首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To date, it is unknown whether reduced lipid oxidation of skeletal muscle of obese and obese type 2 diabetic (T2D) subjects partly is based on reduced oxidation of endogenous lipids. Palmitate (PA) accumulation, total oxidation and lipolysis were not different between myotubes established from lean, obese and T2D subjects, chronic exposed for PA. Complete oxidation from endogenous PA was reduced in diabetic and obese compared to lean myotubes while exogenous PA oxidation was reduced in diabetic compared to lean myotubes. The complete/incomplete ratio was significantly reduced in diabetic myotubes both for endogenous and exogenous lipids. Thus myotubes established from obese and obese T2D subjects express a reduced complete oxidation of endogenous lipids. Two cardinal principles govern the reduced lipid oxidation in obese and diabetic myotubes; firstly, an impaired coupling between endogenous lipid and mitochondria in obese and obese diabetic myotubes and secondly, a mismatch between β-oxidation and citric acid cycle in obese diabetic myotubes.  相似文献   

2.
3.

Background

Permanent fatty acid translocase (FAT/)CD36 relocation has previously been shown to be related to abnormal lipid accumulation in the skeletal muscle of type 2 diabetic patients, however mechanisms responsible for the regulation of FAT/CD36 expression and localization are not well characterized in human skeletal muscle.

Methodology/Principal Findings

Primary muscle cells derived from obese type 2 diabetic patients (OBT2D) and from healthy subjects (Control) were used to examine the regulation of FAT/CD36. We showed that compared to Control myotubes, FAT/CD36 was continuously cycling between intracellular compartments and the cell surface in OBT2D myotubes, independently of lipid raft association, leading to increased cell surface FAT/CD36 localization and lipid accumulation. Moreover, we showed that FAT/CD36 cycling and lipid accumulation were specific to myotubes and were not observed in reserve cells. However, in Control myotubes, the induction of FAT/CD36 membrane translocation by the activation of (AMP)-activated protein kinase (AMPK) pathway did not increase lipid accumulation. This result can be explained by the fact that pharmacological activation of AMPK leads to increased mitochondrial beta-oxidation in Control cells.

Conclusion/Significance

Lipid accumulation in myotubes derived from obese type 2 diabetic patients arises from abnormal FAT/CD36 cycling while lipid accumulation in Control cells results from an equilibrium between lipid uptake and oxidation. As such, inhibiting FAT/CD36 cycling in the skeletal muscle of obese type 2 diabetic patients should be sufficient to diminish lipid accumulation.  相似文献   

4.
Incretin secretion and effect on insulin secretion are not fully understood in patients with type 2 diabetes. We investigated incretin and insulin secretion after meal intake in obese and non-obese Japanese patients with type 2 diabetes compared to non-diabetic subjects. Nine patients with type 2 diabetes and 5 non-diabetic subjects were recruited for this study. Five diabetic patients were obese (BMI ? 25) and 4 patients were non-obese (BMI < 25). In response to a mixed meal test, the levels of immunoreactive insulin during 15-90 min and C-peptide during 0-180 min in non-obese patients were significantly lower than those in obese patients. Total GLP-1 and active GIP levels showed no significant difference between obese and non-obese patients throughout the meal tolerance test. In addition, there were no significant differences between diabetic patients and non-diabetic subjects. In conclusion, incretin secretion does not differ between Japanese obese and non-obese patients with type 2 diabetes and non-diabetic subjects.  相似文献   

5.
Acute or chronic activation of AMP-activated protein kinase (AMPK) increases insulin sensitivity. Conversely, reduced expression and/or function of AMPK might play a role in insulin resistance in type 2 diabetes. Thus protein expression of the seven subunit isoforms of AMPK and activities and/or phosphorylation of AMPK and acetyl-CoA carboxylase-beta (ACCbeta) was measured in skeletal muscle from obese type 2 diabetic and well-matched control subjects during euglycemic-hyperinsulinemic clamps. Protein expression of all AMPK subunit isoforms (alpha1, alpha2, beta1, beta2, gamma1, gamma2, and gamma3) in muscle of obese type 2 diabetic subjects was similar to that of control subjects. In addition, alpha1- and alpha2-associated activities of AMPK, phosphorylation of alpha-AMPK subunits at Thr172, and phosphorylation of ACCbeta at Ser221 showed no difference between the two groups and were not regulated by physiological concentrations of insulin. These data suggest that impaired insulin action on glycogen synthesis and lipid oxidation in skeletal muscle of obese type 2 diabetic subjects is unlikely to involve changes in AMPK expression and activity.  相似文献   

