首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Constructed wetlands have a good potential for wastewater treatment in developing countries due to the simple operation and low implementation costs. Ornamental plants like Canna and Heliconia are used in the wetlands to increase their aesthetic value and these two species were compared in this study. Six pilot scale horizontal subsurface flow constructed wetland units were constructed at the Asian Institute of Technology (AIT) campus in Bangkok, Thailand, of which three were planted with Heliconia psittacorum L.f. × H. Spathocircinata (Aristeguieta) and three with Canna × generalis L. Bailey. The beds were loaded with domestic wastewater in four trials with hydraulic loading rates ranging from 55 to 440 mm d?1 corresponding to nominal detention times between 12 h and 4 days. Both plant species grew well in the systems and especially Canna had high growth rates (3100 ± 470 g DW m?2 yr?1) compared to Heliconia (550 ± 90 g DW m?2 yr?1). TSS mass removal rates were very high with efficiencies >88% even at hydraulic loading rates of 440 mm d?1. COD mass removal rates varied between 42 and 83% depending on the loading rates. The removal rate constants for COD as fitted by the first-order kC* model were estimated to be 0.283 and 0.271 m d?1 for Canna and Heliconia beds, respectively (C* = 28.1 and 26.7 mg l?1). Removals of nitrogen (N) and phosphorus (P) were low compared to the loading rates, but removal of total-N was higher in the beds planted with Canna than in beds with Heliconia because of the higher growth rate of Canna. It is concluded that ornamental species like Canna and Heliconia can be used to enhance the aesthetic appearance and hence the public acceptance of wastewater treatment systems in tropical climates. Canna is the preferred species from a treatment perspective because of its more vigorous growth, but since Heliconia has an economic potential as cut flowers may be preferred in many cases.  相似文献   

2.
Cyclooxygenases (COX) and 8R-dioxygenase (8R-DOX) activities of linoleate diol synthases (LDS) are homologous heme-dependent enzymes that oxygenate fatty acids by a tyrosyl radical-mediated hydrogen abstraction and antarafacial insertion of O2. Soybean lipoxygenase-1 (sLOX-1) contains non-heme iron and oxidizes 18:2n ? 6 with a large deuterium kinetic isotope effect (D-KIE). The aim of the present work was to obtain further mechanistic insight into the action of these enzymes by using a series of n ? 6 and n ? 9 fatty acids and by analysis of D-KIE. COX-1 oxidized C20 and C18 fatty acids in the following order of rates: 20:2n ? 6 > 20:1n ? 6 > 20:3n ? 9 > 20:1n ? 9 and 18:3n ? 3  18:2n ? 6 > 18:1n ? 6. 18:2n ? 6 and its geometrical isomer (9E,12Z)18:2 were both mainly oxygenated at C-9 by COX-1, but the 9Z,12E isomer was mostly oxygenated at C-13. A cis-configured double bond in the n ? 6 position therefore seems important for substrate positioning. 8R-DOX oxidized (9Z,12E)18:2 at C-8 in analogy with 18:2n ? 6, but the 9E,12Z isomer was mainly subject to hydrogen abstraction at C-11 and oxygen insertion at C-9 by 8R-DOX of 5,8-LDS. sLOX-1 and 13R-MnLOX oxidized [11S-2H]18:2n ? 6 with similar D-KIE (~ 53), which implies that the catalytic metals did not alter the D-KIE. Oxygenation of 18:2n ? 6 by COX-1 and COX-2 took place with a D-KIE of 3–5 as probed by incubations of [11,11-2H2]- and [11S-2H]18:2n ? 6. In contrast, the more energetically demanding hydrogen abstractions of the allylic carbons of 20:1n ? 6 by COX-1 and 18:1n ? 9 by 8R-DOX were both accompanied by large D-KIE (> 20).  相似文献   

