首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Thelytokous reproduction, where females produce diploid female offspring without fertilization, can be found in many insects. In some Hymenoptera species, thelytoky is induced by Wolbachia, a group of cytoplasmically inherited bacteria. We compare and contrast early embryonic development in the thelytokous parthenogenetic species Muscidifurax uniraptor with the development of unfertilized eggs of the closely related arrhenotokous species, Muscidifurax raptorellus. In the Wolbachia-infected parasitic wasp M. uniraptor, meiosis and the first mitotic division occur normally. Diploidy restoration is achieved following the completion of the first mitosis. This pattern differs in the timing of diploidy restoration from previously described cases of Wolbachia-associated thelytoky. Results presented here suggest that different cytogenetic mechanisms of diploidy restoration may occur in different species with Wolbachia-induced thelytoky.  相似文献   

2.
Populations of Thrips tabaci are known to have two sympatric but genetically isolated reproductive modes, arrhenotoky (sexual reproduction) and thelytoky (asexual reproduction). Herein, we report behavioral, ecological and genetic studies to determine whether there is gene flow between arrhenotokous and thelytokous T. tabaci. We did not detect significant preference by arrhenotokous males to mate with females of a particular reproductive mode, nor did we detect significant behavioral differences between arrhenotokous males mated with arrhenotokous or thelytokous females in their pre-copulation, copulation duration and mating frequency. Productive gene transfer resulting from the mating between the two modes was experimentally confirmed. Gene transfer from arrhenotokous T. tabaci to thelytokous T. tabaci was further validated by confirmation of the passage of the arrhenotokous male-originated nuclear gene (histone H3 gene) allele to the F2 generation. These behavioral, ecological and genetic studies confirmed gene transfer from the sexual arrhenotokous mode to the asexual thelytokous mode of T. tabaci in the laboratory. These results demonstrate that asexual T. tabaci populations may acquire genetic variability from sexual populations, which could offset the long-term disadvantage of asexual reproduction.  相似文献   

3.
The ichneumonid wasp Venturia canescens (Hymenoptera) has been studied extensively for foraging behaviour and population dynamics of sexually (arrhenotokous) and parthenogenetically (thelytokous) reproducing individuals. Here we report the development of a set of microsatellite markers for V.canescens and use them to show that arrhenotokous individuals have more genetic variability than thelytokous ones, which are even homozygous for all tested loci. Crosses between arrhenotokous individuals suggested one marker, Vcan071, to be linked with the Complementary Sex Determiner (CSD) locus and one, Vcan109, with the Virus Like Protein (vlp-p40) locus. The genome size of V. canescens was estimated to be 274-279?Mb. We discuss how both reproductive modes can give rise to the observed genetic variability and how the new markers can be used for future genetic studies of V. canescens.  相似文献   

4.
Asexual reproduction via thelytokous parthenogenesis is widespread in the Hymenoptera, but its genetic underpinnings have been described only twice. In the wasp Lysiphlebus fabarum and the Cape honey bee Apis mellifera capensis the origin of thelytoky have each been traced to a single recessive locus. In the Cape honey bee it has been argued that thelytoky (th) controls the thelytoky phenotype and that a deletion of 9 bp in the flanking intron downstream of exon 5 (tae) of the gemini gene switches parthenogenesis from arrhenotoky to thelytoky. To further explore the mode of inheritance of thelytoky, we generated reciprocal backcrosses between thelytokous A. m. capensis and the arrhenotokous A. m. scutellata. Ten genetic markers were used to identify 108 thelytokously produced offspring and 225 arrhenotokously produced offspring from 14 colonies. Patterns of appearance of thelytokous parthenogenesis were inconsistent with a single locus, either th or tae, controlling thelytoky. We further show that the 9 bp deletion is present in the arrhenotokous A. m. scutellata population in South Africa, in A. m. intermissa in Morocco and in Africanized bees from Brazil and Texas, USA, where thelytoky has not been reported. Thus the 9 bp deletion cannot be the cause of thelytoky. Further, we found two novel tae alleles. One contains the previously described 9 bp deletion and an additional deletion of 7 bp nearby. The second carries a single base insertion with respect to the wild type. Our data are consistent with the putative th locus increasing reproductive capacity.  相似文献   

