首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Exosomes hold great potential to deliver therapeutic reagents for cancer treatment due to its inherent low antigenicity. However, several technical barriers, such as low productivity and ineffective cancer targeting, need to be overcome before wide clinical applications. The present study aims at creating a new biomanufacturing platform of cancer‐targeted exosomes for drug delivery. Specifically, a scalable, robust, high‐yield, cell line based exosome production process is created in a stirred‐tank bioreactor, and an efficient surface tagging technique is developed to generate monoclonal antibody (mAb)‐exosomes. The in vitro characterization using transmission electron microscopy, NanoSight, and western blotting confirm the high quality of exosomes. Flow cytometry and confocal laser scanning microscopy demonstrate that mAb‐exosomes have strong surface binding to cancer cells. Furthermore, to validate the targeted drug delivery efficiency, romidepsin, a histone deacetylase inhibitor, is loaded into mAb‐exosomes. The in vitro anti‐cancer toxicity study shows high cytotoxicity of mAb‐exosome‐romidepsin to cancer cells. Finally, the in vivo study using tumor xenograft animal model validates the cancer targeting specificity, anti‐cancer efficacy, and drug delivery capability of the targeted exosomes. In summary, new techniques enabling targeted exosomes for drug delivery are developed to support large‐scale animal studies and to facilitate the translation from research to clinics.  相似文献   

3.
石墨烯及其衍生物氧化石墨烯因具有水溶性好、比表面积大、载药量高以及易于修饰等优势,近年来在生物医药领域尤其在肿瘤治 疗领域的应用研究发展迅速。综述石墨烯及氧化石墨烯作为新型药物载体材料所具有的特性和生物安全性、表面修饰方式以及在肿瘤靶向 递药系统中的应用,为其在生物医药领域的应用研究提供新方法和新思路。  相似文献   

4.
5.
In order to modify the surface tension of commercial available track-edged polymer membranes, a procedure of surface-initiated polymerization is presented. The polymerization from the membrane surface is induced by plasma treatment of the membrane, followed by reacting the membrane surface with a methanolic solution of 2-hydroxyethyl methacrylate (HEMA). Special attention is given to the process parameters for the plasma treatment prior to the polymerization on the surface. For example, the influence of the plasma-treatment on different types of membranes (e.g. polyester, polycarbonate, polyvinylidene fluoride) is studied. Furthermore, the time-dependent stability of the surface-grafted membranes is shown by contact angle measurements. When grafting poly(2-hydroxyethyl methacrylate) (PHEMA) in this way, the surface can be further modified by esterification of the alcohol moiety of the polymer with a carboxylic acid function of the desired substance. These reactions can therefore be used for the functionalization of the membrane surface. For example, the surface tension of the membrane can be changed or a desired functionality as the presented light-responsiveness can be inserted. This is demonstrated by reacting PHEMA with a carboxylic acid functionalized spirobenzopyran unit which leads to a light-responsive membrane. The choice of solvent plays a major role in the postmodification step and is discussed in more detail in this paper. The permeability measurements of such functionalized membranes are performed using a Franz cell with an external light source. By changing the wavelength of the light from the visible to the UV-range, a change of permeability of aqueous caffeine solutions is observed.  相似文献   

6.
The response of human osteoblast-like osteosarcoma cells (MG63) to surface modification of Ti-6Al-4V implant alloy was investigated by Laser Interference Lithography (LIL).In this work,laser interference lithography was employed to fabricate the microstructures of grooves,dots and dimples onto the surfaces of Ti-6Al-4V samples.Two and three beam LIL systems were developed to carry out the experiments.The laser treatment resulted in the increases of the roughness and the contact angle of water on the implant alloy surfaces.The proliferation of osteoblasts was analyzed by MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay for the time periods of 4 hours,2 days,3 days,and 6 days.The MTT test results demonstrated that the laser treatment surfaces had a positive impact on the proliferation of osteoblast cells after 24 hours.The alloy surface morphology and the morphological changes of MG63 cells cultured on the laser textured Ti-6Al-4V surface were observed by Scanning Electron Microscope (SEM).The SEM results indicated that the osteoblast cells were aligned on grooved surfaces and they were prolonged with the structures.Enzymatic detachment results showed that the 20 μm grooved structures provided the better cell adhesion to the textured Ti-6Al-4V surfaces.  相似文献   

