首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Colorectal cancer is common. Polyunsaturated fatty acids (PUFAs) exert growth-inhibitory and pro-apoptotic effects on colon cancer cells. Metabolites of PUFAs such as prostaglandins (PGs), leukotrienes (LTs) and lipoxins (LXs) play a significant role in colon cancer.

Methods

Human colon cancer LoVo and RKO cells were cultured with different concentration of PUFAs and 5-fluorouracil (5-FU) in vitro. Cell morphological changes, fatty acid composition, formation of PGE2, LTB4 and LXA4 and expression of COX-2, ALOX5, PGD synthase (PGDS), microsomal prostaglandin E synthase (mPGES) were assessed in LoVo and RKO cells when supplemented with PUFAs and 5-FU.

Results

PUFAs and 5-FU inhibited growth of LoVo and RKO cells to the same extent at the doses used and produced significant alterations in their shape. As expected, higher concentrations of supplemented PUFAs were noted in the cells compared to control. LA, GLA, AA, ALA and EPA supplementation to LoVo cells suppressed production of PGE2, LTB4,and ALOX5, mPGES expression, but enhanced that of LXA4; whereas DHA enhanced PGE2 and LXA4 synthesis but decreased LTB4 formation and COX-2, ALOX5, mPGES expression. In contrast, 5-FU enhanced formation of PGE2, LTB4 and mPGES expression, but suppressed LXA4 synthesis and COX-2 expression. PGE2, LTB4 synthesis and ALOX5 expression was suppressed by LA, GLA, ALA and DHA; whereas AA, EPA and 5-FU enhanced PGE2 but paradoxically AA decreased and EPA and 5-FU enhanced LTB4 synthesis in RKO cells. All the PUFAs tested enhanced, while 5-FU decreased LXA4 formation in RKO cells; whereas GLA, AA, and 5-FU augmented while LA, ALA, EPA and DHA enhanced COX-2 expression in RKO cells.

Conclusions

Tumoricidal action of PUFAs on colorectal LoVo and RKO cancer cells in vitro was associated with increased formation of LXA4, decreased synthesis of PGE2 and LTB4 and suppressed expression of COX-2, ALOX5, mPGES, whereas 5-FU produced contrasting actions on these indices.  相似文献   

2.
3.
4.
Studies have shown that lipoxin A4 (LXA4) and activation of LXA4 receptor provided protection against myocardial ischemia/reperfusion injury in animal models. However, the mechanisms by which LXA4 induced protective role on myocardial ischemia/reperfusion injury remains unclear. In the present studies, we investigated the protective effects of LXA4 on H9c2 cardiomyocytes exposed to hypoxia/reoxygenation (H/R) injury and involvement of heme oxygenase-1 (HO-1)- and K+ channel-dependant pathways in the LXA4 action. H9c2 cardiomyocytes were pretreated with or without LXA4 or HO-1 specific interfering RNA (siRNA) or various blockers and openers of K+ channels before exposing to H/R injury. The levels of lactate dehydrogenase (LDH) and creatine kinase (CK) in cellular supernatants and necrosis factor-α (TNF-α) in cellular lysates were measured by using ELISA. Expressions of HO-1 mRNA and protein were analyzed by using RT-PCR and Western blot respectively. Pretreatment of the cells undergoing H/R injury with LXA4 significantly reduced the LDH and CK levels induced by H/R injury, and increased the expressions and activity of HO-1. However, the protective effects of LXA4 were completely blocked by transfection of the cells with HO-1 siRNA, and were partially but significantly blocked by pretreatment of the cells with various blockers of K+ channels. The LXA4-induced expressions of HO-1 in the cells were also inhibited by HO-1 siRNA and various blockers of K+ channels. The inhibitory effects of LXA4 on enhanced TNF-α levels induced by H/R injury were abolished by transfection of the cells with HO-1 siRNA. In conclusion, the protective role of LXA4 on cardiomyocytes against H/R injury is related to upregulation of HO-1 via reduced production of TNF-α and activation of ATP-sensitive K+ channels and calcium-sensitive K+ channel.  相似文献   

