首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been suggested that cyclooxygenase-2 (COX-2)-mediated prostaglandin synthesis is associated with liver inflammation and carcinogenesis. The aim of this study is to identify the cellular source of COX-2 expression in different stages, from acute liver injury through liver fibrosis to cholangiocarcinoma (CC). We induced in rats acute and “chronic” liver injury (thioacetamide (TAA) or carbon tetrachloride (CCl4)) and CC development (TAA) and assessed COX-2 gene expression in normal and damaged liver tissue by RT-PCR of total RNA. The cellular localization of COX-2 protein in liver tissue was analyzed by immunohistochemistry as well as in isolated rat liver cells by Western blotting. The findings were compared with those obtained in human cirrhotic liver tissue. The specificity of the antibodies was tested by 2-DE Western blot and mass spectrometric identification of the positive protein spots. RT-PCR analysis of total RNA revealed an increase of hepatic COX-2 gene expression in acutely as well as “chronically” damaged liver. COX-2-protein was detected in those ED1+/ED2+ cells located in the non-damaged tissue (resident tissue macrophages). In addition COX-2 positivity in inflammatory mononuclear phagocytes (ED1+/ED2), which were also present within the tumoral tissue was detected. COX-2 protein was clearly detectable in isolated Kupffer cells as well as (at lower level) in isolated “inflammatory” macrophages. Similar results were obtained in human cirrhotic liver. COX-2 protein is constitutively detectable in liver tissue macrophages. Inflammatory mononuclear phagocytes contribute to the increase of COX-2 gene expression in acute and chronic liver damage induced by different toxins and in the CC microenvironment.  相似文献   

2.
Two well-characterized antigens [Mac-1 and lymphocyte-function-associated antigen (LFA-1)], expressed on a variety of leukocytes, are members of a family of surface proteins associated with multiple recognition functions. To analyze expression of these proteins during macrophage development, we utilized both radioimmunoassay and flow cytometry. As previously reported, Mac-1 is expressed on murine macrophages in all stages of development. We found LFA-1 to be present on murine mononuclear phagocytes but only in certain stages of their development. Specifically, we found LFA-1 was expressed on murine tissue macrophages but only on those activated in vivo by bacillus Calmette Guerin (BCG) or, to a lesser extent, primed by pyran copolymer. Although LFA-1 was absent on inflammatory (responsive) and resident tissue macrophages it was also present on blood-borne monocytes. Activated macrophages also selectively expressed the H-11 and Ly-6 antigens. Thus, these data indicate that LFA-1 is selectively expressed on mononuclear phagocytes of the tissues but only on those in the primed and activated stages of development.  相似文献   

3.
Macrophages are professional phagocytes, indispensable for maintenance of tissue homeostasis and integrity. Depending on their resident tissue, macrophages are exposed to highly diverse metabolic environments. Adapted to their niche, they can contribute to local metabolic turnover through metabolite uptake, conversion, storage and release. Disturbances in tissue homeostasis caused by infection, inflammation or damage dramatically alter the local milieu, impacting macrophage activation status and metabolism. In the case of persisting stimuli, defective macrophage responses ensue, which can promote tissue damage and disease. Especially relevant herein are disbalances in lipid rich environments, where macrophages are crucially involved in lipid uptake and turnover, preventing lipotoxicity. Lipid uptake is to a large extent facilitated by macrophage expressed scavenger receptors that are dynamically regulated and important in many metabolic diseases. Here, we review the receptors mediating lipid uptake and summarize recent findings on their role in health and disease. We further highlight the underlying pathways driving macrophage lipid acquisition and their impact on myeloid metabolic remodelling.  相似文献   

