首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nickel (Ni) may impair plant water balance through detrimental effects on the belowground level. Bilberry (Vaccinium myrtillus L.) plants were grown in a mesic heath forest-type soil and subjected to Ni sulphate (NiSO4·6H2O) concentrations of 0, 10, 50, 100 and 500 mg m−2 during an entire growing season in northern Finland (65°N). Biomass of belowground rhizomes, and tissue water content (TWC) and anthocyanin concentrations of aerial shoots were determined from mature plants in order to study rhizospheric Ni stress, and its possible long-distance effects on aerial shoots. As the major proportion of biomass of bilberry is invested in belowground parts, it was hypothesised that Ni-induced rhizospheric disturbance causes water stress in aerial shoots and increases their anthocyanin concentrations for osmotic regulation. Uptake of Ni from the soil to the rhizome and aerial shoots was measured with X-ray fluorescence spectrometry. Ni concentrations in the soil and rhizome exhibited a dose–response relationship, but the concentrations in the rhizome were about 10-fold lower (<3 mg Ni kg−1) than those in the soil (<30 mg Ni kg−1). Translocation of Ni from the rhizome to aerial shoots did not occur, as Ni concentrations in shoots remained at 1 mg Ni kg−1. Although Ni concentrations in the rhizome were below the threshold values of Ni toxicity (i.e. 10–50 mg Ni kg−1), Ni decreased the rhizome biomass. Anthocyanins decreased in aerial shoots along with the Ni accumulation in the rhizome, while TWC was unaffected. The result suggests that anthocyanins are not involved in osmotic regulation under Ni stress, since anthocyanins in aerial shoots responded to the Ni concentrations in the rhizome despite the lack of water stress.  相似文献   

2.
Mine tailings are an environmental problem in Southern Spain because wind and water erosion of bare surfaces results in the dispersal of toxic metals over nearby urban or agricultural areas. Revegetation with tolerant native species may reduce this risk. We grew two grasses, Lygeum spartum and Piptatherum miliaceum, and the crop species Cicer arietinum (chickpea) under controlled conditions in pots containing a mine tailings mixed into non-polluted soil to give treatments of 0%, 25%, 50%, 75% and 100% mine tailings. We tested a neutral (pH 7.4) mine tailings which contained high concentrations of Cd, Cu, Pb and Zn. Water-extractable metal concentrations increased in proportion to the amount of tailings added. The biomass of the two grasses decreased in proportion to the rate of neutral mine-tailing addition, while the biomass of C. arietinum only decreased in relation to the control treatment. Neutron radiography revealed that root development of C. arietinum was perturbed in soil amended with the neutral tailings compared to those of the control treatment, despite a lack of toxicity symptoms in the shoots. In all treatments and for all metals, the plants accumulated higher concentrations in the roots than in shoots. The highest concentrations occurred in the roots of P. miliaceum (2500 mg kg?1 Pb, 146 mg kg?1 Cd, 185 mg kg?1 Cu, 2700 mg kg?1 Zn). C. arietinum seeds had normal concentrations of Zn (70–90 mg kg?1) and Cu (6–9 mg kg?1). However, the Cd concentration in this species was ~1 mg kg?1 in the seeds and 14.5 mg kg?1 in shoots. Consumption of these plant species by cattle and wild fauna may present a risk of toxic metals entering the food chain.  相似文献   