3.
Increasing economic growth and industrial development in China is starting to impact even remote areas such as the Shennongjia nature reserve, where nitrogen pollution is becoming a major environmental threat. The epiphytic lichen flora is particularly rich in this area and is one of the components of this habitat most sensitive to nitrogen pollution. Since lichens represent an important food resource for the endangered monkey species Rhinopithecus roxellana, a reduction in lichen availability would have harmful consequences for the conservation of its habitat in the Shennongjia Mountains. To investigate the effects of increased nitrogen availability on the local lichen communities, so far scarcely considered, we conducted a one-year field experiment measuring growth, survival, and phosphomonoesterase activity of the widespread species Usnea luridorufa in response to nitrogen (up to 50 kg N ha−1 year−1 deposition) and phosphorus supply. Growth and survival of thalli and propagules of U. luridorufa decreased when treated with N deposition >12.05 kg N ha−1 year−1 and >2.14 kg N ha−1 year−1, respectively. The important role of phosphorus availability in relation to nitrogen supply was demonstrated by the increase in phosphomonoesterase activity with increasing nitrogen availability until a nitrogen toxicity threshold was reached. However, the high concentration of phosphorus in rainwater showed that phosphorus is not a limiting nutrient in the area.The results make a contribution to the knowledge of the negative effects of increased N deposition in the Shennongjia forest ecosystem.  相似文献   

4.
Cr(VI) removal by Scenedesmus incrassatulus was characterized in a continuous culture system using a split-cylinder internal-loop airlift photobioreactor fed continuously with a synthetic effluent containing 1.0 mg Cr(VI) l?1 at dilution rate (D) of 0.3 d?1. At steady state, there was a small increase (6%) on the dry biomass (DB) concentration of Cr(VI)-treated cultures compared with the control culture. 1.0 mg Cr(VI) l?1 reduced the photosynthetic pigments content and altered the cellular morphology, the gain in dry weight was not affected. At steady state, Cr(VI) removal efficiency was 43.5 ± 1.0% and Cr(VI) uptake was 1.7 ± 0.1 mg Cr(VI) g?1 DB. The system reached a specific metal removal rate of 458 μg Cr(VI) g?1 DB d?1, and a volumetric removal rate of 132 μg Cr(VI) l?1 d?1.  相似文献   

5.
The impact of flow velocity on initial ciliate colonization dynamics on surfaces were studied in the third order Ilm stream (Thuringia, Germany) at a slow flowing site (0.09 m s?1) and two faster flowing sites (0.31 m s?1) and in flow channels at 0.05, 0.4, and 0.8 m s?1. At the slow flowing stream site, surfaces were rapidly colonized by ciliates with up to 60 cells cm?2 after 24 h. In flow channels, the majority of suspended ciliates and inorganic matter accumulated at the surface within 4.5 h at 0.05 m s?1. At 0.4 m s?1 the increase in ciliate abundance in the biofilm was highest between 72 and 168 h at about 3 cells cm?2 h?1. Faster flow velocities were tolerated by vagile flattened ciliates that live in close contact to the surface. Vagile flattened and round filter feeders preferred biofilms at slow flow velocities. Addition of inorganic particles (0, 0.6, and 7.3 mg cm?2) did not affect ciliate abundance in flow channel biofilms, but small ciliate species dominated and number of species was lowest (16 species cm?2) in biofilms at high sediment content. Although different morphotypes dominated the communities at contrasting flow velocities, all functional groups contributed to initial biofilm communities implementing all trophic links within the microbial loop.  相似文献   

6.
Seasonal dynamics of all major protozoan groups were investigated in the plankton of the River Danube, upstream of Budapest (Hungary), by bi-weekly sampling over a 1-year long period. Sixty-one heterotrophic flagellate, 14 naked amoeba, 50 testate amoeba, 4 heliozoan and 83 ciliate morphospecies were identified. The estimated abundance ranges of major groups throughout the year were as follows: heterotrophic flagellates, 0.27–7.8×106 ind. l?1; naked amoebae, max. 3300 ind. l?1; testaceans, max. 1600 ind. l?1; heliozoans, max. 8500 ind. l?1; ciliates, 132–34,000 ind. l?1. In terms of biovolume, heterotrophic flagellates dominated throughout the year (max. 0.58 mm3 l?1), and ciliates only exceeded their biovolume in summer (max. 0.76 mm3 l?1). Naked amoeba and heliozoan biovolume was about one, and testacean biovolume 1–3, orders of magnitude lower than that of ciliates. In winter, flagellates, mainly chrysomonads, had the highest biomass, whilst ciliates were dominated by peritrichs. In 2005 from April to July a long spring/summer peak occurred for all protozoan groups. Beside chrysomonads typical flagellates were choanoflagellates, bicosoecids and abundant microflagellates (large chrysomonads and Collodictyon). Most abundant ciliates were oligotrichs, while Phascolodon, Urotricha, Vorticella, haptorids, Suctoria, Climacostomum and Stokesia also contributed significantly to biovolume during rapid succession processes. In October and November a second high protozoan peak occurred, with flagellate dominance, and slightly different taxonomic composition.  相似文献   