4.
Mouse resident peritoneal macrophages synthesize two plasminogen activator-specific inhibitors (PAI) that are functionally and antigenically related, but differ in their apparent Mr and oligosaccharide content. Most of the Mr 40,000 inhibitor can be recovered from the cell lysate, whereas the Mr 55,000 glycosylated PAI is preferentially secreted. The murine macrophage PAI are functionally similar and immunologically related to PAI synthesized and secreted by human monocytes-macrophages, and to a PAI from human placenta (PAI-2). PAI production by murine mononuclear phagocytes can be modulated both in vivo and in vitro. Bone marrow-derived macrophages do not produce detectable PAI, whereas inflammatory macrophages obtained from thioglycollate-induced peritoneal exudates produce only low levels of PAI. In cultures of resident peritoneal macrophages, phorbol myristate acetate and cholera toxin increase the synthesis of the Mr 55,000 secreted PAI, whereas dexamethasone decreases the synthesis of both PAI; the production of PAI is also enhanced in the presence of macrophage colony-stimulating factor (CSF-1). The overall proteolytic activity of mononuclear phagocytes thus depends in part on the controlled synthesis and secretion of PAI. The balance between the production of plasminogen activators and of their inhibitors could be critical in determining the level of plasminogen-dependent extracellular proteolysis associated with different phases of the inflammatory response.  相似文献   

5.
Dexamethasone, a synthetic glucocorticosteroid, was shown to modulate the colony-stimulating factor-dependent clonal growth of myeloid progenitor cells in semisolid agar cultures, enhancing the formation of granulocyte colonies (50–100%) and suppressing the formation of macrophage colonies (75–97%). Modulation of the pattern of myeloid colony formation by dexamethasone (12–125 nM) was brought about when the steroid was administered to 6-day cultures at the time of culture initiation and up to 72 hr later. Dexamethasone inhibited myeloid cell proliferation when administered to 5-day liquid cultures at culture initiation and up to 96 hr later. Dexamethasone (12–250 nM) also enhanced the phagocytic activity of bone marrow-derived mononuclear phagocytes toward heat-killed (HK) yeast cells (up to 100%) and IgG-coated sheep red blood cells (up to 60%). Enhancement of the phagocytic capability depended critically on the stage in culture at which dexamethasone was administered. Exposure to dexamethasone for 28 hr up to 96 hr of 96-hr cultures of bone marrow cells did not lead to a modulation of phagocytic activity of the developing mononuclear phagocytes. The presence of dexamethasone during the critical period of 96 hr to 120 hr after culture initiation led to an enhanced phagocytic capability, which was statistically significant already 12 hr after the administration of the glucocorticoid. Dexamethasone induced an enhanced phagocytic activity when administered at any time after culture initiation provided that it was in culture during this critical period. When added at 120 hr of culture, dexamethasone no longer enhanced the phagocytic capability of mononuclear phagocytes and when added later than 156 hr of culture suppressed it. Dexamethasone also suppressed (up to 68%) the phagocytic capability of resident and elicited peritoneal macrophages. The results suggest that glucocorticoids shift the balance of granulocyte vs. macrophage formation at early stages of precursor cell differentiation. Reduction in mononuclear phagocyte growth and enhancement of its phagocytic capability might reflect accelerated differentiation/maturation steps. The inhibitory effect of dexamethasone on macrophage formation and on the phagocytic capability of mature mononuclear phagocytes and peritoneal macrophages might be a relevant aspect of the in vivo immune suppression encountered after glucocorticoid administration.  相似文献   

6.
7.
Osteoarthritis (OA) is the most prevalent joint disease causing major disability and medical expenditures. Synovitis is a central feature of OA and is primarily driven by macrophages. Synovial macrophages not only drive inflammation but also its resolution, through a coordinated, simultaneous expression of pro- and anti-inflammatory mechanisms that are essential to counteract damage and recover homeostasis. Current OA therapies are largely based on anti-inflammatory principles and therefore block pro-inflammatory mechanisms such as prostaglandin E2 and Nuclear factor-kappa B signaling pathways. However, such mechanisms are also innately required for mounting a pro-resolving response, and their blockage often results in chronic low-grade inflammation. Following minor injury, macrophages shield the damaged area and drive tissue repair. If the damage is more extensive, macrophages incite inflammation recruiting more macrophages from the bone marrow to maximize tissue repair and ultimately resolve inflammation. However, sustained damage and inflammation often overwhelms pro-resolving mechanisms of synovial macrophages leading to the chronic inflammation and related tissue degeneration observed in OA. Recently, experimental and clinical studies have shown that joint injection with autologous bone marrow mononuclear cells replenishes inflamed joints with macrophage and hematopoietic progenitors, enhancing mechanisms of inflammation resolution, providing remarkable and long-lasting effects. Besides creating an ideal environment for resolution with high concentrations of interleukin-10 and anabolic growth factors, macrophage progenitors also have a direct role in tissue repair. Macrophages constitute a large part of the early granulation tissue, and further transdifferentiate from myeloid into a mesenchymal phenotype. These cells, characterized as fibrocytes, are essential for repairing osteochondral defects. Ongoing “omics” studies focused on identifying key drivers of macrophage-mediated resolution of joint inflammation and those required for efficient osteochondral repair, have the potential to uncover ways for developing engineered macrophages or off-the-shelf pro-resolving therapies that can benefit patients suffering from many types of arthropaties, not only OA.  相似文献   