5.
In the hymenopteran parasitoid Venturia canescens, asexual (obligate thelytoky not induced by Wolbachia bacteria) and sexual (arrhenotokous) wasps coexist in field conditions despite the demographic cost incurred due to the production of males by sexual females. Arrhenotoky predominates in field conditions, whereas populations in indoor conditions (mills, granaries) are exclusively thelytokous. These differences in the relative abundance of the two modes of reproduction between environments suggest that the individuals of each reproductive mode may have developed strategies adapted to the conditions prevailing in each kind of habitat. The two environments contrast in temperature variability and in the spatial heterogeneity of host availability. In this study, we considered the combined effect of temperature and host availability on host patch exploitation by thelytokous and arrhenotokous V. canescens. As expected, arrhenotokous females were more sensitive to temperature changes. If the temperature decreased before foraging, they remained longer and exploited patches more thoroughly. This is consistent with the expected behaviour of parasitoids in response to signs of unfavourable conditions that entail increasing risk of time limitation or a reduced probability of attaining further patches. Both arrhenotokous and thelytokous females increased patch exploitation with host availability. However, unexpectedly, we found no difference in the way the two types of wasp responded to differences in host availability. Differences in the strategies adopted under different environmental conditions may indicate divergence of niche-specific life history traits between the two modes of reproduction. Niche displacement may partly account for the coexistence of these two modes of reproduction at a geographical scale.  相似文献   

6.
Meiosis is described in a thelytokous strain of the anoetid mite Histiostoma feroniarum (Dufour) and in both sexes of the arrhenotokous strain of this species. Oogenesis in the thelytokous strain is accomplished by ameiotic mitosis with only one pseudo-maturation division. During this division one or more chromosomes may move to the poles precociously and while in this position can be mistaken for centrioles. Fourteen chromosomes are found at metaphase of the pseudo-maturation division and in cleaving eggs of this strain. In the arrhenotokous strain, male meiosis consists of a single mitotic division. Oogenesis is regular and 7 bivalents are observed at the first maturation division. Metaphases of the first cleavage division in fertilized eggs show 14 chromosomes and 7 chromosomes in unfertilized eggs.It is postulated that the thelytokous strain has arisen from the arrhenotokous strain. This assumption is in agreement with that suggested for several insect species previously reported. The evolution in the Acari and the variability in the modes of reproduction in this suborder are discussed in light of the findings in this paper on the Anoetidae.  相似文献   

7.
While workers of almost all subspecies of honeybee are able to lay only haploid male eggs, Apis mellifera capensis workers are able to produce diploid female eggs by thelytokous parthenogenesis. Cytological analyses have shown that during parthenogenesis, egg diploidy is restored by fusion of the two central meiotic products. This peculiarity of the Cape bee preserves two products of a single meiosis in the daughters and can be used to map centromere positions using half-tetrad analysis. In this study, we use the thelytokous progenies of A. m. capensis workers and a sample of individuals from a naturally occurring A. m. capensis thelytokous clone to map centromere position for most of the linkage groups of the honeybee. We also show that the recombination rate is reduced by >10-fold during the meiosis of A. m. capensis workers. This reduction is restricted to thelytokous parthenogenesis of capensis workers and is not observed in the meiosis of queen within the same subspecies or in arrhenotokous workers of another subspecies. The reduced rate of recombination seems to be associated with negative crossover interference. These results are discussed in relation to evolution of thelytokous parthenogenesis and maintenance of heterozygosity and female sex after thelytoky.  相似文献   

