首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The host response to tissue injury requires a complex interplay of diverse cellular, humoral, and connective tissue elements. Fibroblasts participate in this process by proliferating within injured sites and contributing to scar formation and the longterm remodeling of damaged tissue. Fibroblasts present in areas of tissue injury generally have been regarded to arise by recruitment from surrounding connective tissue; however this may not be the only source of these cells. MATERIALS AND METHODS: Long-term culture of adherent, human, and murine leukocyte subpopulations was combined with a variety of immunofluorescence and functional analyses to identify a blood-borne cell type with fibroblast-like properties. RESULTS: We describe for the first time a population of circulating cells with fibroblast properties that specifically enter sites of tissue injury. This novel cell type, termed a "fibrocyte," was characterized by its distinctive phenotype (collagen+/vimentin+/CD34+), by its rapid entry from blood into subcutaneously implanted wound chambers, and by its presence in connective tissue scars. CONCLUSIONS: Blood-borne fibrocytes contribute to scar formation and may play an important role both in normal wound repair and in pathological fibrotic responses.  相似文献   

2.
Fibrotic interstitial lung diseases are characterized by progressive decline in lung function and premature death from respiratory failure. Fibrocytes are circulating bone marrow-derived progenitor cells that traffic to the lungs and contribute to fibrosis and may represent novel therapeutic targets in these diseases. We have previously found the recruitment of fibrocytes to the lung to be dependent on the chemokine ligand CXCL12. Given that the expression of the CXCL12 receptor, CXCR4, can be modulated pharmacologically in other cell types, we tested the hypotheses that the regulation of CXCR4 expression on fibrocytes mediates their influx to the lung in the context of pulmonary fibrosis and that pharmacologic inhibition of this process results in attenuated disease severity. CXCR4 was the predominant chemokine receptor on human fibrocytes, and its expression on fibrocytes was enhanced by hypoxia and by growth factors including platelet-derived growth factor. Both hypoxia-induced and growth factor-induced CXCR4 expressions were attenuated by specific inhibition of PI3-kinase and mTOR. Finally, in the mouse model of bleomycin-induced pulmonary fibrosis, treatment with the mTOR inhibitor rapamycin resulted in reduced numbers of CXCR4-expressing fibrocytes in the peripheral blood and lung as well as reduced lung collagen deposition. Taken together, these experiments support the notion that pharmacologic inhibition of the CXCR4/CXCL12 biological axis is achievable in human fibrocytes and reduces the magnitude of pulmonary fibrosis in an animal model. This approach may hold promise in human fibrotic lung diseases.  相似文献   

3.
Fibrotic interstitial lung diseases are illnesses of unknown cause characterized by progressive decline in lung function. Fibrocytes are bone marrow-derived, circulating progenitor cells capable of differentiating into diverse mesenchymal cell types. Prior work has shown fibrocytes to traffic to the lung via the CXCL12-CXCR4 chemokine axis in an animal model of pulmonary fibrosis. We therefore assessed the relevance of fibrocytes in patients with fibrotic interstitial lung disease. We found enhanced expression of CXCL12 in both the lungs and plasma of patients with lung fibrosis. CXCL12 levels were associated with an order of magnitude higher number of circulating fibrocytes in the peripheral blood of these patients. Most of the circulating fibrocytes in patients with interstitial lung diseases were negative for the myofibroblast marker alpha-smooth muscle actin, suggesting a relatively undifferentiated phenotype. Taken together, these data suggest that fibrocytes are involved in the pathogenesis of human lung fibrosis.  相似文献   

4.
Chronic liver injury often leads to hepatic fibrosis, a condition associated with increased levels of circulating TGF-β1 and lipopolysaccharide, activation of myofibroblasts, and extensive deposition of extracellular matrix, mostly collagen Type I. Hepatic stellate cells are considered to be the major1 but not the only source of myofibroblasts in the injured liver.2 Hepatic myofibroblasts may also originate from portal fibroblasts, mesenchymal cells, and fibrocytes.3 Since the discovery of fibrocytes in 1994 by Dr. Bucala and colleagues, this bone marrow (BM)-derived collagen Type I-producing CD45+ cells remain the most fascinating cells of the hematopoietic system. Due to the ability to differentiate into collagen Type I producing cells/myofibroblasts, fibrocytes were implicated in the pathogenesis of liver, skin, lung, and kidney fibrosis. However, studies of different organs often contain controversial results on the number of fibrocytes recruited to the site of injury and their biological function. Furthermore, fibrocytes were implicated in the pathogenesis of sepsis and were shown to possess antimicrobial activity. Finally, in response to specific stimuli, fibrocytes can give rise to fully differentiated macrophages, suggesting that in concurrence with the high plasticity of hematopoietic cells, fibrocytes exhibit progenitor properties. Here, we summarize our current understanding of the role of CD45+Collagen Type I+ BM-derived cells in response to fibrogenic liver injury and septicemia and discuss the most recent evidence supporting the critical role of fibrocytes in the mediation of pro-fibrogenic and/or pro-inflammatory responses.  相似文献   

