首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Syringolin A, the product of a mixed nonribosomal peptide synthetase/polyketide synthase encoded by the syl gene cluster, is a virulence factor secreted by certain Pseudomonas syringae strains. Together with the glidobactins produced by a number of beta- and gammaproteobacterial human and animal pathogens, it belongs to the syrbactins, a structurally novel class of proteasome inhibitors. In plants, proteasome inhibition by syringolin A-producing P. syringae strains leads to the suppression of host defense pathways requiring proteasome activity, such as the ones mediated by salicylic acid and jasmonic acid. Here we report the discovery of a syl-like gene cluster with some unusual features in the alphaproteobacterial endophyte Rhizobium sp. strain AP16 that encodes a putative syringolin A-like synthetase whose components share 55% to 65% sequence identity (72% to 79% similarity) at the amino acid level. As revealed by average nucleotide identity (ANI) calculations, this strain likely belongs to the same species as biocontrol strain R. rhizogenes K84 (formely known as Agrobacterium radiobacter K84), which, however, carries a nonfunctional deletion remnant of the syl-like gene cluster. Here we present a functional analysis of the syl-like gene cluster of Rhizobium sp. strain AP16 and demonstrate that this endophyte synthesizes syringolin A and some related minor variants, suggesting that proteasome inhibition by syrbactin production can be important not only for pathogens but also for endophytic bacteria in the interaction with their hosts.  相似文献   

2.
3.
《Gene》1999,226(1):35-40
A DNA fragment containing xcp (gsp) gene homologues, required for extracellular protein secretion by the general secretory pathway (GSP) in various Gram-negative bacteria, was cloned from Pseudomonas putida (Pp) strain WCS358 and sequenced. The results presented here and those previously reported (de Groot, A., Krijger, J.-J., Filloux, A., Tommassen, J., 1996. Characterization of type II protein secretion (xcp) genes in the plant growth-stimulating Pseudomonas putida, strain WCS358 Mol. Gen. Genet. 250, 491–504) complete the sequence of the xcp gene cluster of Pp. Unlike that of Pseudomonas aeruginosa (Pa), the xcp gene cluster of Pp contains a gspN homologue. More surprisingly, in contrast to all known gsp gene clusters, the xcpX (gspK) homologue is not found. In addition, genes flanking the xcp cluster of Pp are not related to those flanking the xcp genes of Pa. Overall, the xcp gene products of Pp are as much related to those of Pa as to gsp gene products of enterobacterial species, suggesting that the xcp clusters of Pp and Pa have evolved separately.  相似文献   

4.
The major cyclic peptide cyanopeptolin 1138, produced by Planktothrix strain NIVA CYA 116, was characterized and shown to be structurally very close to the earlier-characterized oscillapeptin E. A cyanopeptolin gene cluster likely to encode the corresponding peptide synthetase was sequenced from the same strain. The 30-kb oci gene cluster contains two novel domains previously not detected in nonribosomal peptide synthetase gene clusters (a putative glyceric acid-activating domain and a sulfotransferase domain), in addition to seven nonribosomal peptide synthetase modules. Unlike in two previously described cyanopeptolin gene clusters from Anabaena and Microcystis, a halogenase gene is not present. The three cyanopeptolin gene clusters show similar gene and domain arrangements, while the binding pocket signatures deduced from the adenylation domain sequences and the additional tailoring domains vary. This suggests loss and gain of tailoring domains within each genus, after the diversification of the three clades, as major events leading to the present diversity. The ABC transporter genes associated with the cyanopeptolin gene clusters form a monophyletic clade and accordingly are likely to have evolved as part of the functional unit. Phylogenetic analyses of adenylation and condensation domains, including domains from cyanopeptolins and microcystins, show a closer similarity between the Planktothrix and Microcystis cyanopeptolin domains than between these and the Anabaena domain. No clear evidence of recombination between cyanopeptolins and microcystins could be detected. There were no strong indications of horizontal gene transfer of cyanopeptolin gene sequences across the three genera, supporting independent evolution within each genus.  相似文献   