8.
G C Bagby 《Blood cells》1987,13(1-2):147-159
In the past 8 years, our group has carried out a series of in-vitro studies designed to characterize the role of mononuclear phagocytes as regulators of human hematopoiesis. The results of this program of investigation, some of which are reviewed below, led to the discovery that mononuclear phagocytes are more efficient recruitors of growth factor release by other cells than they are direct stimulators of progenitor cell growth. Specifically, mononuclear phagocytes release soluble factors (MRA) that stimulate other cells, including vascular endothelial cells, skin fibroblasts, and marrow fibroblasts, to release multilineage hematopoietic growth factors. Experiments designed to purify and characterize these monokines indicated unambiguously that the MRA that stimulates granulocyte/macrophage colony stimulating factor (GM-CSF) release is interleukin-1 (IL-1). Based on these observations and recent observations by other groups on the hematopoietic effects of other monokines including tumor necrosis factor alpha, we argue that mononuclear phagocytes serve as important regulators of hematopoiesis by producing monokines that, in turn, induce the expression of multiple hematopoietic growth factor genes in stromal cells of the hematopoietic microenvironment. Because IL-1 molecules and the mononuclear phagocytes producing them are evolutionarily conserved, and in view of the heterogeneous nonhematopoietic effects of these monokines, studies on their role in hematopoiesis may also provide new understanding of the molecular evolution of multicellular organisms.  相似文献   

9.
The inflammatory response is driven by signals that recruit and elicit immune cells to areas of tissue damage or infection. The concept of a mononuclear phagocyte system postulates that monocytes circulating in the bloodstream are recruited to inflamed tissues where they give rise to macrophages. A recent publication demonstrated that the large increase in the macrophages observed during infection was the result of the multiplication of these cells rather than the recruitment of blood monocytes. We demonstrated previously that B-1 cells undergo differentiation to acquire a mononuclear phagocyte phenotype in vitro (B-1CDP), and we propose that B-1 cells could be an alternative origin for peritoneal macrophages. A number of recent studies that describe the phagocytic and microbicidal activity of B-1 cells in vitro and in vivo support this hypothesis. Based on these findings, we further investigated the differentiation of B-1 cells into phagocytes in vivo in response to LPS-induced inflammation. Therefore, we investigated the role of B-1 cells in the composition of the peritoneal macrophage population after LPS stimulation using osteopetrotic mice, BALB/Xid mice and the depletion of monocytes/macrophages by clodronate treatment. We show that peritoneal macrophages appear in op/op((-/-)) mice after LPS stimulation and exhibit the same Ig gene rearrangement (VH11) that is often found in B-1 cells. These results strongly suggest that op/op((-/-)) peritoneal "macrophages" are B-1CDP. Similarly, the LPS-induced increase in the macrophage population was observed even following monocyte/macrophage depletion by clodronate. After monocyte/macrophage depletion by clodronate, LPS-elicited macrophages were observed in BALB/Xid mice only following the transfer of B-1 cells. Based on these data, we confirmed that B-1 cell differentiation into phagocytes also occurs in vivo. In conclusion, the results strongly suggest that B-1 cell derived phagocytes are a component of the LPS-elicited peritoneal macrophage population.  相似文献   