7.
壳聚糖是一种天然多糖,具有无毒、可生物降解、生物相容性等诸多优点,但水溶性差的自身特点限制了其在药剂学中的应用,而其经合理的结构设计、修饰和优化,可获得性能良好的两亲性壳聚糖衍生物,这些衍生物在水溶液中能自组装成具有良好药物传输性能(如载药量、稳定性、刺激敏感性、靶向性等)的胶束,并被广泛应用于构建药物传递系统,以改善药物的溶解性、靶向性、生物利用度及耐药性,降低药物的毒副作用。综述壳聚糖衍生物结构对其胶束药物传输性能的影响以及壳聚糖衍生物及其胶束的功能化修饰和在药物传递系统中的应用。  相似文献   

8.
Surface modification methods can optimise the biocompatibility or the specificity of biointeraction of a biosensor or medical device. With only the surface modified, the manufacture and implantation protocol remain unchanged. This review article summarises some of the chemical, surface analytical and biological challenges associated with surface modification of biosensors and biomedical devices.  相似文献   

9.
A novel surface modification method of biodegradable polymers was investigated for inducing the attachment of specific cells onto the polymer surface via ligand-receptor interactions. Galactose, a targeting ligand specific to asialoglycoprotein receptors present on cell membrane of hepatocytes, was introduced on the surface of poly(D,L-lactic-co-glycolic acid) (PLGA) films. A terminal end group of carboxylic acid in PLGA was activated by dicyclohexylcarbodiimide and N-hydroxysuccinimide for the direct conjugation of lactose by reductive amination reaction. Di-block copolymers of PLGA-b-poly(ethylene glycol) (PEG) having a free terminal amine group were also synthesized and used for the conjugation of galactose for the introduction of a PEG spacer between PLGA and galactose. The presence of galactose moieties on the blend film surface was characterized by measuring water contact angle and X-ray photon spectroscopy, and the amount of galactose was indirectly determined by a specific lectin-binding assay. With increasing the galactose concentration on the blend film surface, the initial attachment as well as the cell viability of hepatocyates concomitantly increased. The introduction of PEG spacer reduced the cell attachment and viability. Albumin secretion rate from hepatocytes was enhanced for galactose modified surfaces, whereas it was reduced for the surfaces not having galactose moieties.  相似文献   

10.
BACKGROUND: Gene delivery by non-specific adsorption of non-viral vectors to protein-coated surfaces can reduce the amount of DNA required, and also increase transgene expression and the number of cells expressing the transgene. The protein on the surface mediates cell adhesion and vector immobilization, and functions to colocalize the two to enhance gene delivery. This report investigates the mechanism and specificity by which the protein coating enhances gene transfer, and determines if the protein coating targets the vector for internalization by a specific pathway. METHODS: Proteins (FBS, BSA, fibronectin, collagen I, and laminin) were dried onto culture dishes, followed by PEI/DNA complex adsorption for surface delivery. Reporter genes were employed to characterize transfection as a function of the protein identity and density. Vector immobilization was measured using radiolabeled plasmid, and internalization was quantified in the presence and absence of the endocytosis inhibitors chlorpromazine and genistein. RESULTS: Fibronectin coating yielded the greatest expression for PEI/DNA polyplexes, with maximal expression at intermediate protein densities. Expression in control studies with bolus delivery was independent of the protein identity. Substrate binding was independent of the protein identity; however, internalization was greatest on surfaces coated with fibronectin and collagen I. Inhibition of caveolae-mediated endocytosis reduced gene expression more than clathrin-mediated endocytosis. Similarly, inhibition of caveolae-mediated endocytosis significantly reduced the intracellular levels of DNA. CONCLUSIONS: Fibronectin at intermediate densities mediated the highest levels of transgene expression, potentially by targeting internalization through caveolae-mediated endocytosis. Substrate modifications, such as the identity and density of proteins, provide an opportunity for modification of biomaterials for enhancing gene expression.  相似文献   

11.
The fouling of components and the formation of a fibrotic tissue capsule around subcutaneously implanted medical devices are two major obstacles in developing viable, long-term implantable drug delivery systems. NanoGATE is a subcutaneous implant designed for constant-output passive diffusion of a drug of interest through a silicon nanopore membrane. To this end, we have investigated the long-term in vivo biocompatibility of the NanoGATE implant in terms of the fouling of the nanopore membrane and the formation of a fibrotic tissue capsule around the implant. We have also evaluated how these effects influence diffusion of a lysozyme surrogate from the device once implanted within the vascular compartment of a Sprague-Dawley rat model. Using several model biomolecules such as glucose, lysozyme, and albumin, our studies suggest that silicon nanopore membranes do not foul when implanted subcutaneously for 6 mo. This study also reveals the tissue capsule that naturally forms around the implant does not limit diffusion of molecules with molecular weights on the order of 14.4 kDa at therapeutic delivery rates of tens of micrograms per day. This indicates that our NanoGATE implant should be completely functional in vivo, providing constant release levels of a drug over an extended time period. Thus, by adjusting the release rate to fit the pharmacokinetic clearance profile of the Sprague-Dawley rat, long-term steady-state blood plasma concentrations can be achieved.  相似文献   