5.
6.
Horizontal gene transfer by transposition has been widely used for transgenesis in prokaryotes. However, conjugation has been preferred for transfer of large transgenes, despite greater restrictions of host range. We examine the possibility that transposons can be used to deliver large transgenes to heterologous hosts. This possibility is particularly relevant to the expression of large secondary metabolite gene clusters in various heterologous hosts. Recently, we showed that the engineering of large gene clusters like type I polyketide/nonribosomal peptide pathways for heterologous expression is no longer a bottleneck. Here, we apply recombineering to engineer either the epothilone (epo) or myxochromide S (mchS) gene cluster for transpositional delivery and expression in heterologous hosts. The 58-kb epo gene cluster was fully reconstituted from two clones by stitching. Then, the epo promoter was exchanged for a promoter active in the heterologous host, followed by engineering into the MycoMar transposon. A similar process was applied to the mchS gene cluster. The engineered gene clusters were transferred and expressed in the heterologous hosts Myxococcus xanthus and Pseudomonas putida. We achieved the largest transposition yet reported for any system and suggest that delivery by transposon will become the method of choice for delivery of large transgenes, particularly not only for metabolic engineering but also for general transgenesis in prokaryotes and eukaryotes.  相似文献   

7.
Long-chain polyunsaturated fatty acids (LC-PUFAs) can be produced de novo via polyketide synthase-like enzymes known as PUFA synthases, which are encoded by pfa biosynthetic gene clusters originally discovered from marine microorganisms. Recently similar gene clusters were detected and characterized in terrestrial myxobacteria revealing several striking differences. As the identified myxobacterial producers are difficult to handle genetically and grow very slowly we aimed to establish heterologous expression platforms for myxobacterial PUFA synthases. Here we report the heterologous expression of the pfa gene cluster from Aetherobacter fasciculatus (SBSr002) in the phylogenetically distant model host bacteria Escherichia coli and Pseudomonas putida. The latter host turned out to be the more promising PUFA producer revealing higher production rates of n-6 docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). After several rounds of genetic engineering of expression plasmids combined with metabolic engineering of P. putida, DHA production yields were eventually increased more than threefold. Additionally, we applied synthetic biology approaches to redesign and construct artificial versions of the A. fasciculatus pfa gene cluster, which to the best of our knowledge represents the first example of a polyketide-like biosynthetic gene cluster modulated and synthesized for P. putida. Combination with the engineering efforts described above led to a further increase in LC-PUFA production yields. The established production platform based on synthetic DNA now sets the stage for flexible engineering of the complex PUFA synthase.  相似文献   

8.
Nodularia spumigena is a bloom-forming cyanobacterium which produces the hepatotoxin nodularin. The complete gene cluster encoding the enzymatic machinery required for the biosynthesis of nodularin in N. spumigena strain NSOR10 was sequenced and characterized. The 48-kb gene cluster consists of nine open reading frames (ORFs), ndaA to ndaI, which are transcribed from a bidirectional regulatory promoter region and encode nonribosomal peptide synthetase modules, polyketide synthase modules, and tailoring enzymes. The ORFs flanking the nda gene cluster in the genome of N. spumigena strain NSOR10 were identified, and one of them was found to encode a protein with homology to previously characterized transposases. Putative transposases are also associated with the structurally related microcystin synthetase (mcy) gene clusters derived from three cyanobacterial strains, indicating a possible mechanism for the distribution of these biosynthetic gene clusters between various cyanobacterial genera. We propose an alternative hypothesis for hepatotoxin evolution in cyanobacteria based on the results of comparative and phylogenetic analyses of the nda and mcy gene clusters. These analyses suggested that nodularin synthetase evolved from a microcystin synthetase progenitor. The identification of the nodularin biosynthetic gene cluster and evolution of hepatotoxicity in cyanobacteria reported in this study may be valuable for future studies on toxic cyanobacterial bloom formation. In addition, an appreciation of the natural evolution of nonribosomal biosynthetic pathways will be vital for future combinatorial engineering and rational design of novel metabolites and pharmaceuticals.  相似文献   