10.
11.
Increased numbers of macrophages are found in the lungs of smokers and those with chronic obstructive pulmonary disease. Experimental evidence shows the central role of macrophages in elaboration of inflammatory mediators such as TNF-α and the progression toward cigarette smoke-induced emphysema. We investigated the role of CX3CR1 in recruitment of mononuclear phagocytes, inflammatory cytokine responses, and tissue destruction in the lungs after cigarette smoke exposure. Using mice in which egfp is expressed at the locus of the cx3cr1 gene, we show that alveolar macrophages increased transmembrane ligand CX3CL1 expression and soluble CX3CL1 was detectable in the airspaces, but cx3cr1(GFP/GFP) and cx3cr1(GFP/+) mice failed to show recruitment of CX3CR1(+) cells into the airspaces with cigarette smoke. In contrast, cigarette smoke increased the accumulation of CX3CR1(+)CD11b(+) mononuclear phagocytes that were spatially confined to the lung interstitium and heterogenous in their expression of CD11c, MHC class II, and autofluorescent property. Although an intact CX3CL1-CX3CR1 pathway amplified the percentage of CX3CR1(+)CD11b(+) mononuclear phagocytes in the lungs, it was not essential for recruitment. Rather, functional CX3CR1 was required for a subset of tissue-bound mononuclear phagocytes to produce TNF-α and IL-6 in response to cigarette smoke, and the absence of functional CX3CR1 protected mice from developing tissue-destructive emphysema. Thus, CX3CR1(+) "tissue resident" mononuclear phagocytes initiate an innate immune response to cigarette smoke by producing TNF-α and IL-6 and are capable of promoting emphysema.  相似文献   

12.
Using a cytochemical assay we were able to show that the peritoneal macrophage population of normal nontreated mice (resident peritoneal macrophages) exhibits a heterogeneity with regard to the expression of the activity of the ecto-enzyme 5′-nucleotidase (5′-N). About 75% of the macrophages express high enzymic activity whereas the remaining 25% express low 5′-N activity. Macrophages accumulating in the peritoneum as a result of an inflammatory response are predominantly of the low activity type. In vitro activation of resident peritoneal macrophages by lymphokines does not result in a decrease in the number of macrophages expressing high enzymic activity though the level of the enzymic activity of these cells is reduced by about 36%. Bone marrow derived mononuclear phagocyte colonies developing in vitro, under liquid culture conditions, from bone marrows of normal mice can be divided into three types with respect to their expression of 5′-N activity: (1) high activity colonies–relatively small colonies in which all the cells express high 5′-N activity (about 20% of the colonies); (2) low activity colonies – relatively large colonies in which all the cells express low 5′-N activity (about 70% of the colonies); and (3) mixed colonies–relatively large colonies in which all the cells express low enzymic activity except for about 8% of cells located at the periphery of the colonies which express high enzymic activity (about 10% of the colonies). During an inflammatory response the frequency of the high activity colonies is significantly reduced. Our results provide evidence for distinct bone marrow precursors for mononuclear phagocytes expressing high and low 5′-N activity and suggest that (1) the resident macrophages derive from a subpopulation of bone marrow precursor cells developing in vitro into high 5′-N activity mononuclear phagocytes, and (2) during an inflammatory response there is a preferential expansion of clones of the low enzymic activity phenotype.  相似文献   

