首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the role of the dorsal midline structures, the notochord and notoplate, in patterning the cell motilities that underlie convergent extension of the Xenopus neural plate. In explants of deep neural plate with underlying dorsal mesoderm, lateral neural plate cells show a monopolar, medially directed protrusive activity. In contrast, neural plate explants lacking the underlying dorsal mesoderm show a bipolar, mediolaterally directed protrusive activity. Here, we report that "midlineless" explants consisting of the deep neural plate and underlying somitic mesoderm, but lacking a midline, show bipolar, mediolaterally oriented protrusive activity. Adding an ectopic midline to the lateral edge of these explants restores the monopolar protrusive activity over the entire extent of the midlineless explant. Monopolarized cells near the ectopic midline orient toward it, whereas those located near the original, removed midline orient toward this midline. This behavior can be explained by two signals emanating from the midline. We postulate that one signal polarizes neural plate deep cells and is labile and short-lived and that the second signal orients any polarized cells toward the midline and is persistent.  相似文献   

2.
We compared the type and patterning of morphogenic cell behaviors driving convergent extension of the Xenopus neural plate in the presence and absence of persistent vertical signals from the mesoderm by videorecording explants of deep neural tissue with involuted mesoderm attached and of deep neural tissue alone. In deep neural-over-mesoderm explants, neural plate cells express monopolar medially directed motility and notoplate cells express randomly oriented motility, two new morphogenic cell behaviors. In contrast, in deep neural explants (without notoplate), all cells express bipolar mediolateral cell motility. Deep neural-over-mesoderm and deep neural explants also differ in degree of neighbor exchange during mediolateral cell intercalation. In deep neural-over-mesoderm explants, cells intercalate conservatively, whereas in deep neural explants cells intercalate more promiscuously. Last, in both deep neural-over-mesoderm and deep neural explants, morphogenic cell behaviors differentiate in an anterior-to-posterior and lateral-to-medial progression. However, in deep neural-over-mesoderm explants, morphogenic behaviors first differentiate in intervals along the anteroposterior axis, whereas in deep neural explants, morphogenic behaviors differentiate continuously from the anterior end of the tissue posteriorly. These results describe new morphogenic cell behaviors driving neural convergent extension and also define roles for signals from the mesoderm, up to and beyond late gastrulation, in patterning these cell behaviors.  相似文献   

3.
The cells of many embryonic tissues actively narrow in one dimension (convergence) and lengthen in the perpendicular dimension (extension). Convergence and extension are ubiquitous and important tissue movements in metazoan morphogenesis. In vertebrates, the dorsal axial and paraxial mesodermal tissues, the notochordal and somitic mesoderm, converge and extend. In amphibians as well as a number of other organisms where these movements appear, they occur by mediolateral cell intercalation, the rearrangement of cells along the mediolateral axis to produce an array that is narrower in this axis and longer in the anteroposterior axis. In amphibians, mesodermal cell intercalation is driven by bipolar, mediolaterally directed protrusive activity, which appears to exert traction on adjacent cells and pulls the cells between one another. In addition, the notochordal-somitic boundary functions in convergence and extension by 'capturing' notochordal cells as they contact the boundary, thus elongating the boundary. The prospective neural tissue also actively converges and extends parallel with the mesoderm. In contrast to the mesoderm, cell intercalation in the neural plate normally occurs by monopolar protrusive activity directed medially, towards the midline notoplate-floor-plate region. In contrast, the notoplate-floor-plate region appears to converge and extend by adhering to and being towed by or perhaps migrating on the underlying notochord. Converging and extending mesoderm stiffens by a factor of three or four and exerts up to 0.6 microN force. Therefore, active, force-producing convergent extension, the mechanism of cell intercalation, requires a mechanism to actively pull cells between one another while maintaining a tissue stiffness sufficient to push with a substantial force. Based on the evidence thus far, a cell-cell traction model of intercalation is described. The essential elements of such a morphogenic machine appear to be (i) bipolar, mediolaterally orientated or monopolar, medially directed protrusive activity; (ii) this protrusive activity results in mediolaterally orientated or medially directed traction of cells on one another; (iii) tractive protrusions are confined to the ends of the cells; (iv) a mechanically stable cell cortex over the bulk of the cell body which serves as a movable substratum for the orientated or directed cell traction. The implications of this model for cell adhesion, regulation of cell motility and cell polarity, and cell and tissue biomechanics are discussed.  相似文献   