3.
Plants of miscanthus were grown in a Cd-free solution up to 1 month before heading and then were exposed to 0, 0.75, 1.5, 2.25 and 3 mg l−1 cadmium for 36 days. All cadmium levels were toxic to miscanthus. Growth response was not dose-dependent and two toxicity thresholds were identified: one between 0 and 0.75 mg l−1 Cd, the other between 2.25 and 3 mg l−1 Cd. The former caused a biomass decrease by about 50%, whereas the latter completely inhibited growth and disrupted the mechanisms that restricted Cd translocation to the shoot. Growth of the aerial part was affected by cadmium more than that of the hypogeal one. Cadmium did not change the N concentration of different plant parts, but markedly reduced the N uptake of the plant, the N net uptake rate (NUR) and the N net translocation rate (NTR) from the rhizome to the aerial part. These two indexes equalled zero when plants ceased to grow. Otherwise, the Cd-NUR increased with Cd supply and the Cd-NTR from rhizome to aerial part showed the highest increment when plants did not grow at all. This suggests different uptake pathways for the two elements, active for nitrogen and passive for cadmium. The Cd concentration and the Cd content markedly increased with all Cd levels, following the order roots  rhizome > culms > leaves. The Cd concentration and the Cd content of aerial organs increased with Cd supply, but increments were highest between 2.25 and 3 mg l−1 Cd. The highest Cd concentrations were recorded in plants grown with 3 mg l−1 Cd and were 41 and 122 mg kg−1, respectively, for the aerial and the hypogeal plant parts. The hypogeal plant part retained most of the cadmium taken up from solution, accounting for approximately 87% of total plant cadmium with the three lower Cd levels, and for 73% with the highest one. The maximum Cd content of the entire plant was achieved with the two higher Cd levels and was approximately 4.7 mg, while the Cd content of the aerial part was highest with 3 mg l−1 Cd (1.2 mg Cd per plant) and that of the hypogeal one with 2.25 mg l−1 Cd (4 mg Cd per plant). The highest aerial content achieved in this experiment was 10-fold that obtained in a previous research when small-sized plants were exposed to the same Cd level.  相似文献   

4.
The phosphorus (P) fractions and bioavailable P in the sediments from the Quanzhou Bay Estuarine Wetland Nature Reserve were investigated using chemical extraction methods for the first time to study the distribution and bioavailability of P in the reserve sediments. A hypothesis was presented suggesting that the bioavailable P in the sediments could be evaluated using the P fractions. The total phosphorus (TP), inorganic phosphorus (IP), organic phosphorus (OP), non-apatite phosphorus (NAIP), and apatite phosphorus (AP) contents in the sediments were in the ranges of 303.87–761.59 mg kg−1, 201.22–577.66 mg kg−1, 75.83–179.16 mg kg−1, 28.86–277.90 mg kg−1, and 127.36–289.94 mg kg−1, respectively. The water soluble phosphorus (WSP), readily desorbable phosphorus (RDP), algal available phosphorus (AAP), and NaHCO3 extractable phosphorus (Olsen-P) contents in the sediments were in the ranges of 0.58–357.17 mg kg−1, 80.77–586.75 mg kg−1, 1.09–24.12 mg kg−1, and 54.96–676.82 mg kg−1, respectively. The correlation analysis results showed that the NAIP was the major component of the bioavailable P and that the impact of the AP on the bioavailable phosphorus may be minimal. Due to the low TP content in the sediments of the Quanzhou Bay Estuarine Wetland Nature Reserve, the potential pollution risks of P in the sediments may not be very high. The results also show that the bioavailable P concentrations in the sediments of the Quanzhou Bay Estuarine Wetland Nature Reserve could not be evaluated by measuring the P fractions and that the hypothesis was untenable.  相似文献   

5.
In soil, high variability of U bioavailability results in large range of apparent U toxic levels for plants. U toxicity on hairy roots of carrot was studied in nutrient gel with a standardized in vitro device. After exposure to 2.5 and 20 mg U L?1 for 34 days, U concentration ranged between 4 and 563 mg U kg?1 fresh weight which was in good accordance with U accumulation by roots of plant from contaminated soils. Threshold of U toxicity for root length decreased with time and a transient hormesis occurred for exposure to 2.5 and 5 mg U L?1. After 34 days and with root length as endpoint, significant toxicity appeared at a gel contamination level above 7.5 mg U L?1 corresponding to a maximum U concentration in the liquid phase of 0.8 mg L?1. The calculated EC50 for root length as a function of gel contamination was 9.4 mg U L?1. Lower threshold and EC50 were observed for biomass as endpoint (resp. 5 and 7.3 mg U L?1). The low values observed in this study could result from high sensitivity of carrot to U, high bioavailability of U in gel or absence of interferences with microorganisms. This in vitro device appeared adapted to study toxicity of U to plant roots in optimal conditions of both exposure and observations and is recommended to examine further physiological processes and the influence of microorganism interactions.  相似文献   