6.
7.
Family history of diabetes is a major risk factor for type 2 diabetes (T2D), but whether this association derives from shared genetic or environmental factors is unclear. To address this question, we developed a statistical framework that models four components of variance, including known and unknown genetic and environmental factors, using a liability threshold model. Focusing on parental history, we simulated case–control studies with two first-degree relatives for each individual, assuming 50 % genetic similarity and a range of values of environmental similarity. By comparing the association of parental history with T2D in our simulations to case–control studies of T2D nested in the Nurses’ Health Study and Health Professionals Follow-up Study, we estimate that first-degree relatives have a correlation of 23 % (95 % CI 15–27 %) in their environmental contribution to T2D liability and that this shared environment is responsible for 32 % (95 % CI 24–36 %) of the association between parental history and T2D, with the remainder due to shared genetics. Estimates are robust to varying model parameter values and our framework can be extended to different definitions of family history. In conclusion, we find that the association between parental history and T2D derives from predominately genetic but also environmental effects.  相似文献   

8.
9.
Molecular Biology Reports - Obesity and diabetes prevalence are increasing worldwide. We aimed to detect the possible association of osteoprotegerin (OPG) gene expression with visceral adiposity...  相似文献   

10.
Muscle insulin resistance develops when plasma free fatty acids (FFAs) are acutely increased to supraphysiological levels (approximately 1,500-4,000 micromol/l). However, plasma FFA levels >1,000 micromol/l are rarely observed in humans under usual living conditions, and it is unknown whether insulin action may be impaired during a sustained but physiological FFA increase to levels seen in obesity and type 2 diabetes mellitus (T2DM) (approximately 600-800 micromol/l). It is also unclear whether normal glucose-tolerant subjects with a strong family history of T2DM (FH+) would respond to a low-dose lipid infusion as individuals without any family history of T2DM (CON). To examine these questions, we studied 7 FH+ and 10 CON subjects in whom we infused saline (SAL) or low-dose Liposyn (LIP) for 4 days. On day 4, a euglycemic insulin clamp with [3-3H]glucose and indirect calorimetry was performed to assess glucose turnover, combined with vastus lateralis muscle biopsies to examine insulin signaling. LIP increased plasma FFA approximately 1.5-fold, to levels seen in T2DM. Compared with CON, FH+ were markedly insulin resistant and had severely impaired insulin signaling in response to insulin stimulation. LIP in CON reduced insulin-stimulated glucose disposal (Rd) by 25%, insulin-stimulated insulin receptor tyrosine phosphorylation by 17%, phosphatidylinositol 3-kinase activity associated with insulin receptor substrate-1 by 20%, and insulin-stimulated glycogen synthase fractional velocity over baseline (44 vs. 15%; all P < 0.05). In contrast to CON, a physiological elevation in plasma FFA in FH+ led to no further deterioration in Rd or to any additional impairment of insulin signaling. In conclusion, a 4-day physiological increase in plasma FFA to levels seen in obesity and T2DM impairs insulin action/insulin signaling in CON but does not worsen insulin resistance in FH+. Whether this lack of additional deterioration in insulin signaling in FH+ is due to already well-established lipotoxicity, or to other molecular mechanisms related to insulin resistance that are nearly maximally expressed early in life, remains to be determined.  相似文献   

11.
Leptin resistance associated with hyperleptinemia in high-fat-diet-induced obese rats and aged obese rats is well established, but it is not clear whether hyperphagia-induced obese rats also develop leptin resistance. We investigated whether Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which are a strain of hyperphagia-induced obese rats, develop leptin resistance and whether caloric restriction reversed this leptin resistance-induced leptin receptor (ObRb) deficit. Twenty male OLETF rats, 20 male Long-Evans Tokushima Otsuka (LETO) rats, and 10 male Sprague Dawley (SD) rats were used. All rats were initially studied at 10 weeks of age and were freely fed with standard rat chow and water until they were 38 weeks of age. Daily food intake, body weight, and plasma leptin levels of OLETF rats were remarkably increased compared to LETO or SD rats from 10 to 38 weeks of age. When they were 38 weeks of age, all OLETF rats were randomly divided into two groups. One group was freely fed with standard rat chow (FD, or free diet group), and the other group (RD, or restricted diet group) was fed with only 70% of the amount consumed by the FD group. The LETO and SD rats were dismissed from further study. After 4 weeks of caloric restriction, the average body weight (636 ± 33 g vs. 752 ± 24 g, < 0.05) and abdominal adipose tissue weight (10.6 ± 3.2 g vs. 15.8 ± 1.5 g, < 0.05) of the RD group were decreased compared with those of the FD group. Plasma leptin levels of the RD group were significantly decreased compared with those of the FD group (3.47 ± 1.40 ng/mL vs. 11.55 ± 1.16 ng/mL, < 0.05). The mRNA expression of ObRb and leptin-related suppressor of cytokine signaling 3 (SOCS3) in the hypothalamus, liver, and skeletal muscles of the RD group were significantly decreased compared with those of the FD group. Caloric restriction did not improve leptin receptor (ObRb) deficit or the downstream signaling of leptin in the liver, skeletal muscles, and hypothalamus. Thus, we demonstrated that OLETF rats, which are a strain of hyperphagia-induced obese rats, did not develop central or peripheral leptin resistance. We suggest that hyperleptinemia in OLETF rats is a compensatory mechanism to overcome obesity induced by hyperphagia.  相似文献   

