首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Heart failure (HF) is a common disease with high morbidity and mortality; however, none of the drugs available are now entirely optimal for the treatment of HF. In addition to various clinical diseases and environment influences, genetic factors also contribute to the development and progression of HF. Identifying the common variants for HF by genome-wide association studies will facilitate the understanding of pathophysiological mechanisms underlying HF. This review summarizes the recently identified common variants for HF risk and outcome and discusses their implications for the clinic therapy.  相似文献   

2.
Heart failure is a leading cause of hospitalization worldwide. No major significant improvements in prognosis have been achieved for heart failure over the last several decades despite advances in disease management. Heart failure itself represents a final common endpoint for several disease entities, including hypertension and coronary artery disease. On a molecular level, certain biochemical features remain common to failing myocardium. Among these are alterations in the beta-adrenergic receptor (beta-AR) signaling cascade. Recent advances in transgenic and gene therapy techniques have presented novel therapeutic strategies for management of heart failure via genetic manipulation of beta-AR signaling including the targeted inhibition of the beta-AR kinase (betaARK1 or GRK2). In this review, we will discuss the beta-AR signaling changes that accompany heart failure as well as corresponding therapeutic strategies. We will then review the evidence from transgenic mouse work supporting the use of beta-AR manipulation in the failing heart and more recent in vivo applications of gene therapy directed at reversing or preventing heart failure.  相似文献   

3.
Heart failure (HF) is a complex multifaceted problem of abnormal ventricular function and structure. In recent years, new information has been accumulated allowing for a more detailed understanding of the cellular and molecular alterations that are the underpinnings of diverse causes of HF, including myocardial ischemia, pressure-overload, volume-overload or intrinsic cardiomyopathy. Modern pharmacological approaches to treat HF have had a significant impact on the course of the disease, although they do not reverse the underlying pathological state of the heart. Therefore gene-based therapy holds a great potential as a targeted treatment for cardiovascular diseases. Here, we survey the relative therapeutic efficacy of genetic modulation of β-adrenergic receptor signaling, Ca(2+) handling proteins and angiogenesis in the most common extrinsic models of HF.  相似文献   

4.
The molecular basis of myocardial hypertrophy and heart failure   总被引:9,自引:0,他引:9  
Heart failure (HF) is the inability of the heart to cope with the metabolic demands of the periphery. It is the common end-stage of many frequent cardiac diseases and is characterized by relentless progression. Mechanisms of progression include renal sodium and water retention, neurohumoral activation and alterations of the protein composition (gene programme) of the heart itself. In this review, we explain the often confusing terminology in the subject, briefly touch upon the peripheral mechanisms of HF, and then focus on the changes in the gene programme of the failing heart and the molecular mechanisms leading to them. Understanding the basic processes underlying HF will help uninitiated readers to gain insight into recent novel approaches to its treatment.  相似文献   

5.
心力衰竭(心衰)是临床最常见的危重疾病之一,其致死率不低于某些癌症。随着现代医学进展,年龄依赖性死亡率明显下降,冠脉事件显著减少,患者生存时间延长,心衰患病率较前增加。针对心衰的研究不断更新,心衰的病理生理机制日益趋向完善,不仅仅涉及先前众所周知的心肌损伤或者心脏前后负荷增加,更多因素先后被发现参与心衰的发生、发展,包括神经内分泌机制、炎症反应,内分泌信号系统和生化因素等。伴随心衰病理生理过程产生了一系列的生物标记物,某些生物标记物在协助临床医生诊疗心衰患者方面发挥重要作用。具体包括神经激素类生物(例如:脑钠肽、氨基末端-pro BNP、心房钠尿肽前体中段、肾上腺髓质素前体中段和嗜铬素A),炎症因子类生物标记物(例如:CRP、IL-6和ST2),内分泌生物标志物(例如:脂联素、抵抗素、瘦素和醛固酮),其他生物标记物(包括:肌钙蛋白I/T、乳糖凝集素-3、胱氨酸蛋白酶抑制剂C、生长分化因子-15和基质金属蛋白酶)。生物标记物凭借其高度敏感性及特异性,在心衰的诊断、危险分层及评估预后等方面发挥重要作用。本文就心衰生物标记物最新研究进展做一综述。  相似文献   