6.
In this study, zinc (Zn) and cadmium (Cd) tolerance, accumulation and distribution was conducted in Potentilla griffithii H., which has been identified as a new Zn hyperaccumulator found in China. Plants were grown hydroponically with different levels of Zn2+ (20, 40, 80 and 160 mg L?1) and Cd2+ (5, 10, 20 and 40 mg L?1) for 60 days. All plants grew healthy and attained more biomass than the control, except 40 mg L?1 Cd treatment. Zn or Cd concentration in plants increased steadily with the increasing addition of Zn or Cd in solution. The maximum metal concentrations in roots, petioles and leaves were 14,060, 19,600 and 11,400 mg kg?1 Zn dry weight (DW) at 160 mg L?1 Zn treatment, and 9098, 3077 and 852 mg kg?1 Cd DW at 40 mg L?1 Cd treatment, respectively. These results suggest that P. griffithii has a high ability to tolerate and accumulate Cd and Zn, and it can be considered not only as Zn but also as a potential cadmium hyperaccumulator. Light microscope (LM) with histochemical method, scanning electron microscope combined with energy dispersive spectrometry (SEM-EDS) and transmission electron microscope (TEM) were used to determine the distribution of Zn and Cd in P. griffithii at tissue and cellular levels. In roots, SEM-EDS confirmed that the highest Zn concentration was found in xylem parenchyma cells and epidermal cells, while for Cd, a gradient was observed with the highest Cd concentration in rhizodermal and cortex cells, followed by central cylinder. LM results showed that Zn and Cd distributed mainly along the walls of epidermis, cortex, endodermis and some xylem parenchyma. In leaves, Zn and Cd shared the similar distribution pattern, and both were mostly accumulated in epidermis and bundle sheath. However, in leaves of 40 mg L?1 Cd treatment, which caused the phytotoxicity, Cd was also found in the mesophyll cells. The major storage site for Zn and Cd in leaves of P. griffithii was vacuoles, to a lesser extent cell wall or cytosol. The present study demonstrates that the predominant sequestration of Zn and Cd in cell walls of roots and in vacuoles of epidermis and bundle sheath of leaves may play a major role in strong tolerance and hyperaccumulation of Zn and Cd in P. griffithii.  相似文献   

7.
Metal hyperaccumulation is of great interest in recent years because of its potential application for phytoremediation of heavy metal contaminated soils. In this study, a field survey and a hydroponic experiment were conducted to study the accumulation characteristics of lead (Pb), zinc (Zn) and cadmium (Cd) in Arabis paniculata Franch., which was found in Yunnan Province, China. The field survey showed that the wild population of A. paniculata was hyper-tolerant to extremely high concentrations of Pb, Zn and Cd, and could accumulate in shoots an average level of 2300 mg kg?1 dry weight (DW) Pb, 20,800 mg kg?1 Zn and 434 mg kg?1 Cd, with their translocation factors (TFs) all above one. Under the hydroponic culture, stimulatory effects of Pb, Zn and Cd on shoot dry biomass were noted from 24 to 193 μM Pb, 9 to 178 μM Cd and all Zn supply levels in nutrient solution, while the effects were not obvious in the roots. Chlorophyll concentrations in Pb, Zn and Cd treatments showed an inverted U-shaped pattern, consistent with the change of plant biomass. Pb, Zn and Cd concentrations in the shoots and roots increased sharply with increasing Pb, Zn and Cd supply levels. They reached > 1000 mg kg?1 Pb, 10,000 mg kg?1 Zn and 100 mg kg?1 Cd DW in the 24 μM Pb, 1223 μM Zn and 9 μM Cd treatment, respectively, in which the plants grew healthy and did not show any symptoms of phytotoxicity. The TFs of Zn were basically higher than one and the amount of Zn taken by shoots ranged from 78.7 to 90.4% of the total Zn. However, the TFs of Pb and Cd were well below one, and 55.0–67.5% of total Pb and 57.8–83.5% of total Cd was accumulated in the shoots. These results indicate that A. paniculata has a strong ability to tolerate and hyperaccumulate Pb, Zn and Cd. Meanwhile, suitable levels of Pb, Zn and Cd could stimulate the biomass production and chlorophyll concentrations of A. paniculata. Thus, it provides a new plant material for understanding the mechanisms of stimulatory effect and co-hyperaccumulation of multiple heavy metals.  相似文献   