4.
In this review I summarize recent findings on the contributions of different cell groups to the formation of the basic plan of the nervous system of vertebrate embryos. Midline cells of the mesoderm—the organizer, notochord, and prechordal plate—and midline cells of the neural ectoderm—the notoplate and floor plate—appear to have a fundamental role in the induction and patterning of the neural plate. Vertical signals acting across tissue layers and planar signals acting through the neural epithelium have distinct roles and cooperate in induction and pattern formation. Whereas the prechordal plate and notochord have distinct vertical signaling properties, the initial anteroposterior (A-P) pattern of the neural plate may be induced by planar signals originating from the organizer region. Planar signals from the notoplate may also contribute to the mediolateral (M-L) patterning of the neural plate. These and other findings suggest a general view of neural induction and axial patterning. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
6.
We have previously shown that the early Xenopus organiser contains cells equally potent to give rise to notochord or floor plate, and that Notch signalling triggers a binary decision, favouring the floor plate fate at the expense of the notochord. Now, we present evidence that Delta1 is the ligand that triggers the binary switch, which is executed through the Notch-mediated activation of hairy2a in the surrounding cells within the organiser, impeding their involution through the blastopore and promoting their incorporation into the hairy2a+ notoplate precursors (future floor-plate cells) in the dorsal non-involuting marginal zone.  相似文献   

7.
The floor plate, a specialized group of cells in the ventral midline of the neural tube of vertebrates, plays crucial roles in patterning the central nervous system. Recent work from zebrafish, chick, chick-quail chimeras and mice to investigate the development of the floor plate have led to several models of floor-plate induction. One model suggests that the floor plate is formed by inductive signalling from the notochord to the overlying neural tube. The induction is thought to be mediated by notochord-derived Sonic hedgehog (Shh), a secreted protein, and requires direct cellular contact between the notochord and the neural tube. Another model proposes a role for the organizer in generating midline precursor cells that produce floor plate cells independent of notochord specification, and proposes that floor plate specification occurs early, during gastrulation. We describe a temperature-sensitive mutation that affects the zebrafish Nodal-related secreted signalling factor, Cyclops, and use it to address the issue of when the floor plate is induced in zebrafish. Zebrafish cyclops regulates the expression of shh in the ventral neural tube. Although null mutations in cyclops result in the lack of the medial floor plate, embryos homozygous for the temperature-sensitive mutation have floor plate cells at the permissive temperature and lack floor plate cells at the restrictive temperature. We use this mutant allele in temperature shift-up and shift-down experiments to answer a central question pertaining to the timing of vertebrate floor plate induction. Abrogation of Cyc/Nodal signalling in the temperature-sensitive mutant embryos at various stages indicates that the floor plate in zebrafish is induced early in development, during gastrulation. In addition, continuous Cyclops signalling is required through gastrulation for a complete ventral neural tube throughout the length of the neuraxis. Finally, by modulation of Nodal signalling levels in mutants and in ectopic overexpression experiments, we show that, similar to the requirements for prechordal plate mesendoderm fates, uninterrupted and high levels of Cyclops signalling are required for induction and specification of a complete ventral neural tube.  相似文献   

8.
T Yamada  M Placzek  H Tanaka  J Dodd  T M Jessell 《Cell》1991,64(3):635-647
Individual classes of neural cells differentiate at distinct locations in the developing vertebrate nervous system. We provide evidence that the pattern of cell differentiation along the dorsoventral axis of the chick neural tube is regulated by signals derived from two ventral midline cell groups, the notochord and floor plate. Grafting an additional notochord or floor plate to ectopic positions, or deleting both cell groups, resulted in changes in the fate and position of neural cell types, defined by expression of specific antigens. These results suggest that the differentiation of neural cells is controlled, in part, by their position with respect to the notochord and floor plate.  相似文献   