13.
Tissue macrophages are resident phagocytes that acquire specific phenotypes according to the microenvironment. Morphological and functional heterogeneity has been evidenced in different homeostatic and pathological conditions. Indeed, the nature of macrophage subsets may have either harmful or beneficial functions in disease progression/resolution. Therefore the possibility to pharmacologically manipulate heterogeneity represents a relevant challenge. Since human tissue macrophages are not easily obtained, various in vitro models are currently used that do not adequately reflect the heterogeneity and plasticity of tissue macrophages. We had previously reported that two dominant and distinct macrophage morphotypes co‐exist in the same culture of human monocytes spontaneously differentiated for 7 days in autologous serum. The present study was aimed to the phenotypic characterization of these morphotypes, that is, round‐ and spindle‐shaped. We observed that, besides substantial differences in cytoskeleton architecture, round monocyte‐derived macrophages (MDMs) showed higher lipid content, increased macropinocytosis/efferocytosis capacity, and overexpression of CD163, interleukin (IL)‐10, and transforming growth factor (TGF) β2. Conversely, spindle MDMs exhibited enhanced respiratory burst and higher expression of the chemokine (C‐C motif) ligands 18 and 24 (CCL18 and CCL24). Overall, round MDMs show functional traits reminiscent of the non‐inflammatory and reparative M2 phenotype, whereas spindle MDMs exhibit a pro‐inflammatory profile and express genes driving lymphocyte activation and eosinophil recruitment. MDMs obtained in the culture condition herein described represent a valuable model to disentangle and manipulate the functional heterogeneity of tissue macrophages that has been disclosed in scenarios spanning from inflammatory and wounding responses to atherosclerotic lesions. J. Cell. Physiol. 228: 1464–1472, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
15.
《The Journal of cell biology》1983,97(4):1113-1118
A number of macrophage functions were sequentially expressed when the bone marrow precursors of mononuclear phagocytes differentiated in culture in the presence of a specific growth factor, colony-stimulating factor-1. We have defined the expression of apoprotein E (ApoE), a major secreted protein of resident peritoneal macrophages, during maturation of adherent bone marrow-derived mononuclear phagocytes into macrophages. By 5 d the bone marrow macrophages were active secretory cells, but few cells contained intracellular immunoreactive ApoE, and little, if any, ApoE was secreted. ApoE secretion was initiated at 9 d, and this correlated with an increase in the percentage of macrophages containing intracellular ApoE. The onset of ApoE secretion was selective, and little change occurred in the other major secreted proteins detected by [35S]methionine incorporation. In parallel, the high rate of plasminogen activator secretion, which peaked at 7 d, decreased markedly. ApoE secretion was not associated with altered expression of the macrophage surface antigen, Ia, or with secretion of fibronectin. Virtually all cells in independent colonies of bone marrow- derived macrophages eventually expressed ApoE. The proliferating monocyte/macrophage-like cell lines P388D1, J774.2, WEHI-3, RAW 264.1, and MGI.D+ secreted little or no ApoE. These data establish that ApoE secretion is developmentally regulated.  相似文献   

16.
Current concepts concerning the main functional phenotypes of mononuclear phagocytes are systematized, molecular mechanisms of their formation are considered, and the functional polarization concept of macrophages is critically analyzed. Mechanisms of macrophage priming activation mediated by pattern recognition receptors TLR, NLR, RLR, and CLR are described, and the features of each phenotype acquired via various pattern recognition receptors are emphasized. It is concluded that there is a huge variety of proinflammatory phenotypes from highly to poorly polarized ones. Thus the widespread notion of “classical activation” of macrophage concerns just a particular case of proinflammatory phenotype formation.  相似文献   

17.

Background

Recent experimental studies provide evidence indicating that manipulation of the mononuclear phagocyte phenotype could be a feasible approach to alter the severity and persistence of pulmonary injury and fibrosis. Mineralocorticoid receptor (MR) has been reported as a target to regulate macrophage polarization. The present work was designed to investigate the therapeutic potential of MR antagonism in bleomycin-induced acute lung injury and fibrosis.

Methodology/Principal Findings

We first demonstrated the expression of MR in magnetic bead-purified Ly6G-/CD11b+ circulating monocytes and in alveolar macrophages harvested in bronchoalveolar lavage fluid (BALF) from C57BL/6 mice. Then, a pharmacological intervention study using spironolactone (20mg/kg/day by oral gavage) revealed that MR antagonism led to decreased inflammatory cell infiltration, cytokine production (downregulated monocyte chemoattractant protein-1, transforming growth factor β1, and interleukin-1β at mRNA and protein levels) and collagen deposition (decreased lung total hydroxyproline content and collagen positive area by Masson’ trichrome staining) in bleomycin treated (2.5mg/kg, via oropharyngeal instillation) male C57BL/6 mice. Moreover, serial flow cytometry analysis in blood, BALF and enzymatically digested lung tissue, revealed that spironolactone could partially inhibit bleomycin-induced circulating Ly6Chi monocyte expansion, and reduce alternative activation (F4/80+CD11c+CD206+) of mononuclear phagocyte in alveoli, whereas the phenotype of interstitial macrophage (F4/80+CD11c-) remained unaffected by spironolactone during investigation.

