首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CNS glia have integral roles in directing axon migration of both vertebrates and insects. In contrast, very little is known about the roles of PNS glia in axonal pathfinding. In vertebrates and Drosophila, anatomical evidence shows that peripheral glia prefigure the transition zones through which axons migrate into and out of the CNS. Therefore, peripheral glia could guide axons at the transition zone. We used the Drosophila model system to test this hypothesis by ablating peripheral glia early in embryonic neurodevelopment via targeted overexpression of cell death genes grim and ced-3. The effects of peripheral glial loss on sensory and motor neuron development were analyzed. Motor axons initially exit the CNS in abnormal patterns in the absence of peripheral glia. However, they must use other cues within the periphery to find their correct target muscles since early pathfinding errors are largely overcome. When peripheral glia are lost, sensory axons show disrupted migration as they travel centrally. This is not a result of motor neuron defects, as determined by motor/sensory double-labeling experiments. We conclude that peripheral glia prefigure the CNS/PNS transition zone and guide axons as they traverse this region.  相似文献   

2.
We have found two novel lipocalins in the fruit fly Drosophila melanogaster that are homologous to the grasshopper Lazarillo, a singular lipocalin within this protein family which functions in axon guidance during nervous system development. Sequence analysis suggests that the two Drosophila proteins are secreted and possess peptide regions unique in the lipocalin family. The mRNAs of DNLaz (for Drosophila neural Lazarillo) and DGLaz (for Drosophila glial Lazarillo) are expressed with different temporal patterns during embryogenesis. They show low levels of larval expression and are highly expressed in pupa and adult flies. DNLaz mRNA is transcribed in a subset of neurons and neuronal precursors in the embryonic CNS. DGLaz mRNA is found in a subset of glial cells of the CNS: the longitudinal glia and the medial cell body glia. Both lipocalins are also expressed outside the nervous system in the developing gut, fat body and amnioserosa. The DNLaz protein is detected in a subset of axons in the developing CNS. Treatment with a secretion blocker enhances the antibody labeling, indicating the DNLaz secreted nature. These findings make the embryonic nervous system expression of lipocalins a feature more widespread than previously thought. We propose that DNLaz and DGLaz may have a role in axonal outgrowth and pathfinding, although other putative functions are also discussed.  相似文献   

3.
Central nervous system (CNS) midline cells are essential for identity determination and differentiation of neurons in the Drosophila nervous system. It is not clear, however, whether CNS midline cells are also involved in the development of lateral glial cells. The roles of CNS midline cells in lateral glia development were elucidated using general markers for lateral glia, such as glial cell missing and reverse polarity, and specific enhancer trap lines labeling the longitudinal, A, B, medial cell body, peripheral, and exit glia. We found that CNS midline cells were necessary for the proper expression of glial cell missing, reverse polarity, and other lateral glia markers only during the later stages of development, suggesting that they are not required for initial identity determination. Instead, CNS midline cells appear to be necessary for proper division and survival of lateral glia. CNS midline cells were also required for proper positioning of three exit glia at the junction of segmental and intersegmental nerves, as well as some peripheral glia along motor and sensory axon pathways. This study demonstrated that CNS midline cells are extrinsically required for the proper division, migration, and survival of various classes of lateral glia from the ventral neuroectoderm.  相似文献   

4.
5.
6.
While survival of CNS neurons appears to depend on multiple neuronal and non-neuronal factors, it remains largely unknown how neuronal survival is controlled during development. Here we show that glia regulate neuronal survival during formation of the Drosophila embryonic CNS. When glial function is impaired either by mutation of the glial cells missing gene, which transforms glia toward a neuronal fate, or by targeted genetic glial ablation, neuronal death is induced non-autonomously. Pioneer neurons, which establish the first longitudinal axon fascicles, are insensitive to glial depletion whereas the later extending follower neurons die. This differential requirement of neurons for glia is instructive in patterning and links control of cell number with axon guidance during CNS development.  相似文献   