7.
The ability of vertical flow (VF) constructed wetland systems to treat high-strength (ca. 300 mg L?1 of COD and ca. 300 mg L?1 total-nitrogen) wastewater under tropical climatic conditions was studied during a 5-month period. Nine 0.8-m diameter experimental VF units (depth 0.6 m) were used: three units were planted with Typha angustifolia L., another three units were planted with Cyperus involucratus Rottb and three units were unplanted. Each set of units were operated at hydraulic loading rates (HLRs) of 20, 50 and 80 mm d?1. Cyperus produced more shoots and biomass than the Typha, which was probably stressed because of lack of water. The high evapotranspirative water loss from the Cyperus systems resulted in higher effluent concentrations of COD and total-P, but the mass removal of COD did not differ significantly between planted and unplanted systems. Average mass removal rates of COD, TKN and total-P at a HLR of 80 mm d?1 were 17.8, 15.4 and 0.69 g m?2 d?1. The first-order removal rate constants at a HLR of 80 mm d?1 for COD, TKN and total-P were 49.8, 30.1 and 13.5 m year?1, respectively, which is in the higher range of k-values reported in the literature. The oxygen transfer rates were ca. 80 g m?2 d?1 in the planted systems as opposed to ca. 60 g m?2 d?1 in the unplanted systems. The number of Nitrosomonas was two to three orders of magnitude higher in the planted systems compared to the unplanted systems. Planted systems thus had significantly higher removal rates of nitrogen and phosphorus, higher oxygen transfer rates, and higher quantities of ammonia-oxidizing bacteria. None of the systems did, however, fully nitrify the wastewater, even at low loading rates. The vertical filters did not provide sufficient contact time between the wastewater and the biofilm on the gravel medium of the filters probably because of the shallow bed depth (0.6 m) and the coarse texture of the gravel. It is concluded that vertical flow constructed wetland systems have a high capacity to treat high-strength wastewater in tropical climates. The gravel and sand matrix of the vertical filter must, however, be designed in a way so that the pulse-loaded wastewater can pass through the filter medium at a speed that will allow the water to drain before the next dose arrives whilst at the same time holding the water back long enough to allow sufficient contact with the biofilm on the filter medium.  相似文献   

8.
This study evaluates the potential of subsurface flow (SSF) constructed wetlands (CWs) for tertiary treatment of wastewater at four shorter HRTs (1–4 days). The CWs were planted with Typha angustata, which was observed in our earlier study to be more efficient than Phragmites karka and Scirpus littoralis. The CWs comprised four rectangular treatment cells (2.14 m × 0.76 m × 0.61 m) filled with layers of gravel of two different sizes (approximately 2.5 cm and 1.5 cm diameter) to a depth of 0.61 m. The inflow rates of the secondary effluent in the four cells were accordingly fixed at 300 L d?1, 150 L d?1, 100 L d?1 and 75 L d?1, respectively, for 1, 2, 3 and 4 days HRT. The hydraulic loads ranged between 59.05 mm d?1 and 236.22 mm d?1.The wastewater inflow into the CW system as well as the treated effluent were analyzed, using standard methods, at regular intervals for various forms of nitrogen (NH4-N, NO3-N and TKN), orthophosphate-P and organic matter (BOD and COD) concentrations over a period of five weeks after the development of a dense stand.The higher HRT of 4 days not only helped maximum removal of all the pollutants but also maintained the stability of the treatment efficiency throughout the monitoring period. For the nutrients (NH4-N, NO3-N and TKN), HRT played a more significant role in their removal than in case of organic matter (BOD3 and COD). More than 90% of NO3-N and TKN and 100% of NH4-N were removed from the wastewater at 4 days HRT.At lower HRTs, the mass loading rate was higher with greater fluctuation. However mass reduction efficiency of the T. angustata CW for all forms of nitrogen was >80% with the HRTs of 2, 3 and 4 days.  相似文献   