5.
Low blood folate and raised homocysteine concentrations are associated with poor cognitive function. Folic acid supplementation improves cognitive function. Folic acid enhances the plasma concentrations of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). EPA, DHA, and arachidonic acid (AA) are of benefit in dementia and Alzheimer's disease by up-regulating gene expression concerned with neurogenesis, neurotransmission and connectivity, improving endothelial nitric oxide (eNO) generation, enhancing brain acetylcholine levels, and suppressing the production of pro-inflammatory cytokines. EPA, DHA, and AA also form precursors to anti-inflammatory compounds such as lipoxins, resolvins, and neuroprotectin D1 (NPD1) that protect neurons from the cytotoxic action of various noxious stimuli. Furthermore, various neurotrophins and statins enhance the formation of NPD1 and thus, protect neurons from oxidative stress and prevent neuronal apoptosis Folic acid improves eNO generation, enhances plasma levels of EPA/DHA and thus, could augment the formation of NPD1. These results suggest that a combination of EPA, DHA, AA and folic acid could be of significant benefit in dementia, depression, and Alzheimer's disease and improve cognitive function.  相似文献   

6.
Originally regarded as just membrane constituents and energy storing molecules, lipids are now recognised as potent signalling molecules that regulate a multitude of cellular responses via receptor-mediated pathways, including cell growth and death, and inflammation/infection. Derived from polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), each lipid displays unique properties, thus making their role in inflammation distinct from that of other lipids derived from the same PUFA. The diversity of their actions arises because such metabolites are synthesised via discrete enzymatic pathways and because they elicit their response via different receptors. This review will collate the bioactive lipid research to date and summarise the findings in terms of the major pathways involved in their biosynthesis and their role in inflammation and its resolution. It will include lipids derived from AA (prostanoids, leukotrienes, 5-oxo-6,8,11,14-eicosatetraenoic acid, lipoxins and epoxyeicosatrienoic acids), EPA (E-series resolvins), and DHA (D-series resolvins, protectins and maresins).  相似文献   

7.
Tumor necrosis factor-alfa (TNF-α) is a pro-inflammatory cytokine highly-involved in intestinal inflammation. Omega-3 polyunsaturated fatty acids (n3-PUFAs) show anti-inflammatory actions. We previously demonstrated that the n3-PUFA EPA prevents TNF-α inhibition of sugar uptake in Caco-2 cells. Here, we investigated whether the n3-PUFA DHA and its derived specialized pro-resolving lipid mediators (SPMs) MaR1, RvD1 and RvD2, could block TNF-α inhibition of intestinal sugar and glutamine uptake. DHA blocked TNF-α-induced inhibition of α-methyl-D-glucose (αMG) uptake and SGLT1 expression in the apical membrane of Caco-2 cells, through a pathway independent of GPR120. SPMs showed the same preventive effect but acting at concentrations 1000 times lower. In diet-induced obese (DIO) mice, oral gavage of MaR1 reversed the up-regulation of pro-inflammatory cytokines found in intestinal mucosa of these mice. However, MaR1 treatment was not able to counteract the reduced intestinal transport of αMG and SGLT1 expression in the DIO mice. In Caco-2 cells, TNF-α also inhibited glutamine uptake being this inhibition prevented by EPA, DHA and the DHA-derived SPMs. Interestingly, TNF-α increased the expression in the apical membrane of the glutamine transporter B0AT1. This increase was partially blocked by the n-3 PUFAs. These data reveal DHA and its SPMs as promising biomolecules to restore intestinal nutrients transport during intestinal inflammation.  相似文献   