9.
The development of the vertebrate dorsal midline (floor plate, notochord, and hypochord) has been an area of classical research and debate. Previous studies in vertebrates have led to contrasting models for the roles of Shh and Notch signaling in specification of the floor plate, by late inductive or early allocation mechanisms, respectively. Here, we show that Notch signaling plays an integral role in cell fate decisions in the dorsal midline of Xenopus laevis, similar to that observed in zebrafish and chick. Notch signaling promotes floor plate and hypochord fates over notochord, but has variable effects on Shh expression in the midline. In contrast to previous reports in frog, we find that Shh signaling is not required for floor plate vs. notochord decisions and plays a minor role in floor plate specification, where it acts in parallel to Notch signaling. As in zebrafish, Shh signaling is required for specification of the lateral floor plate in the frog. We also find that the medial floor plate in Xenopus comprises two distinct populations of cells, each dependent upon different signals for its specification. Using expression analysis of several midline markers, and dissection of functional relationships, we propose a revised allocation mechanism of dorsal midline specification in Xenopus. Our model is distinct from those proposed to date, and may serve as a guide for future studies in frog and other vertebrate organisms.  相似文献   

10.
11.
Induction of an additional floor plate in the neural tube   总被引:3,自引:0,他引:3  
The role of the notochord in the morphogenesis of the neural tube was investigated by implanting a notochord fragment laterally to the neural wall of a 1.5 day chick embryo. Embryos were sacrificed at 4 days. In the basal part of the neural tube an additional floor plate was induced in the vicinity of the implant. This floor plate was characterized by a low proliferative activity, a thin wall, spindle-like nuclei crowded peripherally and some neuroblast-like cells. It was either blending with the natural floor plate or separated from it, depending on the exact position of the implant. In the latter case neuroblasts were observed in between both floor plates. The additional floor plate was present only when the implanted notochord was less than 25 micron apart from the neural tube; at larger distance an increase of the ventral horn neuroblast area could be seen. It is concluded that the implanted notochord is able to induce a floor plate at 1.5 days of incubation. The specific influence of the notochord on the morphogenesis of the neural tube, its inductive period as well as the presence of the neuroblast-like cells in the additional floor plate are discussed.  相似文献   

12.
The floor plate of the neural tube serves an important function as a source of signals that pattern cell fates in the nervous system as well as directing proper axon pathfinding. We have cloned a novel zebrafish wnt family member, wnt4b, which is expressed exclusively in the floor plate. To place wnt4b in the context of known regulators of midline development, its expression was analyzed in the zebrafish mutants cyclops (cyc), floating head (flh), you-too (yot), and sonic you (syu). wnt4b expression in the medial and lateral floor plate are shown to be regulated independently: medial floor plate expression occurs in the absence of a notochord, while lateral floor plate expression requires a functional notochord, sonic hedgehog and gli-2.  相似文献   

13.
14.
The rearrangement of ectodermal cells was studied in chimeras in which grafts were transplanted during late gastrula and early neurula stages to heterotopic locations in avian embryos. Three types of experiments were done. In all experiments, Hensen's node was extirpated completely and replaced with an epithelial plug derived from 1 of 3 regions of the prospective ectoderm. In type-1 experiments, Hensen's node was replaced with a plug consisting of precursor cells of the floor plate of the neural tube. In type-2 experiments, Hensen's node was replaced with a plug consisting of precursor cells of the lateral wall of the neural tube. In type-3 experiments, Hensen's node was replaced with a plug consisting of precursor cells of the epidermal ectoderm. In all experiments, the amount and direction of cell rearrangement that occurred in the transplanted ectodermal plug was essentially typical for prospective ectodermal cells normally residing within Hensen's node. That is, transplanted ectodermal cells underwent lateralto-medial cell-cell intercalation and contributed to the ventral midline of the neural tube along its entire rostrocaudal extent. In most embryos, a notochord was reconstituted from host cells, despite the fact that Hensen's node — the prime source of prospective notochordal cells in intact embryos — was extirpated completely; however, a few embryos had long notochordal gaps. In such essentially notochordless embryos, the ventral midline of the neural tube still derived from grafted cells, but it failed to form a floor plate, providing further confirmation of the results of several previous studies that the notochord is required to induce the floor plate. Collectively, our results provide evidence that the rearrangement of ectodermal cells does not require the presence of a trail of prospective floor plate cells (laid down by the regressing Hensen's node), or of a notochordal substrate, and that the continued presence of an organizer per se, ostensibly Hensen's node, is not required. In addition, our results demonstrate that the rearrangement of cells still occurs in the absence of boundaries between ectodermal cells of different phenotypes (e.g., between cells of the floor plate and lateral walls of the neural tube). Finally, our results reveal further that the amount and direction of cellular rearrangement is not regulated in a cell-autonomous fashion, but rather it is determined by the overall magnitude and vector of the displacement of the community of rearranging cells within a developmental field.  相似文献   