8.
The research on the function and mechanism of selenium (Se) is of great significance for the development of Se-enriched agricultural products. In this paper, uptake, speciation distribution, the effects on the flue-cured tobacco growth and antioxidant system of Se at different levels (0–22.2 mg Se kg−1) were studied through a pot experiment, aiming to clarify flue-cured tobacco's response to Se stress and the relationship between Se speciation and antioxidant system. The results showed that the leaf area and number, the biomass and the chlorophyll content reached the maximum at 4.4 mg kg−1 of Se treatment. Selenium at low levels (≤4.4 mg kg−1) stimulated the growth of flue-cured tobacco by elevating the capability of antioxidant stress and reducing the malondialdehyde (MDA) content to 0.6–0.8 times of that of the control. However, high Se levels (≥11.1 mg kg−1) depressed the capability of antioxidant stress and raised the MDA content to 1.5-fold of that of the control, and meanwhile the biomass of the aboveground parts and underground parts declined notably. The Se content in different parts of flue-cured tobacco significantly increased with the growth of Se levels. The range of Se content in roots, leaves and stems at 2.2–22.2 mg kg−1 of Se treatment were 16.7–58.6 mg kg−1, 2.6–37.3 mg kg−1 and 2.2–10.3 mg kg−1, respectively. According to the detection of different Se speciation, only selenocysteine (SeCys) was detectable in leaves at 2.2 mg kg−1 Se treatment; SeCys, selenite [Se(IV)]and selenate [Se(VI)] were detected in flue-cured tobacco leaves at Se treatment (≥4.4 mg kg−1), which accounted for 4.6–10%, 9–18.7% and 71–86% respectively; SeCys, selenomethionine (SeMet) and Se(IV) were detected in roots, and organic selenium(66–84%) was the main Se species at Se  11.1 mg kg−1 treatment; four Se species [SeCys, SeMet, Se(IV) and Se(VI)] were detected in flue-cured tobacco roots, and the main Se species was inorganic Se (60%) at 22.2 mg kg−1 Se treatment. That was to say, the percentage of organic Se species (SeCys and SeMet in flue-cured tobacco leaves and root) declined, whereas the ratio of inorganic Se species [Se(IV) and Se(VI)] increased with the growth of Se levels. The correlation analysis showed that the superoxide dismutase (SOD) activity as well as the glutathione (GSH) and MDA contents were positively correlated with the Se(IV) and Se(VI) contents at P < 0.01 and excessive inorganic Se might destruct the reactive oxygen species (ROS) balance and enhance the MDA content, thus causing damage to the plant growth. In a word, the present study suggested that the ratio of inorganic Se [Se(IV) and Se(VI)] was closely related with the growth and the antioxidant capacity of flue-cured tobacco and the excessive application of Se led to the higher proportion of inorganic Se and poorer antioxidant capacity, which ultimately inhibited the growth of flue-cured tobacco.  相似文献   

9.
In several organisms, the first barrier against microbial infections consists of antimicrobial peptides (AMPs) which are molecules that act as components of the innate immune system. Recent studies have demonstrated that AMPs can perform various functions in different tissues or physiological conditions. In this view, this study was carried out in order to evaluate the multifunctional activity in vivo of an alanine-rich peptide, known as Pa-MAP, derived from the polar fish Pleuronectes americanus. Pa-MAP was evaluated in intraperitoneally infected mice with a sub-lethal concentration of Escherichia coli at standard concentrations of 1 and 5 mg kg−1. At both concentrations, Pa-MAPs exhibited an ability to prevent E. coli infection and increase mice survival, similar to the result observed in mice treated with ampicillin at 2 mg kg−1. In addition, mice were monitored for weight loss. The results showed that mice treated with Pa-MAPs at 1 mg kg−1 gained 0.8% of body weight during the 72 h of experiment. The same was observed with Pa-MAP at 5 mg kg−1, which had a gain of 0.5% in body weight during the treatment. Mice treated with ampicillin at 2 mg kg−1 show a significant weight loss of 5.6% of body weight. The untreated group exhibited a 5.5% loss of body weight. The immunomodulatory effects were also evaluated by the quantification of IL-10, IL-12, TNF-α, IFN-γ and nitric oxide cytokines in serum, but no immunomodulatory activity was observed. Data presented here suggest that Pa-MAP should be used as a novel antibiotic against infection control.  相似文献   