5.
Idiopathic pulmonary fibrosis is characterized by the accumulation of fibroblasts/myofibroblasts and aberrant remodeling of the lung parenchyma. However, the sources of fibroblasts in IPF lungs are unclear. Fibrocytes are circulating progenitors of fibroblasts implicated in wound healing and fibrosis. In this study we evaluated evidence for the presence of fibrocytes in the lung of patients with idiopathic pulmonary fibrosis by immunofluorescence and confocal microscopy. Fibrocytes were identified in tissues in 8 out of 9 fibrotic lungs. Combinations including CXCR4 and a mesenchymal marker stained significantly more fibrocytes/mm(2) of tissue compared with combinations using CD34 or CD45RO with mesenchymal markers: CXCR4/procollagen-I (10.3+/-2.9fibrocytes/mm(2)) and CXCR4/prolyl-4-hydroxylase (4.1+/-3.1), versus CD34/procollagen-I (2.8+/-3.0), CD34/alphaSMA (2.2+/-1.6) and CD45RO/prolyl-4-hydroxylase (1.3+/-1.6); p<0.003. There was a positive correlation between the abundance of fibroblastic foci and the amount of lung fibrocytes (r=0.79; p<0.02). No fibrocytes were identified in normal lungs. The fibrocyte attractant chemokine CXCL12 increased in plasma [median: 2707.5pg/ml (648.1-4884.7) versus 1751.5pg/ml (192.9-2686.0) from healthy controls; p<0.003)] and was detectable in the bronchoalveolar lavage fluid of 40% of the patients but not in controls. In the lung CXCL12 was strongly expressed by alveolar epithelial cells. A negative correlation between plasma levels of CXCL12 with lung diffusing capacity for carbon monoxide (DLCO) (r=-0.56; p<0.03) and oxygen saturation on exercise was found (r=-0.41; p<0.04). These findings indicate that circulating fibrocytes, likely recruited through the CXCR4/CXCL12 axis, may contribute to the expansion of the fibroblast/myofibroblast population in idiopathic pulmonary fibrosis.  相似文献   

6.
Pulmonary fibrosis is characterized by the accumulation of fibroblasts and myofibroblasts. These cells may accumulate from three potential sources: the expansion of resident lung fibroblasts, the process of epithelial-mesenchymal transition, or the recruitment and differentiation of circulating mesenchymal precursors known as fibrocytes. We have previously demonstrated that fibrocytes participate in lung fibrogenesis following administration of FITC to mice. We now demonstrate that leukotriene-deficient 5-LO(-/-) mice are protected from FITC-induced fibrosis. Both murine and human fibrocytes express both cysteinyl leukotriene receptor (CysLT) 1 and CysLT2. In addition, fibrocytes are capable of producing CysLTs and can be regulated via the autocrine or paracrine secretion of these lipid mediators. Exogenous administration of leukotriene (LT) D(4), but not LTC(4) induces proliferation of both murine and human fibrocytes in a dose-dependent manner. Consistent with this result, CysLT1 receptor antagonists are able to block the mitogenic effects of exogenous LTD(4) on fibrocytes. Endogenous production of CysLTs contributes to basal fibrocyte proliferation, but does not alter fibrocyte responses to basic fibroblast growth factor. Although CysLTs can induce the migration of fibrocytes in vitro, they do not appear to be essential for fibrocyte recruitment to the lung in vivo, possibly due to compensatory chemokine-mediated recruitment signals. However, CysLTs do appear to regulate the proliferation of fibrocytes once they are recruited to the lung. These data provide mechanistic insight into the therapeutic benefit of leukotriene synthesis inhibitors and CysLT1 receptor antagonists in animal models of fibrosis.  相似文献   

7.
Monocyte-derived, fibroblast-like cells called fibrocytes are associated with fibrotic lesions. The plasma protein serum amyloid P component (SAP; also known as pentraxin-2, PTX2) inhibits fibrocyte differentiation in vitro, and injections of SAP inhibit fibrosis in vivo. SAP is a member of the pentraxin family of proteins that includes C-reactive protein (CRP; PTX1) and pentraxin-3 (PTX3). All three pentraxins are associated with fibrosis, but only SAP and CRP have been studied for their effects on fibrocyte differentiation. We find that compared to SAP and CRP, PTX3 promotes human and murine fibrocyte differentiation. The effect of PTX3 is dependent on FcγRI. In competition studies, the fibrocyte-inhibitory activity of SAP is dominant over PTX3. Binding competition studies indicate that SAP and PTX3 bind human FcγRI at different sites. In murine models of lung fibrosis, PTX3 is present in fibrotic areas, and the PTX3 distribution is associated with collagen deposition. In lung tissue from pulmonary fibrosis patients, PTX3 has a widespread distribution, both in unaffected tissue and in fibrotic lesions, whereas SAP is restricted to areas adjacent to vessels, and absent from fibrotic areas. These data suggest that the relative levels of SAP and PTX3 present at sites of fibrosis may have a significant effect on the ability of monocytes to differentiate into fibrocytes.  相似文献   