9.
The phytopathogenic bacterium Pseudomonas syringae pv. glycinea PG4180.N9 causes bacterial blight of soybeans and preferably infects its host plant during periods of cold, humid weather conditions. To identify proteins differentially expressed at low temperatures, total cellular protein fractions derived from PG4180.N9 grown at 18 and 28°C were separated by two-dimensional gel electrophoresis. Of several proteins which appeared to be preferentially present at 18°C, a 40-kDa protein with an isoelectric point of approximately 5 revealed significant N-terminal sequence homology to morphinone reductase (MR) of Pseudomonas putida M10. The respective P. syringae gene was isolated from a genomic cosmid library of PG4180, and its nucleotide sequence was determined. It was designated ncr for NAD(P)H-dependent 2-cyclohexen-1-one reductase. Comparison of the 1,083-bp open reading frame with database entries revealed 48% identity and 52% similarity to the MR-encoding morB gene of P. putida M10. The ncr gene was overexpressed in Escherichia coli, and its gene product was used to generate polyclonal antisera. Purified recombinant Ncr protein was enzymatically characterized with NAD(P)H and various morphinone analogs as substrates. So far, only 2-cyclohexen-1-one and 3-penten-2-one were found to be substrates for Ncr. By high-pressure liquid chromatography analysis, flavin mononucleotide could be identified as the noncovalently bound prosthetic group of this enzyme. The distribution of the ncr gene in different Pseudomonas species and various strains of P. syringae was analyzed by PCR and Southern blot hybridization. The results indicated that the ncr gene is widespread among P. syringae pv. glycinea strains but not in other pathovars of P. syringae or in any of the other Pseudomonas strains tested.  相似文献   

10.
Response of Plant-Colonizing Pseudomonads to Hydrogen Peroxide   总被引:5,自引:2,他引:5       下载免费PDF全文
Colonization of plant root surfaces by Pseudomonas putida may require mechanisms that protect this bacterium against superoxide anion and hydrogen peroxide produced by the root. Catalase and superoxide dismutase may be important in this bacterial defense system. Stationary-phase cells of P. putida were not killed by hydrogen peroxide (H2O2) at concentrations up to 10 mM, and extracts from these cells possessed three isozymic bands (A, B, and C) of catalase activity in native polyacrylamide gel electrophoresis. Logarithmic-phase cells exposed directly to hydrogen peroxide concentrations above 1 mM were killed. Extracts of logarithmic-phase cells displayed only band A catalase activity. Protection against 5 mM H2O2 was apparent after previous exposure of the logarithmic-phase cells to nonlethal concentrations (30 to 300 μM) of H2O2. Extracts of these protected cells possessed enhanced catalase activity of band A and small amounts of bands B and C. A single form of superoxide dismutase and isoforms of catalase were apparent in extracts from a foliar intercellular pathogen, Pseudomonas syringae pv. phaseolicola. The mobilities of these P. syringae enzymes were distinct from those of enzymes in P. putida extracts.  相似文献   

11.
A gene cluster responsible for the biosynthesis of anticancer agent FK228 has been identified, cloned, and partially characterized in Chromobacterium violaceum no. 968. First, a genome-scanning approach was applied to identify three distinctive C. violaceum no. 968 genomic DNA clones that code for portions of nonribosomal peptide synthetase and polyketide synthase. Next, a gene replacement system developed originally for Pseudomonas aeruginosa was adapted to inactivate the genomic DNA-associated candidate natural product biosynthetic genes in vivo with high efficiency. Inactivation of a nonribosomal peptide synthetase-encoding gene completely abolished FK228 production in mutant strains. Subsequently, the entire FK228 biosynthetic gene cluster was cloned and sequenced. This gene cluster is predicted to encompass a 36.4-kb DNA region that includes 14 genes. The products of nine biosynthetic genes are proposed to constitute an unusual hybrid nonribosomal peptide synthetase-polyketide synthase-nonribosomal peptide synthetase assembly line including accessory activities for the biosynthesis of FK228. In particular, a putative flavin adenine dinucleotide-dependent pyridine nucleotide-disulfide oxidoreductase is proposed to catalyze disulfide bond formation between two sulfhydryl groups of cysteine residues as the final step in FK228 biosynthesis. Acquisition of the FK228 biosynthetic gene cluster and acclimation of an efficient genetic system should enable genetic engineering of the FK228 biosynthetic pathway in C. violaceum no. 968 for the generation of structural analogs as anticancer drug candidates.  相似文献   

12.
Coronatine (COR) represents a phytotoxin produced by several pathovars of Pseudomonas syringae. It mediates multiple virulence activities by mimicking the plant stress hormone jasmonoyl-l-isoleucine. Structurally, COR consists of a bicyclic polyketide moiety, coronafacic acid (CFA), which is linked via an amide bond to an unusual ethylcyclopropyl amino acid moiety, coronamic acid (CMA). In our studies, we aimed at establishing and engineering of heterologous COR and CFA production platforms using P. putida KT2440 as host. Based on genetic information of the native producer P. syringae pv. tomato DC3000 a COR biosynthetic gene cluster was designed and reconstituted from synthetic DNA fragments. The applied constructional design facilitated versatile pathway modifications and the generation of various expression constructs, which were evaluated for the production of CFA, COR and its derivatives. By modifications of the gene cluster composition production profiles were directed towards target compounds and valuable information about the function and impact of selected pathway proteins on COR biosynthesis were obtained. Additional engineering of expression vector features, including the use of the constitutive PrpsH promoter and a p15Aori-based transposon backbone, led to the development of an expression strain with promising CFA production yields of > 90 mg/l.  相似文献   