12.
ABSTRACT:?

Precise control of the architecture of multiple cells in culture and in vivo via precise engineering of the material surface properties is described as cell patterning. Substrate patterning by control of the surface physicochemical and topographic features enables selective localization and phenotypic and genotypic control of living cells. In culture, control over spatial and temporal dynamics of cells and heterotypic interactions draws inspiration from in vivo embryogenesis and haptotaxis. Patterned arrays of single or multiple cell types in culture serve as model systems for exploration of cell-cell and cell-matrix interactions. More recently, the patterned arrays and assemblies of tissues have found practical applications in the fields of Biosensors and cell-based assays for Drug Discovery. Although the field of cell patterning has its origins early in this century, an improved understanding of cell-substrate interactions and the use of microfabrication techniques borrowed from the microelectronics industry have enabled significant recent progress. This review presents the important early discoveries and emphasizes results of recent state-of-the-art cell patterning methods. The review concludes by illustrating the growing impact of cell patterning in the areas of bioelectronic devices and cell-based assays for drug discovery.  相似文献   

13.
A time-dependent healing function for immediate loaded implants   总被引:3,自引:0,他引:3  
Current interest in immediate dental implant loading has grown due to a number of clinical advantages this treatment modality offers. To obtain a deeper insight into the changing mechanical properties during the healing phase, results from removal torque tests are used in a biomechanical model. The ultimate removal torques, which depend on healing time, are described by a time-dependent healing function. The bone behavior is modeled using an elastic law with damage. The evolution of damage is represented with an incremental equation with an initial damage value and two material parameters. The nonlinear relationship between the torque and the angle of rotation up to the ultimate torque can be calculated. By changing the elastic parameter in the elastic damage law, the remodeling process can be characterized. In a further step, the elastic parameters and the limits for shear stress from the biomechanical model for the removal torque will be used in an FE analysis in order to obtain information on the axial loading limits of a dental implant at different healing times.  相似文献   

14.
Bacterial adhesion is a major problem that can lead to the infection of implanted urological stents. In this study, kanamycin-chitosan nanoparticles (KMCSNPs) were immobilized on the surface of a polyurethane ureteral stent (PUS) to prevent urinary bacterial infection. KMCSNPs were synthesized using the ionic gelation method. The synthesized KMCSNPs appeared spherical with a ζ-average particle size of 225 nm. KMCSNPs were immobilized on the PUS surface by covalent immobilization techniques. The surface-modified PUS was characterized using attenuated total reflectance Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy. The surface-modified PUS showed significantly increased antibacterial activity against Escherichia coli MTCC 729 and Proteus mirabilis MTCC 425 relative to the surface of an unmodified PUS. These findings suggest that the KMCSNP-immobilized PUS has the potential to prevent bacterial infection in the human urinary tract.  相似文献   

15.
Single-molecule fluorescence spectroscopy has proven to be instrumental in understanding a wide range of biological phenomena at the nanoscale. Important examples of what this technique can yield to biological sciences are the mechanistic insights on protein-protein and protein-nucleic acid interactions. When interactions of proteins are probed at the single-molecule level, the proteins or their substrates are often immobilized on a glass surface, which allows for a long-term observation. This immobilization scheme may introduce unwanted surface artifacts. Therefore, it is essential to passivate the glass surface to make it inert. Surface coating using polyethylene glycol (PEG) stands out for its high performance in preventing proteins from non-specifically interacting with a glass surface. However, the polymer coating procedure is difficult, due to the complication arising from a series of surface treatments and the stringent requirement that a surface needs to be free of any fluorescent molecules at the end of the procedure. Here, we provide a robust protocol with step-by-step instructions. It covers surface cleaning including piranha etching, surface functionalization with amine groups, and finally PEG coating. To obtain a high density of a PEG layer, we introduce a new strategy of treating the surface with PEG molecules over two rounds, which remarkably improves the quality of passivation. We provide representative results as well as practical advice for each critical step so that anyone can achieve the high quality surface passivation.  相似文献   