15.
We cloned Xenopus Strabismus (Xstbm), a homologue of the Drosophila planar cell or tissue polarity gene. Xstbm encodes four transmembrane domains in its N-terminal half and a PDZ-binding motif in its C-terminal region, a structure similar to Drosophila and mouse homologues. Xstbm is expressed strongly in the deep cells of the anterior neural plate and at lower levels in the posterior notochordal and neural regions during convergent extension. Overexpression of Xstbm inhibits convergent extension of mesodermal and neural tissues, as well as neural tube closure, without direct effects on tissue differentiation. Expression of Xstbm(DeltaPDZ-B), which lacks the PDZ-binding region of Xstbm, inhibits convergent extension when expressed alone but rescues the effect of overexpressing Xstbm, suggesting that Xstbm(DeltaPDZ-B) acts as a dominant negative and that both increase and decrease of Xstbm function from an optimum retards convergence and extension. Recordings show that cells expressing Xstbm or Xstbm(DeltaPDZ-B) fail to acquire the polarized protrusive activity underlying normal cell intercalation during convergent extension of both mesodermal and neural and that this effect is population size-dependent. These results further characterize the role of Xstbm in regulating the cell polarity driving convergence and extension in Xenopus.  相似文献   

16.
We performed in vivo experiments in chick embryos that examined whether application of an exogenous source of Shh protein mimics the ability of the notochord to induce ectopic floor plate cells in the neural tube. Shh cannot act alone to induce a floor plate. However, coapplication of Shh and chordin, a BMP antagonist normally coexpressed with Shh in the notochord, results in a marked switch from dorsal to ventral cell fate, including a dramatic and widespread induction of floor plate cells. These data provide in vivo evidence that notochord-derived BMP antagonists may normally generate a permissive environment for the Shh-mediated induction of floor plate. Further experiments performed to address the source of BMPs that are inhibited by the action of chordin suggest that they derive specifically from the surface ectoderm and dorsal-most neuroepithelium. These data indicate that, at neural groove stages, dorsally derived BMPs affect ventral-most regions of the neural plate, suggesting a novel long-range action of BMPs. Together, these studies suggest that the balance of dorsally derived signals and notochord-derived signals determines the extent of floor plate cell induction.  相似文献   

17.
In early development of vertebrates, sonic hedgehog functions in dorsal-ventral patterning of dorsal tissue (nervous system and somites). In Xenopus, sonic hedgehog (Xshh) is first expressed in the Spemann organizer/notochord and floor plate. We report here the mechanism governing Xshh mRNA induction in these regions. In animal cap assays, the antagonizing BMPs signal was not sufficient to induce Xshh mRNA expression; however, it could induce Xshh mRNA expression in the presence of Xnr-1. In whole embryos, when secondary axes were induced by coexpressing noggin and Xnr-1 or follistatin and Xnr-1, Xshh mRNA expression was observed in the notochord and floor plate within the induced axes. It seems apparent that spatially restricted Xshh mRNA expression is determined as intersection of the two signals.  相似文献   