6.
7.
The mammalian heart expresses two closely related natriuretic peptide (NP) hormones, atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP). The excretion of the NPs and the expression of their genes strongly respond to a variety of cardiovascular disorders. NPs act to increase natriuresis and decrease vascular resistance, thereby decreasing blood volume, systemic blood pressure and afterload. Plasma levels of BNP are used as diagnostic and prognostic markers for hypertrophy and heart failure (HF), and both ANF and BNP are widely used in biomedical research to assess the hypertrophic response in cell culture or the development of HF related diseases in animal models. Moreover, ANF and BNP are used as specific markers for the differentiating working myocardium in the developing heart, and the ANF promoter serves as platform to investigate gene regulatory networks during heart development and disease. However, despite decades of research, the mechanisms regulating the NP genes during development and disease are not well understood. Here we review current knowledge on the regulation of expression of the genes for ANF and BNP and their role as biomarkers, and give future directions to identify the in vivo regulatory mechanisms. This article is part of a Special Issue entitled: Heart failure pathogenesis and emerging diagnostic and therapeutic interventions.  相似文献   

8.
心力衰竭(心衰)的发病率正随着人口老龄化的加速而显著上升,目前仍然是一个重大的公共健康问题。尽管近年来在心衰治疗方面取得了显著成效,但患者的生存率依旧很低,预后差,确诊心衰后5年内死亡率高达50%。如果能够对心衰进行快速有效的诊断并按危险程度进行合理分层,将为临床医生制定治疗方案提供重要的参考依据。生物标志物在心衰的诊断、疗效评估及预后判断方面都具有重要的意义。心力衰竭是一种复杂的疾病,涉及多种生理病理过程。心力衰竭时,神经内分泌系统被激活,同时伴随着血容量和心室壁压力增加,心室肌细胞分泌NT-proBNP/BNP,因此,其可作为心衰诊断和预后生物标志物。然而血浆中NT-proBNP/BNP易受到年龄、性别、体型、左室肥大、心动过速、右心室过载、低氧血症、肾脏功能等诸多因素影响。sST2作为一种新型心力衰竭标志物,近年来备受关注,它不仅能够反映心肌纤维化程度并预测是否发生心室重构,且不受年龄、性别、肾功能等因素的影响,同时具有更低的参考变化值和个体指数,更适合用于连续监测和指导治疗,是评价心力衰竭的理想指标之一。文中对近年来sST2在心衰诊断和预后方面的研究进展进行总结归纳,并对其发展趋势进行展望。  相似文献   

9.
Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease, characterised by complex pathophysiology and extensive genetic and clinical heterogeneity. In most patients, HCM is caused by mutations in cardiac sarcomere protein genes and inherited as an autosomal dominant trait. The clinical phenotype ranges from severe presentations at a young age to lack of left ventricular hypertrophy in genotype-positive individuals. No preventative treatment is available as the sequence and causality of the pathomechanisms that initiate and exacerbate HCM are unknown. Sudden cardiac death and end-stage heart failure are devastating expressions of this disease. Contemporary management including surgical myectomy and implantable cardiac defibrillators has shown significant impact on long-term prognosis. However, timely recognition of specific scenarios – including transition to the end-stage phase – may be challenging due to limited awareness of the progression patterns of HCM. This in turn may lead to missed therapeutic opportunities. To illustrate these difficulties, we describe two HCM patients who progressed from the typical hyperdynamic stage of asymmetric septal thickening to end-stage heart failure with severely reduced ejection fraction. We highlight the different stages of this complex inherited cardiomyopathy based on the clinical staging proposed by Olivotto and colleagues. In this way, we aim to provide a practical guide for clinicians and hope to increase awareness for this common form of cardiac disease.  相似文献   

10.
Heart failure is an increasingly prevalent and highly lethal disease that is most often caused by underlying pathologies, such as myocardial infarction or hypertension, but it can also be the result of a single gene mutation. Comprehensive genetic and genomic approaches are starting to disentangle the diverse molecular underpinnings of both forms of the disease and promise to yield much-needed novel diagnostic and therapeutic options for specific subtypes of heart failure.  相似文献   