13.
Pseudomonas putida is a member of the fluorescent pseudomonads known to produce the yellow-green fluorescent pyoverdine siderophore. P. putida W15Oct28, isolated from a stream in Brussels, was found to produce compound(s) with antimicrobial activity against the opportunistic pathogens Staphylococcus aureus, Pseudomonas aeruginosa, and the plant pathogen Pseudomonas syringae, an unusual characteristic for P. putida. The active compound production only occurred in media with low iron content and without organic nitrogen sources. Transposon mutants which lost their antimicrobial activity had the majority of insertions in genes involved in the biosynthesis of pyoverdine, although purified pyoverdine was not responsible for the antagonism. Separation of compounds present in culture supernatants revealed the presence of two fractions containing highly hydrophobic molecules active against P. aeruginosa. Analysis of the draft genome confirmed the presence of putisolvin biosynthesis genes and the corresponding lipopeptides were found to contribute to the antimicrobial activity. One cluster of ten genes was detected, comprising a NAD-dependent epimerase, an acetylornithine aminotransferase, an acyl CoA dehydrogenase, a short chain dehydrogenase, a fatty acid desaturase and three genes for a RND efflux pump. P. putida W15Oct28 genome also contains 56 genes encoding TonB-dependent receptors, conferring a high capacity to utilize pyoverdines from other pseudomonads. One unique feature of W15Oct28 is also the presence of different secretion systems including a full set of genes for type IV secretion, and several genes for type VI secretion and their VgrG effectors.  相似文献   

14.
Bacterial gene clusters, which represent a genetic treasure trove for secondary metabolite pathways, often need to be activated in a heterologous host to access the valuable biosynthetic products. We provide here a detailed protocol for the application of the yTREX ‘gene cluster transplantation tool’: Via yeast recombinational cloning, a gene cluster of interest can be cloned in the yTREX vector, which enables the robust conjugational transfer of the gene cluster to bacteria like Pseudomonas putida, and their subsequent transposon Tn5-based insertion into the host chromosome. Depending on the gene cluster architecture and chromosomal insertion site, the respective pathway genes can be transcribed effectively from a chromosomal promoter, thereby enabling the biosynthesis of a natural product. We describe workflows for the design of a gene cluster expression cassette, cloning of the cassette in the yTREX vector by yeast recombineering, and subsequent transfer and expression in P. putida. As an example for yTREX-based transplantation of a natural product biosynthesis, we provide details on the cloning and activation of the phenazine-1-carboxylic acid biosynthetic genes from Pseudomonas aeruginosa in P. putidaKT2440 as well as the use of β-galactosidase-encoding lacZ as a reporter of production levels.  相似文献   

15.
Geranyl-coenzyme A (CoA)-carboxylase (GCase; AtuC/AtuF) and methylcrotonyl-CoA-carboxylase (MCase; LiuB/LiuD) are characteristic enzymes of the catabolic pathway of acyclic terpenes (citronellol and geraniol) and of saturated methyl-branched compounds, such as leucine or isovalerate, respectively. Proteins encoded by two gene clusters (atuABCDEFGH and liuRABCDE) of Pseudomonas aeruginosa PAO1 were essential for acyclic terpene utilization (Atu) and for leucine and isovalerate utilization (Liu), respectively, as revealed by phenotype analysis of 10 insertion mutants, two-dimensional gel electrophoresis, determination of GCase and MCase activities, and Western blot analysis of wild-type and mutant strains. Analysis of the genome sequences of other pseudomonads (P. putida KT2440 and P. fluorescens Pf-5) revealed candidate genes for Liu proteins for both species and candidate genes for Atu proteins in P. fluorescens. This result concurred with the finding that P. fluorescens, but not P. putida, could grow on acyclic terpenes (citronellol and citronellate), while both species were able to utilize leucine and isovalerate. A regulatory gene, atuR, was identified upstream of atuABCDEFGH and negatively regulated expression of the atu gene cluster.  相似文献   