18.
We use 3D time-lapse analysis of living embryos and laser scanning confocal reconstructions of fixed, staged, whole-mounted embryos to describe three-dimensional patterns of cell motility, cell shape change, cell rearrangement and tissue deformation that accompany formation of the ascidian notochord. We show that notochord formation involves two simultaneous processes occurring within an initially monolayer epithelial plate: The first is invagination of the notochord plate about the axial midline to form a solid cylindrical rod. The second is mediolaterally directed intercalation of cells within the plane of the epithelial plate, and then later about the circumference of the cylindrical rod, that accompanies its extension along the anterior/posterior (AP) axis. We provide evidence that these shape changes and rearrangements are driven by active extension of interior basolateral notochord cell edges directly across the faces of their adjacent notochord neighbors in a manner analogous to leading edge extension of lamellapodia by motile cells in culture. We show further that local edge extension is polarized with respect to both the AP axis of the embryo and the apicobasal axis of the notochord plate. Our observations suggest a novel view of how active basolateral motility could drive both invagination and convergent extension of a monolayer epithelium. They further reveal deep similarities between modes of notochord morphogenesis exhibited by ascidians and other chordate embryos, suggesting that cellular mechanisms of ascidian notochord formation may operate across the chordate phylum.  相似文献   

19.
The floor plate is located at the ventral midline of the neural tube in vertebrates. Floor-plate development is severely impaired in zebrafish one-eyed pinhead (oep) mutants. oep encodes a membrane-bound protein with an epiblast growth factor (EGF) motif and functions autonomously in floor-plate precursors. To understand the cell behavior and cell-cell interaction during floor-plate development, the distribution and gene expression of wild-type and oep mutant cells in genetic mosaics were examined. When mutant shield cells were transplanted into a wild-type host, an ectopic neural tube with a floor plate was induced. However, the floor plate of the secondary axis was consistently devoid of mutant cells while its notochord was composed entirely of mutant cells. This indicates that oep shield cells adopt only a notochord fate in a wild-type environment. In reciprocal transplants (wild to oep), however, grafted shield cells frequently contributed to part of the floor-plate region of the secondary neural tube and expressed floor-plate markers. Careful examination of serial sections revealed that a mutant neural cell, when located next to the wild-type cells at the ventral midline, inhibited floor-plate differentiation of the adjacent wild-type cells. This inhibition was effective over an area only one- or two-cells wide along the anteroposterior axis. As the cells located at the ventral midline of the oep neural tube are thought to possess a neural character, similar to those located on either side of the floor plate in a wild-type embryo, this inhibition may play an important role during normal development in restricting the floor-plate region into the ventral-most midline by antagonizing homeogenetic signals from the floor-plate cells.  相似文献   

20.
Molecular analysis carried out on quail-chick chimeras, in which quail Hensen's node was substituted for its chick counterpart at the five- to six-somite stage (ss), showed that the floor plate of the avian neural tube is composed of distinct areas: (1) a median one (medial floor plate or MFP) derived from Hensen's node and characterised by the same gene expression pattern as the node cells (i.e. expression of HNF3beta and Shh to the exclusion of genes early expressed in the neural ectoderm such as CSox1); and (2) lateral regions that are differentiated from the neuralised ectoderm (CSox1 positive) and form the lateral floor plate (LFP). LFP cells are induced by the MFP to express HNF3beta transiently, Shh continuously and other floor-plate characteristic genes such as NETRIN: In contrast to MFP cells, LFP cells also express neural markers such as Nkx2.2 and Sim1. This pattern of avian floor-plate development presents some similarities to floor-plate formation in zebrafish embryos. We also demonstrate that, although MFP and LFP have different embryonic origins in normal development, one can experimentally obtain a complete floor plate in the neural epithelium by the inductive action of either a notochord or a MFP. The competence of the neuroepithelium to respond to notochord or MFP signals is restricted to a short time window, as only the posterior-most region of the neural plate of embryos younger than 15 ss is able to differentiate a complete floor plate comprising MFP and LFP. Moreover, MFP differentiation requires between 4 and 5 days of exposure to the inducing tissues. Under the same conditions LFP and SHH-producing cells only induce LFP-type cells. These results show that the capacity to induce a complete floor plate is restricted to node-derived tissues and probably involves a still unknown factor that is not SHH, the latter being able to induce only LFP characteristics in neuralised epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号