9.
The influence of Cu (II) on productivity and accumulation of value carotenoids of a microalga that naturally grows at low pH, Coccomyxa onubensis, was investigated. The presence of Cu (II), added in range between 0.06 and 0.4 mM, increases both algal viability and synthesis of carotenoids, mostly lutein and β-carotene. A copper concentration of 0.2 mM was found to be as the most appropriate one to enhance productivity and lutein accumulation and was further used in semicontinuous cultures. Unlike acidophile microalgae, C. onubensis showed unusual high growth rates (0.50 d?1) when cultured semicontinuously at 0.2 mM Cu (II) and getting an average productivity of 0.42 g l?1 d?1. Lutein content in 0.2 mM Cu (II) cultures was roughly 50% higher than that obtained for control cultures. C. onubensis seems to have great potential as lutein producer when compared to known lutein accumulating microalgae. C. onubensis is able to live in highly selective environment, which confers the microalga a competitive advantage over other organisms that cannot survive at such low pH and high concentrations of heavy metals. This might make of C. onubensis a unique alga for large producer in open systems.  相似文献   

10.
High activity levels and balanced anaerobic microbial communities are necessary to attain proper anaerobic digestion performance. Therefore, this work was focused on the kinetic performance and the microbial community structure of six full-scale anaerobic digesters and one lab-scale co-digester. Hydrolytic (0.6–3.5 g COD g?1 VSS d?1) and methanogenic (0.01–0.84 g COD g?1 VSS d?1) activities depended on the type of biomass, whereas no significant differences were observed among the acidogenic activities (1.5–2.2 g COD g?1 VSS d?1). In most cases, the higher the hydrolytic and the methanogenic activity, the higher the Bacteroidetes and Archaea percentages, respectively, in the biomasses. Hydrogenotrophic methanogenic activity was always higher than acetoclastic methanogenic activity, and the highest values were achieved in those biomasses with lower percentages of Methanosaeta. In sum, the combination of molecular tools with activity tests seems to be essential for a better characterization of anaerobic biomasses.  相似文献   

11.
Numerous studies have demonstrated that endotoxin plays an important role in the development and progression of hepatic cirrhosis. However, there is no effective remedy for the prevention and treatment of intestinal endotoxemia. Taurine has been reported to have beneficial effects on endotoxemia. Oats have been shown to absorb intestinal toxins and increase excretion of intestinal toxins. The present study was to investigate whether a combination of taurine and oat has an additive inhibitory effect on endotoxin release in a rat liver ischemia/reperfusion model. Our results showed that the combination of taurine (300 mg kg?1 d?1) and oat fiber (15 g kg?1 d?1) significantly reduced endotoxin levels in the portal vein by 36.3% when compared to the control group (0.168 ± 0.035 Eu/ml in the treatment group vs 0.264 ± 0.058 Eu/ml in the control group, P < 0.01). The treatment of taurine (300 mg kg?1 d?1) and oat fiber (15 g kg?1 d?1) induced 21.5% and 18.4% reduction in endotoxin levels, respectively, when compared to the control group (P < 0.05). We conclude that the combination of taurine and oat fiber achieved an additive inhibitory effect on intestinal endotoxin release, which might be an effective approach for the treatment of intestinal endotoxemia.  相似文献   