7.
Action potential (AP) propagation in myelinated nerves requires clustered voltage gated sodium and potassium channels. These channels must be specifically localized to nodes of Ranvier where the AP is regenerated. Several mechanisms have evolved to facilitate and ensure the correct assembly and stabilization of these essential axonal domains. This review highlights the current understanding of the axon intrinsic and glial extrinsic mechanisms that control the formation and maintenance of the nodes of Ranvier in both the peripheral nervous system (PNS) and central nervous system (CNS).Axons conduct electrical signals, called action potentials (APs), among neurons in a circuit in response to sensory input, and between motor neurons and muscles. In mammals and other vertebrates, many axons are myelinated. Myelin, made by Schwann cells and oligodendrocytes in the peripheral nervous system (PNS) and central nervous system (CNS), respectively, is a multilamellar sheet of glial membrane that wraps around axons to increase transmembrane resistance and decrease membrane capacitance. Although myelin is traditionally viewed as a passive contributor to nervous system function, it is now recognized that myelinating glia also play many active roles including regulation of axon diameter, axonal energy metabolism, and the clustering of ion channels at gaps in the myelin sheath called nodes of Ranvier. Together, the active and passive properties conferred on axons by myelin, result in axons with high AP conduction velocities, low metabolic demands, and reduced space requirements as compared with unmyelinated axons. Thus, myelin and the clustering of ion channels in axons permitted the evolution of the complex nervous systems found in vertebrates. This review highlights the current understanding of the axonal intrinsic and glial extrinsic mechanisms that control the formation and maintenance of the nodes of Ranvier in both the PNS and CNS.  相似文献   

8.
9.
Peripheral glial cells in both vertebrates and insects are born centrally and travel large distances to ensheathe axons in the periphery. There is very little known about how this migration is carried out. In other cells, it is known that rearrangement of the Actin cytoskeleton is an integral part of cell motility, yet the distribution of Actin in peripheral glial cell migration in vivo has not been previously characterized. To gain an understanding of how glia migrate, we specifically labeled the peripheral glia of Drosophila melanogaster using an Actin-GFP marker and analyzed their development in the embryonic PNS. It was found that Actin cytoskeleton is dynamically rearranged during glial cell migration. The peripheral glia were observed to migrate as a continuous chain of cells, with the leading glial cells appearing to participate to the greatest extent in exploring the extracellular surroundings with filopodia-like Actin containing projections. We hypothesized that the small GTPases Rho, Rac and Cdc42 are involved in Actin cytoskeletal rearrangements that underlie peripheral glial migration and nerve ensheathement. To test this, transgenic forms of the GTPases were ectopically expressed specifically in the peripheral glia during their migration and wrapping phases. The effects on glial Actin-GFP distribution and the overall effects on glial cell migration and morphological development were assessed. We found that RhoA and Rac1 have distinct roles in peripheral glial cell migration and nerve ensheathement; however, Cdc42 does not have a significant role in peripheral glial development. RhoA and Rac1 gain-of-function and loss-of-function mutants had both disruption of glial cell development and secondary effects on sensory axon fasciculation. Together, Actin cytoskeletal dynamics is an integral part of peripheral glial migration and nerve ensheathement, and is mediated by RhoA and Rac1.  相似文献   

10.
Neuron-glia communication is central to all nervous system responses to trauma, yet neural injury signaling pathways remain poorly understood. Here we explore cellular and molecular aspects of neural injury signaling in Drosophila. We show that transected Drosophila axons undergo injury-induced degeneration that is morphologically similar to Wallerian degeneration in mammals and can be suppressed by the neuroprotective mouse Wlds protein. Axonal injury elicits potent morphological and molecular responses from Drosophila glia: glia upregulate expression of the engulfment receptor Draper, undergo dramatic changes in morphology, and rapidly recruit cellular processes toward severed axons. In draper mutants, glia fail to respond morphologically to axon injury, and severed axons are not cleared from the CNS. Thus Draper appears to act as a glial receptor for severed axon-derived molecular cues that drive recruitment of glial processes to injured axons for engulfment.  相似文献   