8.
Y. Rössler  P. DeBach 《BioControl》1972,17(4):391-423
The reproductive relations and the probability of hybridization between an arrhenotokous and a thelytokous form ofA. mytilaspidis were investigated so as to determine the significance of thelytoky in biosystematic studies and its value as a taxonomic character. Gene markers were utilized to detect and follow the various phases of the introgressive process between the arrhenotokous and thelytokous forms. The two forms show only a partiel sexual isolation, the major barrier is prezygotic, arrhenotokous males are much less efficient in recognizing the thelytokous female and copulating with them. A thelytokous female, once inseminated, will utilize the sperm as efficiently as the arrhenotokous female. Viable and fertile hybrids are produced and when conditions are favorable and a suitable host is present the introgressive process will result in a hybrid swarm. The hybrids acquire traits carried by both ancestral stocks.  相似文献   

9.
In the solitary parasitoid wasp Venturia canescens both arrhenotokously (sexual) and thelytokously (parthenogenetical) reproducing individuals occur sympatrically. We found in the laboratory that thelytokous wasps are able to mate, receive and use sperm of arrhenotokous males. Using nuclear (amplified fragment length polymorphism, virus-like protein) and mitochondrial (restriction fragment length polymorphism) markers, we show the occurrence of gene flow from the arrhenotokous to the thelytokous mode in the field. Our results reinforce the paradox of sex in this species.  相似文献   

10.
Lattorff HM  Moritz RF  Fuchs S 《Heredity》2005,94(5):533-537
The evolution and maintenance of parthenogenetic species are a puzzling issue in evolutionary biology. Although the genetic mechanisms that act to restore diploidy are well studied, the underlying genes that cause the switch from sexual reproduction to parthenogenesis have not been analysed. There are several species that are polymorphic for sexual and parthenogenetic reproduction, which may have a genetic basis. We use the South African honeybee subspecies Apis mellifera capensis to analyse the genetic control of thelytoky (asexual production of female workers). Due to the caste system of honeybees, it is possible to establish classical backcrosses using sexually reproducing queens and drones of both arrhenotokous and thelytokous subspecies, and to score the frequency of parthenogenesis in the resulting workers. We found Mendelian segregation for thelytoky of egg-laying workers, which appears to be controlled by a single major gene (th). The segregation pattern indicates a recessive allele causing thelytoky. We found no evidence for maternal transmission of bacterial endosymbionts controlling parthenogenesis. Thelytokous parthenogenesis of honeybee workers appears to be a classical qualitative trait, because we did not observe mixed parthenogenesis (amphitoky), which might be expected in the case of multi-locus inheritance.  相似文献   

11.
Divergent reproductive interests of males and females can lead to sexually antagonistic coevolution (SAC). In the absence of males, adaptations evolved under SAC are released from selection and expected to deteriorate. In this study, we investigated this prediction using two populations of the parasitoid wasp Leptopilina clavipes, one arrhenotokous and one thelytokous. Thelytokous females were induced to produce sons by curing them of their Wolbachia-infection. We examined whether thelytokous males were less able to inhibit female remating than arrhenotokous males and whether thelytokous females were more susceptible to male-induced longevity reduction than arrhenotokous females. The results showed that females were monandrous, regardless of whether mated with an arrhenotokous or thelytokous male. While ongoing courtship of males reduced female life span, there was no longevity cost of mating for either arrhenotokous or thelytokous females. Our results therefore do not support the idea that adaptations evolved under SAC deteriorate under prolonged female-only selection.  相似文献   

12.
All Hymenoptera have a haplodiploid mode of sex determination. Although most species reproduce by arrhenotokous parthenogenesis, there are many thelytokous species, in which unfertilized eggs develop into diploid females. Thelytoky can be genetic or due to microbial infection. In the large Chalcidoidea superfamily, thelytokous parthenogenesis is almost always associated with infection of endosymbionts of the genera Wolbachia, Cardinium, and Rickettsia. Thripoctenus javae (Girault) (Hymenoptera: Eulophidae) is a larval parasitoid of the greenhouse thrips Heliothrips haemorrhoidalis (Bouché) (Thysanoptera: Thripidae), an important worldwide pest. Both the host and its parasitoid reproduce by thelytokous parthenogenesis. The main goal of this study was to test whether endosymbiotic bacteria, either those known to induce thelytokous parthenogenesis or other sex‐manipulators, are responsible for thelytoky of two geographically distinct populations of T. javae. We used sequencing of ribosomal ITS2 and 28S‐D2 and mitochondrial COI genes to molecularly characterize the two populations, antibiotic and heat treatments, and FISH of ovaries, for thelytoky studies. It was impossible to revert thelytokous individuals back to sexual reproduction and no evidence of bacterial infection was found in parthenogenetic T. javae females. This makes T. javae the second chalcidoid in which thelytokous reproduction appears not to be associated with the presence of bacterial endosymbionts.  相似文献   