12.
Mutations in pancreatic duodenal homeobox 1 (PDX-1) can cause a monogenic form of diabetes (maturity onset diabetes of the young 4) in humans, and silencing Pdx-1 in pancreatic β-cells of mice causes diabetes. However, it is not established whether epigenetic alterations of PDX-1 influence type 2 diabetes (T2D) in humans. Here we analyzed mRNA expression and DNA methylation of PDX-1 in human pancreatic islets from 55 nondiabetic donors and nine patients with T2D. We further studied epigenetic regulation of PDX-1 in clonal β-cells. PDX-1 expression was decreased in pancreatic islets from patients with T2D compared with nondiabetic donors (P = 0.0002) and correlated positively with insulin expression (rho = 0.59, P = 0.000001) and glucose-stimulated insulin secretion (rho = 0.41, P = 0.005) in the human islets. Ten CpG sites in the distal PDX-1 promoter and enhancer regions exhibited significantly increased DNA methylation in islets from patients with T2D compared with nondiabetic donors. DNA methylation of PDX-1 correlated negatively with its gene expression in the human islets (rho = -0.64, P = 0.0000029). Moreover, methylation of the human PDX-1 promoter and enhancer regions suppressed reporter gene expression in clonal β-cells (P = 0.04). Our data further indicate that hyperglycemia decreases gene expression and increases DNA methylation of PDX-1 because glycosylated hemoglobin (HbA1c) correlates negatively with mRNA expression (rho = -0.50, P = 0.0004) and positively with DNA methylation (rho = 0.54, P = 0.00024) of PDX-1 in the human islets. Furthermore, while Pdx-1 expression decreased, Pdx-1 methylation and Dnmt1 expression increased in clonal β-cells exposed to high glucose. Overall, epigenetic modifications of PDX-1 may play a role in the development of T2D, given that pancreatic islets from patients with T2D and β-cells exposed to hyperglycemia exhibited increased DNA methylation and decreased expression of PDX-1. The expression levels of PDX-1 were further associated with insulin secretion in the human islets.  相似文献   

13.
In the present study, we investigated triacylglycerol (TAG) accumulation, glucose and fatty acid (FA) uptake, and glycogen synthesis (GS) in human myotubes from healthy, lean, and obese subjects with and without type 2 diabetes (T2D), exposed to increasing palmitate (PA) and oleate (OA) concentrations with/without high glucose and/or high insulin concentrations for 4 days. We showed that these myotubes expressed an increased TAG accumulation (P<0.001) without differences between groups. Chronically high insulin, but not high glucose concentrations, increases TAG accumulation by 25% (P<0.001). Inhibition of oxidative phosphorylation by antimycin A and oligomyin was followed by a reduced lipid oxidation (P<0.05) and increased TAG accumulation (P<0.05), but only in the presence of FAs. Both chronic PA and OA exposure reduced the insulin-mediated PA and OA uptake (fold change) (P<0.001), but could not induce insulin resistance at the level of glucose uptake, whereas high insulin concentrations induced insulin resistance (P<0.001). Chronic, high PA, but not OA, induced insulin resistance at the GS level in control subjects (P<0.05). The TAG content correlated negatively with insulin-stimulated FA uptake (P<0.001), but did not correlate with insulin-stimulated glucose uptake for PA or OA (P>0.05). These results indicate that (1) TAG accumulation is not primarily affected in skeletal muscle tissue of obese and T2D; (2) induced inhibition of oxidative phosphorylation is followed by TAG accumulation; (3) increasing FA and insulin availability, and reduced oxidative phosphorylation, and to a lesser extent glucose, are determinants for differences in intramyocellular TAG accumulation; (4) quantitative TAG content may not be the best marker for insulin resistance. Thus, increased TAG content in skeletal muscle of obese and T2D subjects is adaptive.  相似文献   