11.
12.
Rapid conduction of action potentials along motor axons requires that oligodendrocytes and Schwann cells myelinate distinct central and peripheral nervous system (CNS and PNS) domains along the same axon. Despite the importance of this arrangement for nervous system function, the mechanisms that establish and maintain this precise glial segregation at the motor exit point (MEP) transition zone are unknown. Using in vivo time-lapse imaging in zebrafish, we observed that prior to myelination, oligodendrocyte progenitor cells (OPCs) extend processes into the periphery via the MEP and immediately upon contact with spinal motor root glia retract back into the spinal cord. Characterization of the peripheral cell responsible for repelling OPC processes revealed that it was a novel, CNS-derived population of glia we propose calling MEP glia. Ablation of MEP glia resulted in the absence of myelinating glia along spinal motor root axons and an immediate breach of the MEP by OPCs. Taken together, our results identify a novel population of CNS-derived peripheral glia located at the MEP that selectively restrict the migration of OPCs into the periphery via contact-mediated inhibition.  相似文献   

13.
A number of different cell surface glycoproteins expressed in the central nervous system (CNS) have been identified in insects and shown to mediate cell adhesion in tissue culture systems. The fasciclin I protein is expressed on a subset of CNS axon pathways in both grasshopper and Drosophila. It consists of four homologous 150-amino acid domains which are unrelated to other sequences in the current databases, and is tethered to the cell surface by a glycosyl-phosphatidylinositol linkage. In this paper we examine in detail the expression of fasciclin I mRNA and protein during Drosophila embryonic development. We find that fasciclin I is expressed in several distinct patterns at different stages of development. In blastoderm embryos it is briefly localized in a graded pattern. During the germ band extended period its expression evolves through two distinct phases. Fasciclin I mRNA and protein are initially localized in a 14-stripe pattern which corresponds to segmentally repeated patches of neuroepithelial cells and neuroblasts. Expression then becomes confined to CNS and peripheral sensory (PNS) neurons. Fasciclin I is expressed on all PNS neurons, and this expression is stably maintained for several hours. In the CNS, fasciclin I is initially expressed on all commissural axons, but then becomes restricted to specific axon bundles. The early commissural expression pattern is not observed in grasshopper embryos, but the later bundle-specific pattern is very similar to that seen in grasshopper. The existence of an initial phase of expression on all commissural bundles helps to explain the loss-of-commissures phenotype of embryos lacking expression of both fasciclin I and of the D-abl tyrosine kinase. Fasciclin I is also expressed in several nonneural tissues in the embryo.  相似文献   

14.
The neuronal wiring of the Drosophila melanogaster visual system is constructed through an intricate series of cell-cell interactions. Recent studies have identified some of the gene regulatory and cytoskeletal signaling pathways responsible for the layer-specific targeting of Drosophila photoreceptor axons. Target selection decisions of the R1-R6 subset of photoreceptor axons have been found to be influenced by the nuclear factors Brakeless and Runt, and target selection decisions of the R7 subset of axons have been found to require the cell-surface proteins Ptp69d, Lar and N-cadherin. A role for the visual system glia in orienting photoreceptor axon outgrowth and target selection has also been uncovered.  相似文献   

15.
Gliolectin is a carbohydrate-binding protein (lectin) that mediates cell adhesion in vitro and is expressed by midline glial cells in the Drosophila melanogaster embryo. Gliolectin expression is maximal during early pathfinding of commissural axons across the midline (stages 12-13), a process that requires extensive signaling and cell-cell interactions between the midline glia and extending axons. Deletion of the gliolectin locus disrupts the formation of commissural pathways and also delays the completion of longitudinal pathfinding. The disruption in commissure formation is accompanied by reduced axon-glial contact, such that extending axons grow on other axons and form a tightly fasciculated bundle that arches over the midline. By contrast, pioneering commissural axons normally cross the midline as a distributed array of fibers that interdigitate among the midline glia, maximizing contact and, therefor, communication between axon and glia. Restoration of Gliolectin protein expression in the midline glia rescues the observed pathfinding defects of null mutants in a dose-dependent manner. Hypomorphic alleles generated by ethylmethanesulfonate mutagenesis exhibit a similar phenotype in combination with a deletion and these defects are also rescued by transgenic expression of Gliolectin protein. The observed phenotypes indicate that carbohydrate-lectin interactions at the Drosophila midline provide the necessary surface contact to capture extending axons, thereby ensuring that combinatorial codes of positive and negative growth signals are interpreted appropriately.  相似文献   