10.
Arsenic hyperaccumulation by Pteris vittata L. (Chinese brake fern) may serve as a defense mechanism against herbivore attack. This study examined the effects of arsenic exposure (0, 5, 15 and 30 mg kg?1) on scale insect (Saissetia neglecta) infestation of P. vittata. Scale insects were counted as a percentage fallen from the plant to the total number of insects after 1 week of As-treatment. The arsenic concentrations in the fronds ranged from 5.40 to 812 mg kg?1. Greater arsenic concentrations resulted in higher percentage of fallen-scale insects (17.2–55.0%). Lower arsenic concentrations (≤5 mg kg?1) showed significantly lower effect on the population compared to 15–30 mg kg?1 (p < 0.05). Arsenic content in the fallen-scale insects was as high as 194 mg kg?1, which indicated that arsenic has been ingested by the scale insects via plant sap. This study is consistent with the hypothesis that arsenic may help P. vittata defend against herbivore's attack.  相似文献   

11.
The diatom genus Pseudo-nitzschia (Peragallo) associated with the production of domoic acid (DA), the toxin reposnsible for amnesic shellfish poisoning, is abundant in Scottish waters. A two year study examined the relationship between Pseudo-nitzschia cells in the water column and DA concentration in blue mussels (Mytilus edulis) at two sites, and king scallops (Pecten maximus) at one site. The rate of DA uptake and depuration differed greatly between the two species with M. edulis whole tissue accumulating and depurating 7 μg g−1 (now expressed as mg kg−1) per week. In contrast, it took 12 weeks for DA to depurate from P. maximus gonad tissue from a concentration of 68 μg g−1 (now mg kg−1) to <20 μg g−1 (now mg kg‐1). The DA depuration rate from P. maximus whole tissue was <5% per week during both years of the study. Correlations between the Pseudo-nitzschia cell densities and toxin concentrations were weak to moderate for M. edulis and weak for P. maximus. Seasonal diversity on a species level was observed within the Pseudo-nitzschia genus at both sites with more DA toxicity associated with summer/autumn Pseudo-nitzschia blooms when P. australis was observed in phytoplankton samples. This study reveals the marked difference in DA uptake and depuration in two shellfish species of commercial importance in Scotland. The use of these shellfish species to act as a proxy for DA in the environment still requires investigation.  相似文献   

12.
Pot experiments were performed to evaluate the phytoremediation capacity of plants of Atriplex halimus grown in contaminated mine soils and to investigate the effects of organic amendments on the metal bioavailability and uptake of these metals by plants. Soil samples collected from abandoned mine sites north of Madrid (Spain) were mixed with 0, 30 and 60 Mg ha−1 of two organic amendments, with different pH and nutrients content: pine-bark compost and horse- and sheep-manure compost. The increasing soil organic matter content and pH by the application of manure amendment reduced metal bioavailability in soil stabilising them. The proportion of Cu in the most bioavailable fractions (sum of the water-soluble, exchangeable, acid-soluble and Fe–Mn oxides fractions) decreased with the addition of 60 Mg ha−1 of manure from 62% to 52% in one of the soils studied and from 50% to 30% in the other. This amendment also reduced Zn proportion in water-soluble and exchangeable fractions from 17% to 13% in one of the soils. Manure decreased metal concentrations in shoots of A. halimus, from 97 to 35 mg kg−1 of Cu, from 211 to 98 mg kg−1 of Zn and from 1.4 to 0.6 mg kg−1 of Cd. In these treatments there was a higher plant growth due to the lower metal toxicity and the improvement of nutrients content in soil. This higher growth resulted in a higher total metal accumulation in plant biomass and therefore in a greater amount of metals removed from soil, so manure could be useful for phytoextraction purposes. This amendment increased metal accumulation in shoots from 37 to 138 mg pot−1 of Cu, from 299 to 445 mg pot−1 of Zn and from 1.8 to 3.7 mg pot−1 of Cd. Pine bark amendment did not significantly alter metal availability and its uptake by plants. Plants of A. halimus managed to reduce total Zn concentration in one of the soils from 146 to 130 mg kg−1, but its phytoextraction capacity was insufficient to remediate contaminated soils in the short-to-medium term. However, A. halimus could be, in combination with manure amendment, appropriate for the phytostabilization of metals in mine soils.  相似文献   