14.
Accumulation of intramuscular long-chain acyl-CoA esters (LCACoA) has previously in animal and human models been suggested to play an important role in lipid induced insulin resistance. The aim of this study was to examine whether myotubes established from type 2 diabetic (T2D) subjects and lean controls express differences in long-chain acyl-CoA esters (LCACoA) precultured under physiological conditions and during chronic exposure to palmitate (PA) and oleic acids (OA) with/without acute insulin stimulation. No significant differences were found between diabetic and control myotubes, neither in the total amount nor among individual LCA-CoA species during basal and acute insulin stimulation. LCA-CoA accumulated during exposure to palmitic acid but not during exposure to oleic acid. During PA and OA exposure, only palmitoyl-CoA, oleoyl-CoA and total LCA-CoA change. PA exposure increased the palmitoyl-CoA, whereas oleoyl-CoA was reduced and vice versa during OA exposure. No differences were found in the LCA-CoA level between T2D and control subjects, neither in the total amount nor in the individual specific LCA-CoA species during fatty acid exposure. Chronic (24 h), high PA, but not OA exposure induced insulin resistance at the level of glycogen synthesis in control subjects. These results indicate that (1) no primary defects are responsible for LCA-CoA accumulation in diabetic subjects; (2) LCA-CoA changes in vivo are partly adaptive to changes in the PA level and possibly other saturated fatty acids; and (3) PA induced insulin resistance may be mediated through an increased level of palmitoyl-CoA.  相似文献   

15.
There is increasing evidence that mitochondrial dysfunction and oxidative stress may be integral to the pathogenesis of type 2 diabetes mellitus. Heat shock protein (Hsp60) is a mitochondrial stress protein known to be induced under conditions of mitochondrial impairment. Although this intracellular protein is normally found in the mitochondrion, several studies have shown that this protein is also present in systemic circulation. In this study, we report the presence of elevated levels of Hsp60 in both saliva and serum of type 2 diabetic patients compared to non-diabetic controls. Hsp60 was detectable in the saliva of 10% of control and 93% of type 2 diabetic patients. Levels detected were in the range of 3–7 ng/ml in control and 3–75 ng/ml in type 2 diabetic patients. Serum Hsp60 levels in the range of 3–88 ng/ml were detected in 33% of control subjects, and levels in the range of 28–1,043 ng/ml were detected in 100% of type 2 diabetic patients. This is the first reporting of the presence of mitochondrial stress protein in salivary secretions. The serum Hsp60 levels were 16-fold higher compared to those in saliva, and there was a good positive correlation between salivary and serum Hsp60 levels (r = 0.55). While the exact mechanisms responsible for the secretion of Hsp60 into biological fluids such as saliva and blood are not yet known. The presence of this molecular marker of mitochondrial stress in saliva offers a non-invasive route to further investigate the biological functions of extracellular Hsp60 in type 2 diabetes mellitus and other conditions.  相似文献   

16.
BACKGROUND: Two studies were designed to determine whether a single dose (80 mg) of the angiotensin II receptor blocker (ARB), valsartan, alters insulin sensitivity in obese, non-hypertensive subjects with and without Type 2 diabetes. METHODS: Insulin sensitivity (S(I)), glucose effectiveness (S(G)), and acute insulin response (AIR(0-10 min)) were measured by means of a 3-hour insulin-modified frequently sampled intravenous glucose tolerance test (FSIVGTT) before and after a single dose of valsartan. Study 1: obese, normotensive non-diabetic male subjects (n = 12), mean (SD) age 37.2 +/- 11.2 years, BMI 32.8 +/- 6.8 kg/m (2); Study 2: obese, normotensive Type 2 diabetic patients (n = 12), mean age 55.7 +/- 6.9 years, BMI 35.0 +/- 6.8 kg/m (2)/l. Both studies were randomised, double-blind, placebo-controlled, single-dose crossover group studies involving subjects in two study days, two weeks apart. After fasting samples were taken, a 300 mg/kg iv glucose bolus was injected at 0 min, and 0.05 U/kg iv insulin was given 20 min later. Blood samples for analysis of glucose and insulin were taken throughout the 3-hour study period. RESULTS: Study 1 (non-diabetic subjects) S(I) 2.81 vs. 2.63 x 10 (-4) min (-1) per microU/ml (p = 0.54), S(G) 0.020 vs. 0.020 min (-1) (p = 0.90), AIR(0-10) min 3305 vs. 3450 microU/min/ml (p = 0.71); Study 2 (patients with type 2 diabetes) S(I) 0.59 vs. 0.85 x 10 (-4) min (-1) per microU/ml (p = 0.15), S(G) 0.013 vs. 0.014 min (-1) (p = 0.71), AIR(0-10) min 65 vs. 119 microU/min/ml (p = 0.14), placebo vs. valsartan, respectively. CONCLUSION: In obese, non-hypertensive non-diabetic and Type 2 diabetic subjects a single dose of valsartan does not alter insulin sensitivity.  相似文献   

17.