16.
Drosophila fasciclin I is a homophilic cell adhesion molecule expressed in the developing embryo on the surface of a subset of fasciculating CNS axons, all PNS axons, and some nonneuronal cells. We have identified protein-null mutations in the fasciclin I (fas I) gene, and show that these mutants are viable and do not display gross defects in nervous system morphogenesis. The Drosophila Abelson (abl) proto-oncogene homolog encodes a cytoplasmic tyrosine kinase that is expressed during embryogenesis primarily in developing CNS axons; abl mutants show no gross defects in CNS morphogenesis. However, embryos doubly mutant for fas I and abl display major defects in CNS axon pathways, particularly in the commissural tracts where expression of these two proteins normally overlaps. The double mutant shows a clear defect in growth cone guidance; for example, the RP1 growth cone (normally fas I positive) does not follow its normal path across the commissure.  相似文献   

17.
The glia that reside at the midline of the Drosophila CNS are an important embryonic signaling center and also wrap the axons that cross the CNS. The development of the midline glia (MG) is characterized by migration, ensheathment, subdivision of axon commissures, apoptosis, and the extension of glial processes. All of these events are characterized by cell-cell contact between MG and adjacent neurons. Cell adhesion and signaling proteins that mediate different aspects of MG development and MG–neuron interactions have been identified. This provides a foundation for ultimately obtaining an integrated picture of how the MG assemble into a characteristic axonal support structure in the CNS.  相似文献   

18.
Myelin is the multi-layered glial sheath around axons in the vertebrate nervous system. Myelinating glia develop and function in intimate association with neurons and neuron-glial interactions control much of the life history of these cells. However, many of the factors that regulate key aspects of myelin development and maintenance remain unknown. To discover new molecules that are important for glial development and myelination, we undertook a screen of zebrafish mutants with previously characterized neural defects. We screened for myelin basic protein (mbp) mRNA by in situ hybridization and identified four mutants (neckless, motionless, iguana and doc) that lacked mbp expression in parts of the peripheral and central nervous systems (PNS or CNS), despite the presence of axons. In all four mutants electron microscopy revealed that myelin-forming glia were present and had formed loose wraps around axons but did not form compact myelin. We found that addition of exogenous retinoic acid (RA) rescued mbp expression in neckless mutant embryos, which lack endogenous RA synthesis. Timed application of the RA synthesis inhibitor DEAB to wild type embryos showed that RA signalling is required at least 48 h before the onset of myelin protein synthesis in both CNS and PNS.  相似文献   

19.
Contrary to our knowledge of the genetic control of midline crossing, the mechanisms that generate and maintain the longitudinal axon pathways of the Drosophila CNS are largely unknown. The longitudinal pathways are formed by ipsilateral pioneer axons and the longitudinal glia. The longitudinal glia dictate these axonal trajectories and provide trophic support to later projecting follower neurons. Follower interneuron axons cross the midline once and join these pathways to form the longitudinal connectives. Once on the contralateral side, longitudinal axons are repelled from recrossing the midline by the midline repulsive signal Slit and its axonal receptor Roundabout. We show that longitudinal glia also transiently express roundabout, which halts their ventral migration short of the midline. Once in contact with axons, glia cease to express roundabout and become dependent on neurons for their survival. Trophic support and cell-cell contact restrict glial movement and axonal trajectories. The significance of this relationship is revealed when neuron-glia interactions are disrupted by neuronal ablation or mutation in the glial cells missing gene, which eliminates glia, when axons and glia cross the midline despite continued midline repellent signalling.  相似文献   

20.
During central nervous system development, glial cells need to be in the correct number and location, at the correct time, to enable axon guidance and neuropile formation. Repair of the injured or diseased central nervous system will require the manipulation of glial precursors, so that the number of glial cells is adjusted to that of neurons, enabling axonal tracts to be rebuilt, remyelinated and functional. Unfortunately, the molecular mechanisms controlling glial precursor proliferative potential are unknown. We show here that glial proliferation is regulated by interactions with axons and that the Drosophila gene prospero is required to maintain the mitotic potential of glia. During growth cone guidance, Prospero positively regulates cycE promoting cell proliferation. Neuronal Vein activates the MAPKinase signalling pathway in the glia with highest Prospero levels, coupling axon extension with glial proliferation. Later on, Prospero maintains glial precursors in an undifferentiated state by activating Notch and antagonising the p27/p21 homologue Dacapo. This enables prospero-expressing cells alone to divide further upon elimination of neurons and to adjust glial number to axons during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号