Conclusions/Significance

The present work provides the experimental evidence that spironolactone could attenuate bleomycin-induced acute pulmonary injury and fibrosis, partially via inhibition of MR-mediated circulating monocyte and alveolar macrophage phenotype switching.  相似文献   

18.
A growing body of evidence suggests that macrophage polarization dictates the expression of iron-regulated genes. Polarization towards iron sequestration depletes the microenvironment, whereby extracellular pathogen growth is limited and inflammation is fostered. In contrast, iron release contributes to cell proliferation, which is important for tissue regeneration. Moreover, macrophages constitute a major component of the infiltrates in most solid tumors. Considering the pivotal role of macrophages for iron homeostasis and their presence in association with poor clinical prognosis in tumors, we approached the possibility to target macrophages with intracellular iron chelators. Analyzing the expression of iron-regulated genes at mRNA and protein level in primary human macrophages, we found that the iron-release phenotype is a characteristic of polarized macrophages that, in turn, stimulate tumor cell growth and progression. The application of the intracellular iron chelator (TC3-S)2 shifted the macrophage phenotype from iron release towards sequestration, as determined by the iron-gene profile and atomic absorption spectroscopy (AAS). Moreover, whereas the addition of macrophage supernatants to tumor cells induced tumor growth and metastatic behavior, the supernatant of chelator-treated macrophages reversed this effect. Iron chelators demonstrated potent anti-neoplastic properties in a number of cancers, both in cell culture and in clinical trials. Our results suggest that iron chelation could affect not only cancer cells but also the tumor microenvironment by altering the iron-release phenotype of tumor-associated macrophages (TAMs). The study of iron chelators in conjunction with the effect of TAMs on tumor growth could lead to an improved understanding of the role of iron in cancer biology and to novel therapeutic avenues for iron chelation approaches.  相似文献   

19.
Tumor cells are able to modify their surrounding microenvironment by transmitting bioactive molecules via exosomes. In exosomes, proteins and nucleic acids that can be taken up by surrounding cells have been identified and modulate their functions. Tumor microenvironment consists of different cells such as macrophages. Tumors-associated macrophages (TAMs) express M2 phenotype and affect many processes including tumor initiation, angiogenesis, and metastasis. It has been demonstrated that a high number of TAMs is associated with poor prognosis of cancers. The contents of tumor-derived exosomes such as microRNAs and proteins induce macrophages to M2-like polarization to support tumor growth. Herein, we review the most recent studies on the effect of tumor-derived exosomes on macrophage polarization and function in different types of cancers.  相似文献   

20.
Acute spinal cord injury (SCI) has become epidemic in modern society. Despite advances made in the understanding of the pathogenesis and improvements in early recognition and treatment, it remains a devastating event, often producing severe and permanent disability. SCI has two phases: acute and secondary. Although the acute phase is marked by severe local and systemic events such as tissue contusion, ischaemia, haemorrhage and vascular damage, the outcome of SCI are mainly influenced by the secondary phase. SCI causes inflammatory responses through the activation of innate immune responses that contribute to secondary injury, in which polarization‐based macrophage activation is a hallmarker. Macrophages accumulated within the epicentre and the haematoma of the injured spinal cord play a significant role in this inflammation. Depending on their phenotype and activation status, macrophages may initiate secondary injury mechanisms and/or promote CNS regeneration and repair. When it comes to therapies for SCI, very few can be performed in the acute phase. However, as macrophage activation and polarization switch are exquisitely sensitive to changes in microenvironment, some trials have been conducted to modulate macrophage polarization towards benefiting the recovery of SCI. Given this, it is important to understand how macrophages and SCI interrelate and interact on a molecular pathophysiological level. This review provides a comprehensive overview of the immuno‐pathophysiological features of acute SCI mainly from the following perspectives: (i) the overview of the pathophysiology of acute SCI, (ii) the roles of macrophage, especially its polarization switch in acute SCI, and (iii) newly developed neuroprotective therapies modulating macrophage polarization in acute SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号