8.
Aggressive periodontitis (AgP) is a rapidly progressing type of periodontal disease in otherwise healthy individuals which causes destruction of the supporting tissues of the teeth. The disease is initiated by pathogenic bacteria in the dental biofilm, and the severity of inflammation and attachment loss varies with the host response. Recently, there has been an increased interest in determining the role of lipid mediators in inflammatory events and the concept of pro-inflammatory and pro-resolution lipid mediators has been brought into focus also in periodontal disease. The present study aimed to determine the profile of omega-3 or n3- as well as omega-6 or n6- polyunsaturated fatty acids (PUFAs) and PUFA-metabolites of linoleic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in gingival crevicular fluid (GCF), saliva and serum in AgP patients and healthy controls. In total, 60 selected n3- and n6-PUFAs and various PUFA metabolites were measured using high performance liquid chromatography-tandem electrospray ionisation mass spectrometry (HPLC-ESI-MS-MS). Of these, 51 could be quantified in this study. The concentrations of the majority were low in saliva samples compared with serum and GCF, but were mainly higher in AgP patients compared with healthy controls in all three kinds of sample. Ratios of n3- to n6-PUFAs (DHA + EPA)/AA were significantly lower in the GCF of AgP patients than in the healthy controls. Furthermore, various ratios of the direct precursors of the pro-resolution lipid mediators (precursors of resolvins and protectins) were calculated against the precursors of mainly pro-inflammatory lipid mediators. These ratios were mainly lower in GCF and saliva of AgP patients, compared with healthy controls, but only reached significance in GCF (P<0.05). To conclude, the ratios of precursors of pro-resolution/pro-inflammatory lipid mediators seem to be more relevant for describing the disease status of AgP than the concentration of specific lipid mediators.  相似文献   

9.
In the present study, we noted that bleomycin induced growth inhibitory action was augmented by all the polyunsaturated fatty acids (PUFAs) tested on human neuroblastoma IMR-32 (0.5×104 cells/100 µl of IMR) cells (EPA> DHA> ALA = GLA = AA> DGLA = LA: ∼60, 40, 30, 10–20% respectively) at the maximum doses used. Of all the prostaglandins (PGE1, PGE2, PGF, and PGI2) and leukotrienes (LTD4 and LTE4) tested; PGE1, PGE2 and LTD4 inhibited the growth of IMR-32 cells to a significant degree at the highest doses used. Lipoxin A4 (LXA4), 19,20-dihydroxydocosapentaenoate (19, 20 DiHDPA) and 10(S),17(S)-dihydroxy-4Z,7Z,11E,13Z,15E,19Z-docosahexaenoic acid (protectin: 10(S),17(S)DiHDoHE), metabolites of DHA, significantly inhibited the growth of IMR-32 cells. Pre-treatment with AA, GLA, DGLA and EPA and simultaneous treatment with all PUFAs used in the study augmented growth inhibitory action of bleomycin. Surprisingly, both indomethacin and nordihydroguaiaretic acid (NDGA) at 60 and 20 µg/ml respectively enhanced the growth of IMR-32 cells even in the presence of bleomycin. AA enhanced oxidant stress in IMR-32 cells as evidenced by an increase in lipid peroxides, superoxide dismutase levels and glutathione peroxidase activity. These results suggest that PUFAs suppress growth of human neuroblastoma cells, augment growth inhibitory action of bleomycin by enhancing formation of lipid peroxides and altering the status of anti-oxidants and, in all probability, increase the formation of lipoxins, resolvins and protectins from their respective precursors that possess growth inhibitory actions.  相似文献   