16.
The production of peptide siderophores and the variation in siderophore production among strains of Pseudomonas syringae and Pseudomonas viridiflava were investigated. An antibiose test was used to select a free amino acid-containing agar medium favorable for production of fluorescent siderophores by two P. syringae strains. A culture technique in which both liquid and solid asparagine-containing culture media were used proved to be reproducible and highly effective for inducing production of siderophores in a liquid medium by the fluorescent Pseudomonas strains investigated. Using asparagine as a carbon source appeared to favor siderophore production, and relatively high levels of siderophores were produced when certain amino acids were used as the sole carbon and energy sources. Purified chelated siderophores of strains of P. syringae pv. syringae, P. syringae pv. aptata, P. syringae pv. morsprunorum, P. syringae pv. tomato, and P. viridiflava had the same amino acid composition and spectral characteristics and were indiscriminately used by these strains. In addition, nonfluorescent strains of P. syringae pv. aptata and P. syringae pv. morsprunorum were able to use the siderophores in biological tests. Our results confirmed the proximity of P. syringae and P. viridiflava; siderotyping between pathovars of P. syringae was not possible. We found that the spectral characteristics of the chelated peptide siderophores were different from the spectral characteristics of typical pyoverdins. Our results are discussed in relation to the ecology of the organisms and the conditions encountered on plant surfaces.  相似文献   

17.
Copper-resistant strains of Pseudomonas syringae carrying the cop operon produce periplasmic copper-binding proteins, and this sequestration outside the cytoplasm has been proposed as a resistance mechanism. In this study, strain PS61 of P. syringae carrying the cloned cop operon accumulated more total cellular copper than without the operon. Several other copper-resistant pseudomonads with homology to cop were isolated from plants, and these bacteria also accumulated copper. Two highly resistant species accumulated up to 115 to 120 mg of copper per g (dry weight) of cells. P. putida 08891 was more resistant to several metals than P. syringae pv. tomato PT23, but this increased resistance was not correlated with an increased accumulation of metals other than copper. Several metals were accumulated by both PT23 and P. putida, but when copper was added to induce the cop operon, there was generally no increase of accumulation of the other metals, suggesting that the cop operon does not contribute to accumulation of these other metals. The exceptions were aluminum for PT23 and iron for P. putida, which accumulated to higher levels when copper was added to the cultures. The results of this study support the role of copper sequestration in the copper resistance mechanism of P. syringae and suggest that this mechanism is common to several copper-resistant Pseudomonas species found on plants to which antimicrobial copper compounds are applied for plant disease control.  相似文献   

18.
A genomic library of the phenol-degrading bacterium Pseudomonas putida BH was constructed in the broad host range cosmid pVK100 and introduced into Escherichia coli HB101. One of the recombinant cosmids recovered from catechol- and/or 2-hydroxymuconic semialdehyde-accumulating clones, pS10–45, had a 19.6-kb insert fragment which allowed P. putida KT2440 to grow on phenol as a sole carbon and energy source. Subcloning and expression studies indicated that the phenol hydroxylase gene cluster (pheA) is located on a 6.1-kb SacI fragment. The results of DNA sequencing of the SacI fragment revealed that the pheA gene cluster encodes a multicomponent phenol hydroxylase.  相似文献   

19.
20.
Toxin-based identification procedures are useful for differentiating Pseudomonas syringae pathovars. A biological test on peptone-glucose-NaCl agar in which the yeast Rhodotorula pilimanae was used proved to be more reliable for detecting lipodepsipeptide-producing strains of P. syringae than the more usual test on potato dextrose agar in which Geotrichum candidum is used. A PCR test performed with primers designed to amplify a 1,040-bp fragment in the coding sequence of the syrD gene, which was assumed to be involved in syringomycin and syringopeptin secretion, efficiently detected the gene in pathovars that produce the lipodepsipeptides. Comparable results were obtained in both tests performed with strains of the syringomycin-producing organisms P. syringae pv. syringae, P. syringae pv. atrofaciens, and P. syringae pv. aptata, but the PCR test failed with a syringotoxin-producing Pseudomonas fuscovaginae strain. The specificity of the test was verified by obtaining negative PCR test results for related pathovars or species that do not produce the toxic lipodepsipeptides. P. syringae pv. syringae was detected repeatedly in liquid medium inoculated with diseased vegetative tissue and assayed by the PCR test. Our procedure was also adapted to detect P. syringae pv. morsprunorum with a cfl gene-based PCR test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号