13.
In this study an experiment was carried out to study the process of stress adaptation in Groenlandia densa (opposite-leaved pondweed) grown under cadmium stress (0–20 mg L?1 Cd). The results showed that Cd concentrations in plants increased with increasing Cd supply levels and reached a maximum of 0.43 mg kg?1 DW at 0.5 mg L?1 Cd concentrations. The level of photosynthetic pigments and soluble proteins decreased only upon exposure to high Cd concentrations. At the same time, the level of malondialdehyde (MDA) increased with increasing Cd concentration. These results suggested an alleviation of stress that was presumably the result of by antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione S-transferase (GST) as well as ascorbate peroxidase (APX), which increased linearly with increasing Cd levels. Cellular antioxidants levels showed a decline suggesting a defensive mechanism to protect against oxidative stress caused by Cd. In addition, the proline content in G. densa increased with increasing cadmium levels. These findings suggest that G. densa is equipped with an efficient antioxidant mechanism against Cd-induced oxidative stress which protects the plant's photosynthetic machinery from damage.Our present work concluded that G. densa has a high level of Cd tolerance and accumulation. We also found that moderate Cd treatment (0.05–5 mg L?1 Cd) alleviated oxidative stress in plants, while the addition of higher amounts of Cd (10–20 mg L?1) could cause an increasing generation of ROS, which was effectively scavenged by the antioxidative system.  相似文献   

14.
Effects of selenium (Se) and diazinon (DZN) on sperm motility parameters in rats were investigated. Male rats received a separate dose of Se (2 mg kg−1 b.w., intraperitoneally, 5 mg L−1, per os in drinking water), diazinon (20 mg kg−1 b.w., intraperitoneally, 40 mg L−1, per os in drinking water), and in combination (Se + DZN) with the same dosage as in the separate administration. 36 h an intraperitoneal (i.p.) and after 90 days of per oral (p.o.) exposure, thirteen parameters of sperm motility were evaluated using a Computer Assisted Sperm Analyzer (CASA). Almost all the evaluated sperm motility parameters significantly decreased in Se p.o. exposed groups. In the Se i.p. group decrease was noted only in beat cross frequency (BCF) and progressive motility. Significant decline in the sperm motility, progressive motility, BCF and increase in amplitude of lateral head displacement (ALH) were recorded after DZN i.p. administration. In DZN p.o. group, significant increase in ALH, velocity average path (VAP) and curvilinear velocity (VCL) but decrease in progressive motility and BCF was detected. Se + DZN i.p. administration caused a significant decrease in motility, progressive motility and BCF. Per oral administration of Se + DZN decreased all motility parameters except LIN, WOB and ALH. Sperm abnormalities increased in all experimental conditions. Se and DZN negatively affected sperm structure and function in separate doses or in combination. No protective effect of Se was observed.  相似文献   

15.
《Small Ruminant Research》2007,67(1-3):214-221
The efficacy of lincomycin to control respiratory infections in lambs was assessed in two trials. In trial I, 72 lambs with active mycoplasmal pneumonia were allocated as follows: lambs in group T2 were treated with lincomycin (5 mg kg−1 bodyweight, intramuscularly) twice 2 days apart, those in group T3 with lincomycin (5 mg kg−1 bodyweight, intramuscularly) thrice with 2-day intervals, those in group O with oxytetracycline (20 mg kg−1 bodyweight, intramuscularly) twice 4 days apart and those in group C were controls. In trial II, 48 25–30-day-old clinically healthy lambs were allocated as follows: lambs in group P2 received two injections of lincomycin (5 mg kg−1 bodyweight, intramuscularly) when 30- and 60-day-old, lambs in group P1/30 received one injection of lincomycin (5 mg kg−1 bodyweight, intramuscularly) when 30-day-old, lambs in group P1/60 received one injection of lincomycin (5 mg kg−1 bodyweight, intramuscularly) when 60-day-old and lambs in group C were controls. In trial I, treatment with lincomycin was associated with improved clinical scores; clinical cure rate 42 days after treatment was 87%, 100%, 87% and 0% for group T2, T3, O and C, respectively (P < 0.001); treated lambs produced 18.5% (T2) or 26.5% (T3) heavier carcass than controls; no lung lesions were seen in group T3 lambs, whilst they were evident in 22% of group T2 or group O lambs and in 72% of control lambs; microorganisms were isolated from lung tissue samples of 5 group C and 1 group O lambs. In trial II, administration of lincomycin was associated with smaller clinical scores; prevalence rate of respiratory disorders at the end of the trial was 17%, 42%, 42% and 58% for group P2, P1/30, P1/60 and C, respectively (P < 0.01); treated lambs were >4.5% heavier than controls; lung lesions were recorded in 1 group P2, 2 group P1/30 and group P1/60 and 5 group C lambs; microorganisms were isolated from 1 group P2, 3 group P1/30, 2 group P1/60 and 5 group C lambs. It is concluded that administration of lincomycin is effective for the treatment and the prevention of mycoplasmal atypical pneumonia in lambs.  相似文献   