12.
A functional bacterial consortium that can effectively hydrolyze cellobiose and produce bio-hydrogen was isolated by a concentration-to-extinction approach. The sludge from a cattle feedlot manure composting plant was incubated with 2.5–20 g l?1 cellobiose at 35 °C and pH 6.0. The microbial diversity of serially concentrated suspensions significantly decreased following increasing cellobiose concentration, finally leaving only two viable strains, Clostridium butyricum strain W4 and Enterococcus saccharolyticus strain. This consortium has a maximum specific hydrogen production rate of 2.19 mol H2 mol hexose?1 at 5 g l?1 cellobiose. The metabolic pathways shifted from ethanol-type to acetate-butyrate type as cellobiose concentration increased from 2.5 to >7 g l?1. The concentration-to-extinction approach is effective for isolating functional consortium from natural microflora. In this case the functional strains of interest are more tolerant to the increased loadings of substrates than the non-functional strains.  相似文献   

13.
Sugar gliders, Petaurus breviceps (average body mass: 120 g) like other small wild mammals must cope with seasonal changes in food availability and weather and therefore thermoregulatory and energetic challenges. To determine whether free-ranging sugar gliders, an arboreal marsupial, seasonally adjust their energy expenditure and water use, we quantified field metabolic rates (FMR) and water flux at a seasonal cool-temperate site in eastern Australia. Thirty six male and female sugar gliders were labelled with doubly labelled water for this purpose in spring, summer and autumn. The mean FMR was 159 ± 6 kJ d? 1 (spring), 155 ± 8 kJ d? 1 (summer), and 152 ± 20 kJ d? 1 (autumn) and the mean FMR for the three seasons combined was 158 ± 5 kJ d? 1 (equivalent to 1.33 kJ g? 1 d? 1 or 780 kJ kg? 0.75 d? 1). The mean total body water was 83 ± 2 g, equal to 68.5% of body weight. Mean water flux was 29 ± 1 mL day? 1. Season, ambient temperature or sex did not affect any of the measured and estimated physiological variables, but body mass and total body water differed significantly between sexes and among seasons. Our study is the first to provide evidence for a constant FMR in a small mammal in three different seasons and despite different thermal conditions. This suggests that seasonal changes in climate are compensated for by behavioural and physiological adjustments such as huddling and torpor known to be employed extensively by sugar gliders in the wild.  相似文献   

14.
Twelve four-month old Suffolk × Small-tail-Han male sheep (live weight 21–26 kg), fitted with rumen and abomasum fistulas and nourished by total intragastric infusions, were used to study the relationship between the volatile fatty acids (VFA) supply and the nitrogen (N) retention in sheep. The animals were randomly divided into four groups and four levels of mixed VFA energy (the molar proportion of acetic acid, propionic acid and butyric acid was 65:25:10), i.e. 333, 378, 423 and 468 kJ kg?1 W0.75 d?1, were infused into the rumen, as treatments I, II, III and IV, respectively. The results showed that the N retention was significantly increased (P < 0.05) with the VFA infusion level. Significant regression relationship was found between the VFA supply (x, g d?1) and the N retention (y, mg d?1): y = 2.75x ? 403, r2 = 0.86, n = 12, P < 0.01. It was concluded that to get efficient utilization of dietary N and high N retention in sheep, it is necessary to supply enough dietary energy.  相似文献   

15.
Mine tailings are an environmental problem in Southern Spain because wind and water erosion of bare surfaces results in the dispersal of toxic metals over nearby urban or agricultural areas. Revegetation with tolerant native species may reduce this risk. We grew two grasses, Lygeum spartum and Piptatherum miliaceum, and the crop species Cicer arietinum (chickpea) under controlled conditions in pots containing a mine tailings mixed into non-polluted soil to give treatments of 0%, 25%, 50%, 75% and 100% mine tailings. We tested a neutral (pH 7.4) mine tailings which contained high concentrations of Cd, Cu, Pb and Zn. Water-extractable metal concentrations increased in proportion to the amount of tailings added. The biomass of the two grasses decreased in proportion to the rate of neutral mine-tailing addition, while the biomass of C. arietinum only decreased in relation to the control treatment. Neutron radiography revealed that root development of C. arietinum was perturbed in soil amended with the neutral tailings compared to those of the control treatment, despite a lack of toxicity symptoms in the shoots. In all treatments and for all metals, the plants accumulated higher concentrations in the roots than in shoots. The highest concentrations occurred in the roots of P. miliaceum (2500 mg kg?1 Pb, 146 mg kg?1 Cd, 185 mg kg?1 Cu, 2700 mg kg?1 Zn). C. arietinum seeds had normal concentrations of Zn (70–90 mg kg?1) and Cu (6–9 mg kg?1). However, the Cd concentration in this species was ~1 mg kg?1 in the seeds and 14.5 mg kg?1 in shoots. Consumption of these plant species by cattle and wild fauna may present a risk of toxic metals entering the food chain.  相似文献   