13.
Hymenopteran parasitoids generally reproduce by arrhenotoky, in which males develop from unfertilized eggs and females from fertilized eggs. A minority reproduce by thelytoky, in which all-female broods are derived from unfertilized eggs. Thelytokous populations are potentially of interest for augmentative biological control programs since the exclusive production of females could significantly lower the costs of mass rearing. Behavioral traits are a major component of parasitoid efficacy. Here, we examined orientation and host searching behavior in thelytokous and arrhenotokous populations of the fruit fly parasitoid Odontosema anastrephae Borgmeier (Hymenoptera: Figitidae). Orientation behavior to various odorant sources was studied in a two-choice olfactometer. No major differences were found between thelytokous and arrhenotokous wasps for this behavior. However, when host-searching behaviors were analyzed, some differences were found. Thelytokous females arrived sooner, foraged longer, and remained longer on non-infested guavas than arrhenotokous females. Individuals of both forms exhibited similar stereotyped behavioral sequences vis-à-vis guava treatments, with only slight deviations detected. Our results suggest that individuals from selected thelytokous and arrhenotokous O. anastrephae populations have similar abilities to search for tephritid larvae, supporting the use of thelytokous strains for augmentative releases.  相似文献   

14.
Wolbachia are endosymbiotic bacteria known to manipulate the reproduction of their hosts by, for example, inducing parthenogenesis. In most cases of Wolbachia‐induced parthenogenesis, the infection is fixed and the entire host population consists of females. In the absence of males and sexual reproduction, genes involved in sexual reproduction are not actively maintained by selection. Accumulation of neutral mutations or selection against maintenance of sexual traits may lead to their loss or deterioration. In addition, females may lose the ability to reproduce sexually due to ‘functional virginity mutations’ that may spread concomitantly with the Wolbachia infection through a population. The parasitoid wasp Tetrastichus coeruleus (Nees) (Hymenoptera: Eulophidae) forms an ideal model to study the decay of sexual functionality, because it has both Wolbachia‐infected, parthenogenetic populations and uninfected, sexual populations. We compared several components of sexual functionality of arrhenotokous (sexual) and thelytokous (parthenogenetic) T. coeruleus females. First, we tested whether arrhenotokous and thelytokous females were equally attractive and receptive to males. Second, we examined whether mating is costly to females by measuring the life span of mated and virgin females. Last, we studied the morphology of the spermathecae of arrhenotokous and thelytokous females. Mated females had shorter life spans than virgin females, showing that mating carried a fitness cost. Two sexual traits of thelytokous females have degraded compared to arrhenotokous females. Arrhenotokous and thelytokous females were equally attractive to males, but thelytokous females were unreceptive to males. Furthermore, there was a clear difference in spermathecal morphology between arrhenotokous and thelytokous females. Our data do not allow distinction between the various potential causes of such degradation. Although the longevity cost of mating may indicate selection against the maintenance of costly sexual traits, accumulation of neutral mutations, functional virginity mutations, manipulation by Wolbachia, and/or the genetic distance between the two populations may all have contributed to the decay of sexual traits in thelytokous females.  相似文献   