10.
Typically fatty acids (FA) exert differential immunomodulatory effects with n-3 [α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] and n-6 [linoleic acid (LA) and arachidonic acid (AA)] exerting anti- and pro-inflammatory effects, respectively. This over-simplified interpretation is confounded by a failure to account for conversion of the parent FA (LA and ALA) to longer-chain bioactive products (AA and EPA/DHA, respectively), thereby precluding discernment of the immunomodulatory potential of specific FA. Therefore, we utilized the Δ6-desaturase model, wherein knockout mice (D6KO) lack the Fads2 gene encoding for the rate-limiting enzyme that initiates FA metabolism, thereby providing a model to determine specific FA immunomodulatory effects. Wild-type (WT) and D6KO mice were fed one of four isocaloric diets differing in FA source (9 weeks): corn oil (LA-enriched), arachidonic acid single cell oil (AA-enriched), flaxseed oil (ALA-enriched) or menhaden fish oil (EPA/DHA-enriched). Splenic mononuclear cell cytokine production in response to lipopolysaccharide (LPS), T-cell receptor (TCR) and anti-CD40 stimulation was determined. Following LPS stimulation, AA was more bioactive compared to LA, by increasing inflammatory cytokine production of IL-6 (1.2-fold) and TNFα (1.3-fold). Further, LPS-stimulated IFNγ production in LA-fed D6KO mice was reduced 5-fold compared to LA-fed WT mice, indicating that conversion of LA to AA was necessary for cytokine production. Conversely, ALA exerted an independent immunomodulatory effect from EPA/DHA and all n-3 FA increased LPS-stimulated IL-10 production versus LA and AA. These data definitively identify specific immunomodulatory effects of individual FA and challenge the simplified view of the immunomodulatory effects of n-3 and n-6 FA.  相似文献   

11.
Mortality and morbidity from coronary heart disease (CHD), diabetes mellitus (DM) and essential hypertension (HTN) are higher in people of South Asian descent than in other groups. There is evidence to believe that essential fatty acids (EFAs) and their metabolites may have a role in the pathobiology of CHD, DM and HTN. Fatty acid analysis of the plasma phospholipid fraction revealed that in CHD the levels of gamma-linolenic acid (GLA), arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are low, in patients with HTN linoleic acid (LA) and AA are low, and in patients with non-insulin dependent diabetes mellitus (NIDDM) and diabetic nephropathy the levels of dihomo-gamma-linolenic acid (DGLA), AA, alapha-linolenic acid (ALA) and DHA are low, all compared to normal controls. These results are interesting since DGLA, AA and EPA form precursors to prostaglandin E1, (PGE1), prostacyclin (PGI2), and PGI3, which are potent platelet anti-aggregators and vasodilators and can prevent thrombosis and atherosclerosis. Further, the levels of lipid peroxides were found to be high in patients with CHD, HTN, NIDDM and diabetic nephropathy. These results suggest that increased formation of lipid peroxides and an alteration in the metabolism of EFAs are closely associated with CHD, HTN and NIDDM in Indians. Since insulin resistance and hyperinsulinemia and features of obesity, NIDDM, HTN and CHD, diseases that are common in Indians, and as decreased insulin sensitivity is associated with decreased concentrations of polyunsaturated fatty acids (PUFAs) in skeletal muscle phospholipids and, possibly, in the plasma, the possibility is raised that changes in the metabolism of EFAs may have a fundamental role in the pathobiology of these conditions. If this is true, this suggests that supplementation of GLA, DGLA, AA, EPA and/or DHA may be indicated to prevent CHD, HTN and NIDDM in Indians.  相似文献   

12.
The effects of tumor necrosis factor alpha (TNF-α) on arachidonic acid (AA) metabolism were investigated by prelabeling the human osteoblastic osteosarcoma cell line, G292, with [3H]AA. TNF-α differentially stimulates cyclooxygenase and lipoxygenase pathways of AA metabolism in a dose response manner in the cells. The highest concentration of TNF-α (10−8 M) significantly increased the cyclooxygenase pathway, with prostaglandin E2 (PGE2) being a major product. However, at the lowest concentration (10−10 M) of TNF-α, 15-hydroxyeicosatetraenoic acid (HETE) production was significantly increased, with no significant effects on the other identifiable products. When the concentration of TNF-α was increased to 10−9 M leukotriene B4 (LTB4), 15-, 12-, and 5-HETE were significantly increased. The calcium ionophore A23187 (10−6 M) significantly increased 15-HETE production, without significantly affecting cyclooxygenase metabolites. However, a combination of TNF-α (10−8 M) and A23187 (10−6 M) caused an inhibitory effect on each agent-induced PGE2 or 15-HETE production.  相似文献   

