34(1):135-140
MSCs (mesenchymal stem cells) derived from the bone marrow have shown to be a promising source of stem cells in a therapeutic strategy of neurodegenerative disorder. Also, MSCs can enhance the TH (tyrosine hydroxylase) expression and DA (dopamine) content in catecholaminergic cells by in vitro co‐culture system. In the present study, we investigated the effect of intrastriatal grafts of MSCs on TH protein and gene levels and DA content in adult intact rats. When MSCs were transplanted into the striatum of normal rats, the grafted striatum not only had significantly higher TH protein and mRNA levels, but also significantly higher DA content than the untransplanted striatum. Meanwhile, the grafted MSCs differentiated into neurons, astrocytes and oligodendrocytes; however, TH‐positive cells could not be detected in our study. These experimental results offer further evidence that MSCs are a promising candidate for treating neurodegenerative diseases such as Parkinson's disease. 相似文献
14.
Nicotine was administered acutely and subchronically (14 days) to determine whether various synaptic mechanisms are selectively altered in the nigrostriatal and mesolimbic dopaminergic systems in the rat. When added to tissue preparations in vitro, nicotine had no effects on tyrosine hydroxylase, synaptosomal uptake of [3H]dopamine or binding of [3H]spiperone to D2 receptors in either system. However, acute treatment in vivo stimulated tyrosine hydroxylase activity in the nucleus accumbens. This effect was prevented by pretreatment with a nicotinic antagonist, suggesting that it was mediated by nicotinic receptors. Since subchronic exposure to nicotine had no effect on tyrosine hydroxylase, it appears that tolerance develops to this action. In vivo treatment with nicotine did not alter dopamine uptake or receptor binding. The results suggest that, in doses which result in moderate plasma levels, nicotine has selective stimulant actions on nerve terminals of the mesolimbic system. 相似文献
15.
帕金森症的果蝇模型对解析疾病的分子细胞机制贡献极大.为探讨利用地中海黑腹果蝇的疾病模型来筛选新型治疗帕金森症药物的可能性,我们构建了基于DJ-1A和PINK1两个遗传致病因子的帕金森症果蝇模型,测试抗氧化和消炎活性分子米诺环素和辅酶Q10对脑多巴胺浓度的影响.结果表明,米诺环素对DJ-1A果蝇模型有明显保护作用,能显著提高脑多巴胺的浓度,但是对PINK1果蝇模型没有保护作用;辅酶Q10对两种模型均有保护作用.因此,帕金森病的果蝇模型能够反映药物分子的特异性作用,为筛选新的帕金森病治疗药物提供了一条便捷的途径. 相似文献
16.
17.
Vacher CM Gassmann M Desrayaud S Challet E Bradaia A Hoyer D Waldmeier P Kaupmann K Pévet P Bettler B 《Journal of neurochemistry》2006,97(4):979-991
GABAB1-/- mice, which are devoid of functional GABAB receptors, consistently exhibit marked hyperlocomotion when exposed to a novel environment. Telemetry recordings now revealed that, in a familiar environment, GABAB1-/- mice display an altered pattern of circadian activity but no hyperlocomotion. This indicates that hyperlocomotion is only triggered when GABAB1-/- mice are aroused by novelty. In microdialysis experiments, GABAB1-/- mice exhibited a 2-fold increased extracellular level of dopamine in the striatum. Following D-amphetamine administration, GABAB1-/- mice released less dopamine than wild-type mice, indicative of a reduced cytoplasmic dopamine pool. The hyperdopaminergic state of GABAB1-/- mice is accompanied by molecular changes, including reduced levels of tyrosine hydroxylase mRNA, D1 receptor binding-sites and Ser40 phosphorylation of tyrosine hydroxylase. Tyrosine hydroxylase activity, tissue dopamine content and dopamine metabolism do not appear to be measurably altered. Pharmacological and electrophysiological experiments support that the hyperdopaminergic state of GABAB1-/- mice is not severe enough to inactivate dopamine D2 receptors and to disrupt D2-mediated feedback inhibition of tyrosine hydroxylase activity. The data support that loss of GABAB activity results in a sustained moderate hyperdopaminergic state, which is phenotypically revealed by contextual hyperlocomotor activity. Importantly, the presence of an inhibitory GABA tone on the dopaminergic system mediated by GABAB receptors provides an opportunity for therapeutic intervention. 相似文献
18.
Several Drosophila receptor-linked protein tyrosine phosphatases (R-PTPs) are selectively expressed on axons of the developing embryonic central nervous system. The extracellular domains of these axonal R-PTPs are homologous to neural adhesion molecules. Thus, R-PTPs may directly couple cell recognition to signal transduction via control of tyrosine phosphorylation. To examine the function of these molecules during nervous system development, we wished to generate mutations in R-PTP genes. It was unclear whether a mutation in a single R-PTP gene would confer lethality, however, because the similarities in sequence and expression pattern between the axonal R-PTPs suggest that they may have partially redundant functions. To circumvent this problem, we developed a directed mutagenesis strategy based on local transposition of P elements, and used this approach to isolate a null mutation in the DPTP99A gene. This strategy, which we describe in detail here, should be applicable to any Drosophila gene within a lettered division of an appropriately marked P element. Flies lacking DPTP99A expression are viable and fertile, and we have been unable to detect any alterations in the embryonic nervous system of DPTP99A embryos using a variety of antibody markers. 相似文献
19.
Tyrosine hydroxylase (TH), the rate-limiting enzyme in the biosynthesis of the catecholamines dopamine, noradrenaline and adrenaline, is regulated acutely by feedback inhibition by the catecholamines and relief of this inhibition by phosphorylation of serine 40 (Ser40). Phosphorylation of serine 40 abolishes the binding of dopamine to a high affinity ( K D < 4 nM) site on TH, thereby increasing the activity of the enzyme. We have found that TH also contains a second low affinity ( K D = 90 nM) dopamine-binding site, which is present in both the non-phosphorylated and the Ser40-phosphorylated forms of the enzyme. Binding of dopamine to the high-affinity site decreases V max and increases the K m for the cofactor tetrahydrobiopterin, while binding of dopamine to the low-affinity site regulates TH activity by increasing the K m for tetrahydrobiopterin. Kinetic analysis indicates that both sites are present in each of the four human TH isoforms. Dissociation of dopamine from the low-affinity site increases TH activity 12-fold for the non-phosphorylated enzyme and 9-fold for the Ser40-phosphorylated enzyme. The low-affinity dopamine-binding site has the potential to be the primary mechanism responsible for the regulation of catecholamine synthesis under most conditions. 相似文献