11.
心力衰竭是目前全球共同面对的公共卫生问题之一,是各种心血管疾病发展的最终阶段。传统的强心、利尿、扩张外周血管等治疗措施仅能缓解心力衰竭的症状,但无法逆转在心肌细胞中发生的分子变化。心力衰竭发生、发展的病理生理机制是复杂的、多方面的,包括神经-体液的调节、炎症反应、细胞的肥大及凋亡等机制,其中线粒体的功能障碍是心力衰竭进展中的关键因素之一。心力衰竭中心肌细胞虽然发生代谢障碍,但仍然保持活性,且存在逆转的可能性。因此,在心力衰竭的治疗上不能局限在缓解症状,而应针对心力衰竭中潜在的分子机制,逆转损伤的心肌。研究线粒体在衰竭心肌中发生的病理生理变化,对于逆转心肌的收缩功能具有重要意义。本文就线粒体的生物起源及其针对其起源在心力衰竭中的治疗措施作一综述。  相似文献   

12.
Shi  Xingjuan  Chen  Ru  Zhang  Yu  Yun  Junghwa  Brand-Arzamendi  Koroboshka  Liu  Xiangdong  Wen  Xiao-Yan 《Amino acids》2018,50(7):787-798

Heart failure is a complex pathophysiological syndrome of pumping functional failure that results from injury, infection or toxin-induced damage on the myocardium, as well as genetic influence. Gene mutations associated with cardiomyopathies can lead to various pathologies of heart failure. In recent years, zebrafish, Danio rerio, has emerged as an excellent model to study human cardiovascular diseases such as congenital heart defects, cardiomyopathy, and preclinical development of drugs targeting these diseases. In this review, we will first summarize zebrafish genetic models of heart failure arose from cardiomyopathy, which is caused by mutations in sarcomere, calcium or mitochondrial-associated genes. Moreover, we outline zebrafish heart failure models triggered by chemical compounds. Elucidation of these models will improve the understanding of the mechanism of pathogenesis and provide potential targets for novel therapies.

  相似文献   

13.
Heart failure (HF) occurs when the adaptation mechanisms of the heart fail to compensate for stress factors, such as pressure overload, myocardial infarction, inflammation, diabetes, and cardiotoxic drugs, with subsequent ventricular hypertrophy, fibrosis, myocardial dysfunction, and chamber dilatation. Oxidative stress, defined as an imbalance between reactive oxygen species (ROS) generation and the capacity of antioxidant defense systems, has been authenticated as a pivotal player in the cardiopathogenesis of the various HF subtypes. The family of NADPH oxidases has been investigated as a key enzymatic source of ROS in the pathogenesis of HF. In this review, we discuss the importance of NADPH oxidase-dependent ROS generation in the various subtypes of HF and its implications. A better understanding of the pathogenic roles of NADPH oxidases in the failing heart is likely to provide novel therapeutic strategies for the prevention and treatment of HF.  相似文献   

14.
Heart failure is a major disease burden worldwide, and its incidence continues to increase as premature deaths from other cardiovascular conditions decline. Although the overall molecular portrait of this multifactorial disease remains incomplete, molecular and genetic studies have implicated, in recent decades, various pathways and genes that participate in the pathophysiology of heart failure. Here, we highlight the current understanding of the molecular and genetic basis of heart failure and show how recently developed genomic tools are providing a new perspective on this complex disease.  相似文献   

15.
The most common cause of dilated cardiomyopathy and heart failure (HF) is ischemic heart disease; however, in a third of all patients the cause remains undefined and patients are diagnosed as having idiopathic dilated cardiomyopathy (IDC). Recent studies suggest that many patients with IDC have a family history of HF and rare genetic variants in over 35 genes have been shown to be causative of disease. We employed whole‐exome sequencing to identify the causative variant in a large family with autosomal dominant transmission of dilated cardiomyopathy. Sequencing and subsequent informatics revealed a novel 10‐nucleotide deletion in the BCL2‐associated athanogene 3 (BAG3) gene (Ch10:del 121436332_12143641: del. 1266_1275 [NM 004281]) that segregated with all affected individuals. The deletion predicted a shift in the reading frame with the resultant deletion of 135 amino acids from the C‐terminal end of the protein. Consistent with genetic variants in genes encoding other sarcomeric proteins there was a considerable amount of genetic heterogeneity in the affected family members. Interestingly, we also found that the levels of BAG3 protein were significantly reduced in the hearts from unrelated patients with end‐stage HF undergoing cardiac transplantation when compared with non‐failing controls. Diminished levels of BAG3 protein may be associated with both familial and non‐familial forms of dilated cardiomyopathy. J. Cell. Physiol. 229: 1697–1702, 2014. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.  相似文献   

16.
Zhang  Tao  Ge  Jianjun 《Mammalian genome》2022,33(3):490-501
Mammalian Genome - Heart failure (HF) is a complicated disease resulting from impaired heart function. CREB1 is a candidate target in heart-concerning diseases. This paper attempts to explore the...  相似文献   

17.