13.
Sprague-Dawley rats were fed eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) ethyl esters at the 2% level for 3 weeks to clarify their effects on immune functions. In the rats fed EPA or DHA, serum cholesterol, triglyceride, and phospholipid (PL) levels were significantly lower than those in the rats fed safflower oil. In PL fractions of serum, liver, lung, splenocytes, and peritoneal exudate cells (PEC), increases in linoleic and dihomo-γ-linolenic acid contents and a decrease in arachidonic acid (AA) content were observed in the rats fed EPA or DHA. In addition, the EPA content increased in the rats fed EPA and DHA. In the rats fed EPA or DHA, a decrease of LTB4 productivity and an increase of LTB5 productivity were observed in the PEC, in response to the treatment with 5 μM calcium ionophore A23187 for 20 min. The changes in leukotriene production were more marked in EPA-fed rats than in DHA-fed rats. These results suggest that dietary EPA affects lipid metabolism and leukotriene synthesis more strongly than DHA.  相似文献   

14.
15.
Control of the inflammatory response is of wide interest given its important role in many diseases. In recent years we identified novel mechanisms and lipid mediators that play an active role in stimulating the resolution of self-limited acute inflammation. These novel pro-resolving mediators include the essential fatty acid-derived lipoxins, resolvins, protectins and maresins. Members of each possess a unique pro-resolving mechanism of action; each limits neutrophilic infiltration, regulates local mediators (chemokines, cytokines) as well as stimulates macrophage-enhanced clearance of apoptotic PMN, cellular debris and microbes. Given this unique mechanism of action, resolvins have already been shown to play pivotal roles in regulating key events in a wide range of experimental inflammatory diseases. These pro-resolving mediators also provide a molecular link between omega-3 essential fatty acids (e.g. EPA, DHA) and the resolution process of inflammation and tissue homeostasis. Here, we review recent evidence obtained using chiral LC-MS-MS-based lipidomics to identify a novel 18S-series of resolvins derived from EPA. Resolvin E1 possesses potent actions in vivo and in vitro demonstrated now in many laboratories, and herein we review comparisons in E-series resolvin biosynthesis and action of 18S-resolvin E1 and 18S-resolvin E2. The biosynthesis and formation of both 18S and 18R-series are enhanced with aspirin treatment and involve the utilization of dietary EPA as well as recombinant human 5-lipoxygenase and LTA(4) hydrolase in their stereospecific biosynthesis. Herein we also demonstrate the utility of LC-MS-MS-based lipidomics in identifying resolvins, protectins and related products in marine organisms such as Engraulis (Peruvian anchovy). These new findings emphasize the utility of chiral LC-MS-MS lipidomics and the potential for identifying new resolution circuits with chiral LC-MS-MS-based lipidomics and metabolomics.  相似文献   

16.

Background

An imbalance in the generation of pro-inflammatory leukotrienes, and counter-regulatory lipoxins is present in severe asthma. We measured leukotriene B4 (LTB4), and lipoxin A4 (LXA4) production by alveolar macrophages (AMs) and studied the impact of corticosteroids.

Methods

AMs obtained by fiberoptic bronchoscopy from 14 non-asthmatics, 12 non-severe and 11 severe asthmatics were stimulated with lipopolysaccharide (LPS,10 μg/ml) with or without dexamethasone (10-6M). LTB4 and LXA4 were measured by enzyme immunoassay.

Results

LXA4 biosynthesis was decreased from severe asthma AMs compared to non-severe (p < 0.05) and normal subjects (p < 0.001). LXA4 induced by LPS was highest in normal subjects and lowest in severe asthmatics (p < 0.01). Basal levels of LTB4 were decreased in severe asthmatics compared to normal subjects (p < 0.05), but not to non-severe asthma. LPS-induced LTB4 was increased in severe asthma compared to non-severe asthma (p < 0.05). Dexamethasone inhibited LPS-induced LTB4 and LXA4, with lesser suppression of LTB4 in severe asthma patients (p < 0.05). There was a significant correlation between LPS-induced LXA4 and FEV1 (% predicted) (rs = 0.60; p < 0.01).