16.
We report for the first time kinetic and thermodynamic properties of soluble acid invertase (SAI) of sugarcane (Saccharum officinarum L.) salt sensitive local cultivar CP 77-400 (CP-77). The SAI was purified to apparent homogeneity on FPLC system. The crude enzyme was about 13 fold purified and recovery of SAI was 35%. The invertase was monomeric in nature and its native molecular mass on gel filtration and subunit mass on SDS-PAGE was 28 kDa. SAI was highly acidic having an optimum pH lower than 2. The acidic limb was missing. Proton transfer (donation and receiving) during catalysis was controlled by the basic limb having a pKa of 2.4. Carboxyl groups were involved in proton transfer during catalysis. The kinetic constants for sucrose hydrolysis by SAI were determined to be: km = 55 mg ml?1, kcat = 21 s?1, kcat/km = 0.38, while the thermodynamic parameters were: ΔH* = 52.6 kJ mol?1, ΔG* = 71.2 kJ mol?1, ΔS* = ?57 J mol?1 K?1, ΔG*E–S = 10.8 kJ mol?1 and ΔG*E–T = 2.6 kJ mol?1. The kinetics and thermodynamics of irreversible thermal denaturation at various temperatures 53–63 °C were also determined. The half -life of SAI at 53 and 63 °C was 112 and 10 min, respectively. At 55 °C, surprisingly the half -life increased to twice that at 53 °C. ΔG*, ΔH* and ΔS* of irreversible thermal stability of SAI at 55 °C were 107.7 kJ mol?1, 276.04 kJ mol?1 and 513 J mol?1K?1, respectively.  相似文献   

17.
Anoxybacillus beppuensis TSSC-1 (GenBank Number, EU710556), a thermophilic bacterium isolated from a hot spring reservoir, was found to optimally secrete a monomeric α-amylase at 55 °C and pH 7. The enzyme was purified to homogeneity by a single-step purification on phenyl sepharose 6FF, achieving a 58% yield, 10,000 U/mg specific activity and 19.5 fold purification. The molecular weight, Km and Vmax were 43 kD, 0.5 mg ml?1 and 3571.42 μmol ml?1 m?1, respectively. The enzymatic catalysis of soluble starch was optimum at 80 °C and pH 7. The thermodynamic parameters, Kd, t1/2, ΔH*, ΔS*, E and ΔG*, were consistent. The very compact structure of the enzyme and the transitional enzyme–substrate complex resisted denaturation at extreme temperatures and alkaline pH. The Kd and t1/2 measurements were consistent with the high thermostability and pH tolerance observed. The structural stability of the enzyme was also reflected by the values of ΔH*, ΔS*, E and ΔG*. While the enzyme did not exhibit metal ion dependency, it was resistant to chemical denaturation. The broad thermo- and pH-tolerance of this enzyme suggests potential commercial opportunities.  相似文献   