16.
Nanofibers and their applications in tissue engineering   总被引:2,自引:0,他引:2  
Developing scaffolds that mimic the architecture of tissue at the nanoscale is one of the major challenges in the field of tissue engineering. The development of nanofibers has greatly enhanced the scope for fabricating scaffolds that can potentially meet this challenge. Currently, there are three techniques available for the synthesis of nanofibers: electrospinning, self-assembly, and phase separation. Of these techniques, electrospinning is the most widely studied technique and has also demonstrated the most promising results in terms of tissue engineering applications. The availability of a wide range of natural and synthetic biomaterials has broadened the scope for development of nanofibrous scaffolds, especially using the electrospinning technique. The three dimensional synthetic biodegradable scaffolds designed using nanofibers serve as an excellent framework for cell adhesion, proliferation, and differentiation. Therefore, nanofibers, irrespective of their method of synthesis, have been used as scaffolds for musculoskeletal tissue engineering (including bone, cartilage, ligament, and skeletal muscle), skin tissue engineering, vascular tissue engineering, neural tissue engineering, and as carriers for the controlled delivery of drugs, proteins, and DNA. This review summarizes the currently available techniques for nanofiber synthesis and discusses the use of nanofibers in tissue engineering and drug delivery applications.  相似文献   

17.
To reduce interactions between biological molecules and the surface of microchip devices including the microchip, which should be conducted to improve sensitivity, reactivity, and the typical phospholipid polar group, the phosphorylcholine group-immobilized surfaces were prepared. The surface modification of polydimethylsiloxane (PDMS) was performed by in situ reaction during curing by cross-linking the PDMS prepolymers. Since it is known that 2-methacryloyloxyethyl phosphorylcholine (MPC) facilitates the preparation of biomedical polymers with excellent biocompatibility and antithrombogenicity, it was used as the reactant for surface modification. The MPC was coated on the glass substrate, and two-liquid-type PDMS prepolymers were then applied. During the curing process of the vinyl groups of poly(dimetylsiloxane-co-methylsiloxane) and poly(dimethylsiloxane-co-methylvinylsiloxane), the methacrylate group in MPC was attached onto the PDMS surface via a hydrosilyl group. Analysis of the surface characteristics by X-ray photoelectron spectroscopy and measurement of the surface contact angle revealed that the introduction of the phosphorylcholine group in the MPC unit on the surface induced hydrophilicity at the surface. Further, protein adsorption on the surface decreased with an increase in the number of phosphorylcholine groups. Based on these results, we concluded that the construction of the phosphorylcholine group-enriched surface on the PDMS substrate could be achieved by immobilization of MPC, and it may facilitate fabrication of biomedical devices, particularly microfluidic devices.  相似文献   

18.
Lipopolysaccharide‐responsive beige‐like anchor protein (LRBA) belongs to the enigmatic class of BEACH domain‐containing proteins, which have been attributed various cellular functions, typically involving intracellular protein and membrane transport processes. Here, we show that LRBA deficiency in mice leads to progressive sensorineural hearing loss. In LRBA knockout mice, inner and outer hair cell stereociliary bundles initially develop normally, but then partially degenerate during the second postnatal week. LRBA deficiency is associated with a reduced abundance of radixin and Nherf2, two adaptor proteins, which are important for the mechanical stability of the basal taper region of stereocilia. Our data suggest that due to the loss of structural integrity of the central parts of the hair bundle, the hair cell receptor potential is reduced, resulting in a loss of cochlear sensitivity and functional loss of the fraction of spiral ganglion neurons with low spontaneous firing rates. Clinical data obtained from two human patients with protein‐truncating nonsense or frameshift mutations suggest that LRBA deficiency may likewise cause syndromic sensorineural hearing impairment in humans, albeit less severe than in our mouse model.  相似文献   

19.
作为药物递送载体,脂质体(LPs)由于免疫原性低、稳定性好、毒性低和成本低而被认为是有前途的纳米药物递送系统。然而,LPs的靶向递送效果并不理想,往往会对正常的机体细胞造成伤害,因此,如何优化LPs药物,使其具有靶向性仍然是当前研究的重点。本文结合近年来国内外相关研究进展,重点介绍了多肽、抗体、糖类、配体,以及核酸适配体等靶向修饰物对LPs功能的影响,并归纳总结了各种靶向修饰目前存在的优势与挑战,以期对LPs给药系统的进一步研究提供科学参考及新药研发提供理论依据。  相似文献   

20.
In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hierarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrolytic Etching (EE). MG-63 cells were cultured on disks for 2 h to 7 days. The osteoblast response to the hierarchical hybrid micro-/nano-structured titanium surface was evaluated through the osteoblast cell morphology, attachment and proliferation. For comparison, MG-63 cells were also cultured on Sandblasted and Acid-etched (SLA) as well as Machined (M) surfaces respectively. The results show significant differences in the adhesion rates and proliferation levels of MG-63 cells on EE, SLA, and M surfaces. Both adhesion rate and proliferation level on EE surface are higher than those on SLA and M surfaces. Therefore, we may expect that, comparing with SLA and M surfaces, bone growth on EE surface could be accelerated and bone formation could be promoted at an early stage, which could be applied in the clinical practices for immediate and early-stage loadings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号