Background

We have recently shown a high prevalence of diabetes and obesity in rural Cameroon, despite an improved lifestyle. Diabetes in rural Africa remains underdiagnosed and its role in increasing risk of atherosclerosis in these populations is unknown. We investigated the prevalence of carotid atherosclerosis and cardiovascular risk factors in a population of subjects with recently-diagnosed diabetes from rural Cameroon.

Methodology/Principal Findings

In a case-control study, carotid intima-media thickness (IMT) was measured in 74 subjects with diabetes (diagnosed <2 years), aged 47–85 and 109 controls comparable for age and sex. Subjects were recruited during a health campaign conducted in April 2009. Blood glucose control (HbA1c, fasting blood glucose) and major cardiovascular risk factors (complete lipid panel, blood pressure) were also measured. Mean carotid IMT was higher in subjects with diabetes than healthy controls at each scanned segment (common, internal carotid and bulb) (P<0.05), except the near wall of the left bulb. Vascular stiffness tended to be higher and pressure-strain elastic modulus of the left carotid was increased in subjects with diabetes than controls (P<0.05), but distensibility was similar between the two groups. At least one plaque >0.9 mm was found in 4%, 45.9% and 20% of diabetic subjects at the common, bulb or internal carotid, respectively. Only 25% of patients had an HbA1c<7%, while over 41.6% presented with marked hyperglycemia (HbA1c>9%). The prevalence of diabetic subjects with abnormal levels of LDL-cholesterol, triglycerides, HDL-cholesterol or blood pressure was 45%, 16.6%, 15% and 65.7%, respectively.

Conclusions

Carotid thickness is increased in subjects with diabetes from a rural area of Cameroon, despite the relatively recent diagnosis. These findings and the high rate of uncontrolled diabetes in this population support the increasing concern of diabetes and cardiovascular diseases in African countries and indicate the need for multifaceted health interventions in urban and rural settings.  相似文献   

18.
19.
Skeletal muscle is a key tissue site of insulin resistance in type 2 diabetes. Human myotubes are primary skeletal muscle cells displaying both morphological and biochemical characteristics of mature skeletal muscle and the diabetic phenotype is conserved in myotubes derived from subjects with type 2 diabetes. Several abnormalities have been identified in skeletal muscle from type 2 diabetic subjects, however, the exact molecular mechanisms leading to the diabetic phenotype has still not been found. Here we present a large-scale study in which we combine a quantitative proteomic discovery strategy using isobaric peptide tags for relative and absolute quantification (iTRAQ) and a label-free study with a targeted quantitative proteomic approach using selected reaction monitoring to identify, quantify, and validate changes in protein abundance among human myotubes obtained from nondiabetic lean, nondiabetic obese, and type 2 diabetic subjects, respectively. Using an optimized protein precipitation protocol, a total of 2832 unique proteins were identified and quantified using the iTRAQ strategy. Despite a clear diabetic phenotype in diabetic myotubes, the majority of the proteins identified in this study did not exhibit significant abundance changes across the patient groups. Proteins from all major pathways known to be important in type 2 diabetic subjects were well-characterized in this study. This included pathways like the trichloroacetic acid (TCA) cycle, lipid oxidation, oxidative phosphorylation, the glycolytic pathway, and glycogen metabolism from which all but two enzymes were found in the present study. None of these enzymes were found to be regulated at the level of protein expression or degradation supporting the hypothesis that these pathways are regulated at the level of post-translational modification. Twelve proteins were, however, differentially expressed among the three different groups. Thirty-six proteins were chosen for further analysis and validation using selected reaction monitoring based on the regulation identified in the iTRAQ discovery study. The abundance of adenosine deaminase was considerably down-regulated in diabetic myotubes and as the protein binds propyl dipeptidase (DPP-IV), we speculate whether the reduced binding of adenosine deaminase to DPP-IV may contribute to the diabetic phenotype in vivo by leading to a higher level of free DPP-IV to bind and inactivate the anti-diabetic hormones, glucagon-like peptide-1 and glucose-dependent insulintropic polypeptide.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号