Heart failure (HF) remains a major global problem. In the Netherlands, 1.5–2.0% of the total population is diagnosed with HF. Over 30,000 HF patients are admitted annually in the Netherlands, and this number is expected to further increase given the ageing population and the chronic nature of HF. Despite ongoing efforts to reduce the burden of HF, morbidity and mortality rates of this disease remain high. However, several new treatment modalities have become available or are expected to become available in the coming years. This review will provide an overview of HF research conducted in the Netherlands (often in an international setting) that may have clinical consequences for diagnosis, treatment and prevention of HF, and will also evaluate outcomes of larger clinical trials that have been conducted in the Netherlands.

  相似文献   

18.
Heart disease causing cardiac cell death due to ischemia–reperfusion injury is a major cause of morbidity and mortality in the United States. Coronary heart disease and cardiomyopathies are the major cause for congestive heart failure, and thrombosis of the coronary arteries is the most common cause of myocardial infarction. Cardiac injury is followed by post-injury cardiac remodeling or fibrosis. Cardiac fibrosis is characterized by net accumulation of extracellular matrix proteins in the cardiac interstitium and results in both systolic and diastolic dysfunctions. It has been suggested by both experimental and clinical evidence that fibrotic changes in the heart are reversible. Hence, it is vital to understand the mechanism involved in the initiation, progression, and resolution of cardiac fibrosis to design anti-fibrotic treatment modalities. Animal models are of great importance for cardiovascular research studies. With the developing research field, the choice of selecting an animal model for the proposed research study is crucial for its outcome and translational purpose. Compared to large animal models for cardiac research, the mouse model is preferred by many investigators because of genetic manipulations and easier handling. This critical review is focused to provide insight to young researchers about the various mouse models, advantages and disadvantages, and their use in research pertaining to cardiac fibrosis and hypertrophy.  相似文献   

19.
Heart failure (HF) as a result of myocardial infarction (MI) is the leading cause of death worldwide. In contrast to the adult mammalian heart, which has low regenerative capacity, newborn mammalian and zebrafish hearts can completely regenerate after injury. Cardiac regeneration is considered to be mediated by proliferation of pre-existing cardiomyocytes (CMs) mainly located in a hypoxic niche. To find new therapies to treat HF, efforts are being made to understand the molecular pathways underlying the regenerative capacity of the heart. However, the multicellularity of the heart is important during cardiac regeneration as not only CM proliferation but also the restoration of the endothelium is imperative to prevent progression to HF. It has recently come to light that signalling from non-coding RNAs (ncRNAs) and extracellular vesicles (EVs) plays a role in the healthy and the diseased heart. Multiple studies identified differentially expressed ncRNAs after MI, making them potential therapeutic targets. In this review, we highlight the molecular interactions between endothelial cells (ECs) and CMs in cardiac regeneration and when the heart loses its regenerative capacity. We specifically emphasize the role of ncRNAs and cell-cell communication via EVs during cardiac regeneration and neovascularisation.  相似文献   

20.
Heart failure (HF) with preserved ejection fraction (HFpEF) is currently the predominant form of HF with a dramatic increase in risk with age. Low‐grade inflammation, as occurs with aging (termed “inflammaging”), is a common feature of HFpEF pathology. Suppression of proinflammatory pathways has been associated with attenuated HFpEF disease severity and better outcomes. From this perspective, inflammasome signaling plays a central role in mediating chronic inflammation and cardiovascular disease progression. However, the causal link between the inflammasome‐immune signaling axis on the age‐dependent progression of HFpEF remains conjectural. In this review, we summarize the current understanding of the role of inflammatory pathways in age‐dependent cardiac function decline. We will also evaluate recent advances and evidence regarding the inflammatory pathway in the pathophysiology of HFpEF, with special attention to inflammasome signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号