Conclusions

Decreased LXA4 and increased LTB4 generation plus impaired corticosteroid sensitivity of LPS-induced LTB4 but not of LXA4 support a role for AMs in establishing a pro-inflammatory balance in severe asthma.  相似文献   

17.
Inflammation is a defensive response to injury and infection, but excessive or inappropriate inflammation contributes to a range of acute and chronic human diseases. Clinical assessment of dietary supplementation of omega-3 polyunsaturated fatty acids (PUFA) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) indicate their beneficial impact on human diseases in which inflammation is suspected as a key component of the pathogenesis. Although the mechanism of EPA and DHA action is still not fully defined in molecular terms, recent studies have revealed that, during the course of acute inflammation, omega-3 PUFA-derived mediators including resolvins and protectins with potent anti-inflammatory and pro-resolving properties are produced. In this review, we provide an overview of the formation and actions of EPA-derived anti-inflammatory lipid mediator resolvin E1.  相似文献   

18.
Pro-inflammatory and anti-inflammatory mediators derived from arachidonic acid (AA) modulate peripheral inflammation and its resolution. Aspirin (ASA) is a unique non-steroidal anti-inflammatory drug, which switches AA metabolism from prostaglandin E2 (PGE2) and thromboxane B2 (TXB2) to lipoxin A4 (LXA4) and 15-epi-LXA4. However, it is unknown whether chronic therapeutic doses of ASA are anti-inflammatory in the brain. We hypothesized that ASA would dampen increases in brain concentrations of AA metabolites in a rat model of neuroinflammation, produced by a 6-day intracerebroventricular infusion of bacterial lipopolysaccharide (LPS). In rats infused with LPS (0.5 ng/h) and given ASA-free water to drink, concentrations in high-energy microwaved brain of PGE2, TXB2 and leukotriene B4 (LTB4) were elevated. In rats infused with artificial cerebrospinal fluid, 6 weeks of treatment with a low (10 mg/kg/day) or high (100 mg/kg/day) ASA dose in drinking water decreased brain PGE2, but increased LTB4, LXA4 and 15-epi-LXA4 concentrations. Both doses attenuated the LPS effects on PGE2, and TXB2. The increments in LXA4 and 15-epi-LXA4 caused by high-dose ASA were significantly greater in LPS-infused rats. The ability of ASA to increase anti-inflammatory LXA4 and 15-epi-LXA4 and reduce pro-inflammatory PGE2 and TXB2 suggests considering aspirin further for treating clinical neuroinflammation.  相似文献   

19.
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have long been associated with decreased inflammation and are also implicated in the prevention of tumorigenesis. Conventional thinking attributed this mainly to a suppressive effect of these fatty acids on the formation of arachidonic acid-derived prostaglandins and leukotrienes. Recent years have seen the discovery of a new class of inflammation-dampening and resolution-promoting n-3 PUFA-derived lipid mediators called resolvins and protectins. Chemically, these compounds are hydroxylated derivatives of the parent n-3 PUFA eicosapentaenoic acid (EPA) for the E-resolvins, and docosahexaenoic acid (DHA) for the D-resolvins and protectin D1. While a relatively large number of these compounds have been identified and characterized until now, with differences in the positions of the hydroxyl-groups as well as in the chirality at the different carbon atoms, all compounds share common precursor metabolites, 17-hydroperoxydocosahexaenoic acid (17-H(p)DHA) for the DHA-derived compounds and 18-hydroperoxyeicosapentaenoic acid (18-H(p)EPE) for the EPA-derived compounds. In this review we summarize the current knowledge about EPA- and DHA-derived resolvins and protectins and explore the potential use of the pro-resolvins 17-hydroxydocosahexaenoic acid (17-HDHA) and 18-hydroxyeicosapentaenoic acid (18-HEPE) as indicators of anti-inflammatory n-3 PUFA mediator formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号