15.
Wolbachia bacteria infect approximately 20% of all insect species, and cause a range of alterations to host reproduction, including imposition of thelytoky. The incidence and phenotypic impact of Wolbachia remains to be established in many insect taxa, and considerable research effort is currently focused on its association with particular reproductive modes and the relative importance of the various pathways via which infection occurs. Gallwasps represent an attractive system for addressing these issues for two reasons. First, they show a diversity of reproductive modes (including arrhenotoky, thelytoky and cyclical parthenogenesis) in which the impact of Wolbachia infection can be examined. Second, they occupy two intimately linked trophic niches (gall-inducers and inquilines) between which there is potential for the horizontal exchange of Wolbachia infection. In the arrhenotokous gallwasp lineages screened to date (the herb-galling 'Aylacini' and the rose-galling Diplolepidini), Wolbachia infection always induces thelytoky. The impact of Wolbachia in other arrhenotokous clades, and in the cyclically parthenogenetic clades remains unknown. Here we use polymerase chain reaction (PCR) screening and sequence data for two Wolbachia genes (wsp and ftsZ) to examine the prevalence and incidence of Wolbachia infection in 64 species (a total of 609 individuals) in two further tribes: the arrhenotokous inquilines (tribe Synergini), and the cyclically parthenogenetic oak gallwasps (tribe Cynipini). We ask: (i) whether Wolbachia infection has any apparent impact on host reproduction in the two tribes and (ii) whether there is any correlation between Wolbachia infection and the apparent lack of an arrhenotokous generation in many oak gallwasp life cycles. We show: (i) that Wolbachia infection is rare in the Cynipini. Infected species show no deviation from cyclical parthenogenesis, and infection is no more common in species known only from a thelytokous generation; (ii) that there is a higher incidence of infection within the arrhenotokous inquilines, and generally in gallwasp tribes without cyclical parthenogensis; (iii) all Wolbachia-positive inquiline species are known to possess males, implying either that Wolbachia infection does not result in loss of sex in this tribe or, more probably, that (as for some rose gallwasps) Wolbachia infection leads to loss of sex in specific populations; and (iv) although we find some inquilines and gall inducers to be infected with Wolbachia having the same wsp sequence, these hosts are not members of the same gall communities, arguing against frequent horizontal transmission between these two trophic groups. We suggest that exchange may be mediated by the generalist parasitoids common in oak galls.  相似文献   

16.
Among eukaryotes, sexual reproduction is by far the most predominant mode of reproduction. However, some systems maintaining sexuality appear particularly labile and raise intriguing questions on the evolutionary routes to asexuality. Thelytokous parthenogenesis is a form of spontaneous loss of sexuality leading to strong distortion of sex ratio towards females and resulting from mutation, hybridization or infection by bacterial endosymbionts. We investigated whether ecological specialization is a likely mechanism of spread of thelytoky within insect communities. Focusing on the highly specialized genus Megastigmus (Hymenoptera: Torymidae), we first performed a large literature survey to examine the distribution of thelytoky in these wasps across their respective obligate host plant families. Second, we tested for thelytoky caused by endosymbionts by screening in 15 arrhenotokous and 10 thelytokous species for Wolbachia, Cardinium, Arsenophonus and Rickettsia endosymbionts and by performing antibiotic treatments. Finally, we performed phylogenetic reconstructions using multilocus sequence typing (MLST) to examine the evolution of endosymbiont‐mediated thelytoky in Megastigmus and its possible connections to host plant specialization. We demonstrate that thelytoky evolved from ancestral arrhenotoky through the horizontal transmission and the fixation of the parthenogenesis‐inducing Wolbachia. We find that ecological specialization in Wolbachia's hosts was probably a critical driving force for Wolbachia infection and spread of thelytoky, but also a constraint. Our work further reinforces the hypothesis that community structure of insects is a major driver of the epidemiology of endosymbionts and that competitive interactions among closely related species may facilitate their horizontal transmission.  相似文献   