18.
The objective of this study was to investigate nitrification rates in algal–bacterial biofilms of waste stabilization ponds (WSP) under different conditions of light, oxygen and pH. Biofilms were grown on wooden plates of 6.0 cm by 8.0 cm by 0.4 cm in a PVC tray continuously fed with synthetic wastewater with initial NH4-N and Chemical Oxygen Demand (COD) concentrations of 40 mg l?1 and 100 mg l?1, respectively, under light intensity of 85–95 μE m?2 s?1. Batch activity tests were carried out by exposure of the plates to light conditions as above (to simulate day time), dim light of 1.8–2.2 μE m?2 s?1 (to simulate reduced light as in deeper locations in WSP) and dark conditions (to simulate night time). Dissolved oxygen (DO) concentration and pH were controlled. At some experiments, both parameters were kept constant, and at others they were left to vary as in WSP. Results show biofilm nitrification rates of 945–1817 mg-N m?2 d?1 and 1124–1615 mg-N m?2 d?1 for light and dark experiments. When the minimum DO was 4.1 mg l?1, the biofilm nitrification rates under light and dark conditions did not differ significantly at 95% confidence. When the minimum DO in the dim light experiment was 3.2 mg l?1, the nitrification rates under light and dim light conditions were 945 mg-N m?2 d?1 and 563 mg-N m?2 d?1 and these significantly differed. Further decrease of DO to 1.1 mg l?1 under dark conditions resulted in more decrease of the nitrification rates to 156 mg-N m?2 d?1. It therefore seems that under these experimental conditions, biofilm nitrification rates are significantly reduced at a certain point when bulk water DO is between 3.2 mg l?1 and 4.1 mg l?1. As long as bulk water DO under dark is high, light is not important in influencing the process of nitrification.  相似文献   

19.
The trophic transfer of nutrients through the microbial food web is a key top-down control in aquatic ecosystems which is notoriously difficult to evaluate, particularly for planktonic protists. In this study, a sensitive dual-radioactive tracer technique was developed to simultaneously assess the ingestion rate, and carbon- and phosphorus-specific assimilation efficiencies, of the marine planktonic ciliate Strobilidium neptuni feeding on the autotrophic dinoflagellate Heterocapsa triquetra. Dinoflagellate prey were simultaneously 16 h pulse labelled with NaH14CO3 and H333PO4 before being fed to the ciliate, and radioactive labels were traced into ciliate biomass and the experimental medium, as well as being monitored in the prey cells. Rates measured in short-term (10 min) incubations, as commonly used to estimate protist uptake of fluorescently labelled prey, were approximately 6 times higher and 3–6 times more variable than rates measured in longer 3–5 h incubations. The efficiency of accumulation of prey carbon (54±9%) by ciliates was lower than that of prey phosphorus (68±3%) suggesting that the phosphorus to carbon ratio in the ciliates was 1.3 times higher than in the labelled dinoflagellate biomass. Rates of phosphorus accumulation and release were combined to reveal that ciliates consumed 3.2±0.6 dinoflagellates cell?1 h?1. The assessment of carbon tracer release by ciliates was less reliable due to 14CO2 exchange between the experimental media and air. The study concludes that the dual phosphorus–carbon radioactive tracer labelling of algal prey allowed the quantification of protist herbivory and nutrient remineralisation in laboratory experiments, thereby providing a potential technique for studying planktonic microbial trophic interactions in situ.  相似文献   

20.
Denitrification beds are a cost-effective technology for removing nitrate from point source discharge. To date, field trials and operational beds have primarily used wood media as the carbon source; however, the use of alternative more labile carbon media could provide for increased removal rate, lower installation costs and reduced bed size. While previous laboratory experiments have investigated the potential of alternative carbon sources, these studies were typically of short duration and small scale and did not necessarily provide reliable information for denitrification bed design purposes. To address this issue, we compared nitrate removal, hydraulic and nutrient leaching characteristics of nine different carbon substrates in 0.2 m3 barrels, at 14 and 23.5 °C over a 23-month period. Mean nitrate removal rates for the period 10–23 months were 19.8 and 15 g N m?3 d?1 (maize cobs), 7.8 and 10.5 g N m?3 d?1 (green waste), 5.8 and 7.8 g N m?3 d?1 (wheat straw), 3.0 and 4.9 g N m?3 d?1 (softwood), and 3.3 and 4.4 g N m?3 d?1 (hardwood) for the 14 and 23.5 °C treatments, respectively. Maize cobs provided a 3–6.5-fold increase in nitrate removal over wood media, without prohibitive decrease in hydraulic conductivity, but had higher rates of nutrient leaching at start-up. Significant difference in removal rate occurred between the 14 and 23.5 °C treatments, with the mean Q10 temperature coefficient = 1.6 for all media types in the period 10–23 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号