16.
Biodegradation rate and the high molecular weight hydrocarbons are among the important concerns for bioremediation of crude oil. Inoculation of a non-oil-degrading bacterium as supplementary bacteria increased oil biodegradation from 57.1% to 63.0% after 10 days of incubation. Both the oil-degrading bacteria and the non-oil-degrading bacteria were isolated from Malaysian marine environment. Based on the 16S rDNA sequences, the oil-degrading bacteria was identified as Pseudomonas pseudoalcaligenes (99% similarity) while the non-oil-degrading bacterium was Erythrobacter citreus (99% similarity). E. citreus does not grow on crude oil enriched medium under present experimental condition but it withstands 5000 mg kg?1 Tapis blended crude oil in sediment. Under optimal condition, the oil-degrading bacterium; P. pseudoalcaligenes, alone utilized 583.3 ± 3.8 mg kg?1 (57.1%) at the rate of 3.97 × 10?10 mg kg?1 cell?1 day?1 Tapis blended crude oil from 1000 mg kg?1 oil-contaminated sediment. Inoculation of E. citreus as the supplementary bacteria to P. pseudoalcaligenes enhanced biodegradation. The bacterial consortium degraded 675.8 ± 18.5 mg kg?1 (63.0%) Tapis blended crude oil from the 1000 mg kg?1 oil-contaminated sediment. Biodegradation rate of the bacterial consortium increased significantly to 4.59 × 10?10 mg kg?1 cell?1 day?1 (p = 0.02). Improvement of the oil degradation by the bacterial consortium was due to the synergetic reaction among the bacterial inoculants. There are two implications: (1) E. citreus may have a role in removing self-growth-inhibiting compounds of P. pseudoalcaligens. (2) P. pseudoalcaligenes degraded Tapis blended crude oil while E. citreus competes for the partially degraded hydrocarbons by P. pseudoalcaligenes. P. pseudoalcaligenes forced to breakdown more hydrocarbons to sustain its metabolic requirement. The bacterial consortium degraded 78.7% of (C12–C34) total aliphatic hydrocarbons (TAHs) and 74.1% of the 16 USEPA prioritized polycyclic aromatic hydrocarbons.  相似文献   

17.
Restoration of the Chesapeake Bay poses significant challenges because of increasing population pressure, conversion of farmland to urban/suburban development, and the expense of infrastructure needed to achieve significant and sustained nutrient reductions from agricultural and urban sources. One radical approach for removing non-point source nutrients before they reach the bay is to deploy large-scale algal turf scrubbers along its tributaries. The objective of this study was to determine rates of nutrient removal and algal fatty acid production using small ATS units located along three Chesapeake Bay rivers. Small-scale ATS units (each containing 1 m2 growing area) were operated for 5–10 months from April 2007 to April 2008 on three western shore tributaries of the Chesapeake Bay in Maryland: the Bush River, the Patapsco River and the Patuxent River. Total nitrogen (TN) and total phosphorus (TP) removal rates at the Patuxent site fluctuated considerably but averaged 250 mg TN, 45 mg TP m?2 day?1 from May to October 2007, then decreased to 16 mg TN, 3 mg TP m?2 day?1 from December 2007 to February 2008. Nutrient removal rates at the Bush river site also fluctuated but averaged only 85 mg TN, 10 mg TP m?2 day?1 from May to June 2007, before decreasing to <10 mg TN, <1 mg TP m?2 day?1 from July to September 2007. The Patapsco River unit began operation in August 2007, reached its maximum removal values of 150 mg TN, 18 mg TP m?2 day?1 from mid-October to late-November 2007, then decreased to values of 45 mg TN, 4 mg TP m?2 day?1 from November 15, 2007 to mid-April 2008. In the best case (Patuxent site from May to October 2007), daily removal rates of 250 mg N and 45 mg P m?2 are equivalent to removal rates of 380 kg N and 70 kg P ha?1 over a 150-day season in Maryland. Fatty acid (FA) content of the harvested material was consistently low (0.3–0.6% of dry weight) and varied little between sites. Mean algal FA production rates (23–54 mg FA m?2 day?1) are equivalent to rates of 34–81 kg FA ha?1 year?1 based on a 150-day operational season in Maryland.  相似文献   