17.
Theory predicts that asexual reproduction has a competitive advantage over sexual reproduction because of the twofold cost of producing males. Few systems are suitable for directly testing this prediction. In the solitary parasitoid wasp Venturia canescens both arrhenotokously (sexual) and thelytokously (asexual) reproducing individuals occur sympatrically. We sampled 922 wasps from 22 localities along the coast of south‐eastern France. Thelytokous wasps were less abundant (23%) than arrhenotokous wasps and were almost always found in sympatry with arrhenotokous ones. An analysis of genetic relatedness using amplified fragment length polymorphism (AFLP) markers showed the existence of a widespread thelytokous clone. In addition, a few thelytokous individuals were found to be closely related to arrhenotokous ones and vice versa. These data suggest the occurrence of occasional gene flow between both reproductive modes and/or recurrent origin of thelytokous clones from coexisting arrhenotokous populations in the area. The results are discussed in the context of the paradox of sex.  相似文献   

18.
Population divergence in sexual traits is affected by different selection pressures, depending on the mode of reproduction. In allopatric sexual populations, aspects of sexual behavior may diverge due to sexual selection. In parthenogenetic populations, loss‐of‐function mutations in genes involved in sexual functionality may be selectively neutral or favored by selection. We assess to what extent these processes have contributed to divergence in female sexual traits in the parasitoid wasp Leptopilina clavipes in which some populations are infected with parthenogenesis‐inducing Wolbachia bacteria. We find evidence consistent with both hypotheses. Both arrhenotokous males and males derived from thelytokous strains preferred to court females from their own population. This suggests that these populations had already evolved population‐specific mating preferences when the latter became parthenogenetic. Thelytokous females did not store sperm efficiently and fertilized very few of their eggs. The nonfertility of thelytokous females was due to mutations in the wasp genome, which must be an effect of mutation accumulation under thelytoky. Divergence in female sexual traits of these two allopatric populations has thus been molded by different forces: independent male/female coevolution while both populations were still sexual, followed by female‐only evolution after one population switched to parthenogenesis.  相似文献   

19.
This study reports on two parthenogenetic strains of the migratory locust Locusta migratoria. The offspring of thelytokou females had a single fragment per microsatellite loci. All offspring of the parthenogenetic F1 females were genetically identical. These results further confirmed that restitution of the sister products of early cleavage mitoses and cell fusion might be the most likely diploidization mechanisms in the thelytokous locusts. Polymerase chain reaction amplification results demonstrated that thelytoky in the locust was not induced by Wolbachia bacteria. Apart from the low fitness gained in thelytokous females, large populations with migration and losing heterozygosity may be other reasons why regular parthenogenesis has not evolved in the locust.  相似文献   

20.
The ability to adjust resource allocation to the quality of the environment has broad implications for animal reproductive success. Organisms with complex life cycles that may experience various selection pressures during their lifetime are expected to evolve mechanisms to modulate the resource allocation strategies adopted during ontogeny to the conditions encountered by the adult. In the parasitoid Venturia canescens Gravenhorst (Hymenoptera: Ichneumonidae), thelytoky appears to have been selected for in anthropogenic habitats, where hosts are relatively numerous and food is absent, and arrhenotoky in natural habitats where hosts are more scarce and food is present. A previous study postulated that during their juvenile stage, females of both reproductive modes adopt strategies of energy allocation in accordance with these conditions, possibly providing a direct short‐term advantage to arrhenotokous forms, which partially co‐occur with thelytokous forms under natural conditions. To test this assumption, we provided daily adult thelytokous and arrhenotokous females with a small number of hosts together with food. To compare their lifetime resource allocation strategies, we recorded wasp longevities, egg loads, and carbohydrate reserves in wasps of different ages. Our analysis indicates that thelytokous females are able, to a certain extent, to cope with these conditions, because they reached the same longevity as arrhenotokous females. Nevertheless, thelytokous females suffered from a higher degree of time limitation compared with arrhenotokous ones, and arrhenotokous wasps appeared to maintain their energetic advantage over the adult stage. These results provide new insights, and point to the consideration of other activities, such as flight performance and/or ability to reach food and hosts, in the understanding of the role of resource allocation strategies in the maintenance of sex in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号