18.
Kentucky bluegrass (Poa pratensis) and tall fescue (Festuca arundinacea) are hypertolerant grasses to soil cadmium contamination. Little information is available on their tolerance mechanism. A sand culture and a hydroponic culture experiment were designed to investigate the Cd chemical form changes and its translocation in different tissues. The results showed that Kentucky bluegrass and tall fescue can tolerate 50–200 mg kg−1 of soil Cd stresses and accumulate as high as 4275 and 2559 mg Cd kg−1 DW, respectively, in their shoots without the loss of shoot biomass. Their Cd hypertolerance was correlated with an increase of the undissolved Cd phosphates in the leaves in both grass species, as determined by sequential solvent extraction procedures. The superior Cd tolerance of tall fescue to Kentucky bluegrass was associated with less Cd translocation into the stele of roots and less Cd transported to leaves. The pectate- and protein-integrated Cd forms may be involved in the symplastic translocation of Cd from cortex into stele, and this may lead the higher Cd concentrations in the stele of roots and then above ground leaves via long-distance transport in Kentucky bluegrass.  相似文献   

19.
This work illustrates the feasibility of vermitechnology to stabilize sludge from an agro-industry. To achieve the goal, industrial sludge (IS) was mixed with three different bulky agents, i.e. cow dung (CD), biogas plant slurry (BGS) and wheat straw (WS), in different ratios to produce nine different feed mixtures for earthworm Eisenia fetida. Vermicomposting bedding material was analyzed for its different physic-chemical parameters after 15 weeks of experimentations. In all waste mixtures, a decrease in pH, organic C and C:N ratio, but increase in total N, available P, exchangeable K, exchangeable Ca and trace elements (Mg, Fe and Zn) was recorded. IS (40%) + CD (60%) and IS (40%) + BGS (60%) vermibeds showed the highest mineralization rate and earthworm growth patterns during vermicomposting process. Vermicompost contains (dry weight basis) a considerable range of plant available forms of P (17.5–28.9 g kg?1), K (13.8–21.4 g kg?1), Ca (41.1–63.4 g kg?1), Mg (262.4–348.3 mg kg?1), Fe (559.8–513.0 mg kg?1) and Zn (363.1–253.6 mg kg?1). Earthworm growth parameters, i.e. biomass gain, total cocoon production, individual growth rate (mg wt. worm?1 day?1), natality rate, total fecundity were optimum in bedding containing 20–40% industrial sludge. C:N ratio of worm-processed material was within the agronomic acceptable or favorable limit (<15–20). The results clearly suggested that vermitechnology can be a potential technology to convert industrial sludges into vermifertilizer for sustainable land restoration practices.  相似文献   

20.
There is a major need to understand the historical condition and chemical/biological functions of the ecosystems following a conversion of wetlands to agricultural functions. To better understand the dynamics of soil total organic carbon (TOC) and phosphorus (P) during beef cattle pastures to wetland reconversion, soil core samples were collected from the beef cattle pasture and from the natural wetland at Plant City, FL, during five summer seasons (2002–2007). The levels of TOC and soil P were significantly affected by changing land use and hydrology. Draining natural wetlands to grazed pastures resulted in very pronounced reduction of TOC from 180.1 to 5.4 g g?1. Cumulative concentrations of total phosphorus (TP) in soils (1134 mg kg?1) under drained condition are two to three times lower than those in soils (2752 mg kg?1) under flooded condition over the periods of land use reconversion. There was a declining trend (r = 0.82**; p  0.01) in total soil P from natural wetland (763 mg kg?1) to altered pastures (340 mg kg?1), largely as organic-bound P (natural wetland, 48%; grazed pastures, 44%; altered pastures, 29%). These results are important in establishing baseline information on soil properties in pasture and wetland prior to restoring and reconverting pasture back to wetland conditions. The results further suggest that changes in soil properties due to changing land use and hydrologic conditions (drying and re-wetting) could be long lasting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号