8.
Liver fibrosis results from the co-ordinated actions of myofibroblasts and macrophages, a proportion of which are of bone marrow origin. The functional effect of such bone marrow-derived cells on liver fibrosis is unclear. We examine whether changing bone marrow genotype can down-regulate the liver''s fibrotic response to injury and investigate mechanisms involved. Proteinase activated receptor 1 (PAR1) is up-regulated in fibrotic liver disease in humans, and deficiency of PAR1 is associated with reduced liver fibrosis in rodent models. In this study, recipient mice received bone marrow transplantation from PAR1-deficient or wild-type donors prior to carbon tetrachloride-induced liver fibrosis. Bone marrow transplantation alone from PAR1-deficient mice was able to confer significant reductions in hepatic collagen content and activated myofibroblast expansion on wild-type recipients. This effect was associated with a decrease in hepatic scar-associated macrophages and a reduction in macrophage recruitment from the bone marrow. In vitro, PAR1 signalling on bone marrow-derived macrophages directly induced their chemotaxis but did not stimulate proliferation. These data suggest that the bone marrow can modulate the fibrotic response of the liver to recurrent injury. PAR1 signalling can contribute to this response by mechanisms that include the regulation of macrophage recruitment.  相似文献   

9.
Recipient airway epithelial cells are found in human sex-mismatched lung transplants, implying that circulating progenitor epithelial cells contribute to the repair of the airway epithelium. Markers of circulating progenitor epithelial cells and mechanisms for their trafficking remain to be elucidated. We demonstrate that a population of progenitor epithelial cells exists in the bone marrow and the circulation of mice that is positive for the early epithelial marker cytokeratin 5 (CK5) and the chemokine receptor CXCR4. We used a mouse model of sex-mismatched tracheal transplantation and found that CK5+ circulating progenitor epithelial cells contribute to re-epithelialization of the airway and re-establishment of the pseudostratified epithelium. The presence of CXCL12 in tracheal transplants provided a mechanism for CXCR4+ circulating progenitor epithelial cell recruitment to the airway. Depletion of CXCL12 resulted in the epithelium defaulting to squamous metaplasia, which was derived solely from the resident tissue progenitor epithelial cells. Our findings demonstrate that CK5+CXCR4+ cells are markers of circulating progenitor epithelial cells in the bone marrow and circulation and that CXCR4/CXCL12-mediated recruitment of circulating progenitor epithelial cells is necessary for the re-establishment of a normal pseudostratified epithelium after airway injury. These findings support a novel paradigm for the development of squamous metaplasia of the airway epithelium and for developing therapeutic strategies for circulating progenitor epithelial cells in airway diseases.  相似文献   

10.
Mechanisms of fibrogenesis   总被引:4,自引:0,他引:4  
Fibrogenesis is a mechanism of wound healing and repair. However, prolonged injury causes deregulation of normal processes and results in extensive deposition of extracellular matrix (ECM) proteins and fibrosis. The current review will discuss similarities and differences of fibrogenesis in different organs and systems and focus on the origin of collagen producing cells. Although the relative contribution will vary in different tissues and different injuries, there are three general sources of fibrogenic cells: endogenous fibroblasts or fibroblast-like cells, epithelial to mesenchymal transition, and recruitment of fibrocytes from the bone marrow.  相似文献   

11.
Pulmonary fibrosis is an untreatable, uniformly fatal disease of unclear etiology that is the result of unremitting chronic inflammation. Recent studies have implicated bone marrow derived fibrocytes and M2 macrophages as playing key roles in propagating fibrosis. While the disease process is characterized by the accumulation of lymphocytes in the lung parenchyma and alveolar space, their role remains unclear. In this report we definitively demonstrate the ability of T cells to regulate lung inflammation leading to fibrosis. Specifically we demonstrate the ability of intranasal vaccinia vaccination to inhibit M2 macrophage generation and fibrocyte recruitment and hence the accumulation of collagen and death due to pulmonary failure. Mechanistically, we demonstrate the ability of lung Th1 cells to prevent fibrosis as vaccinia failed to prevent disease in Rag-/- mice or in mice in which the T cells lacked IFN-γ. Furthermore, vaccination 3 months prior to the initiation of fibrosis was able to mitigate the disease. Our findings clearly demonstrate the role of T cells in regulating pulmonary fibrosis as well as suggest that vaccinia-induced immunotherapy in the lung may prove to be a novel treatment approach to this otherwise fatal disease.  相似文献   

12.
Inhibition of fibrocyte differentiation by serum amyloid P   总被引:5,自引:0,他引:5  
Wound healing and the dysregulated events leading to fibrosis both involve the proliferation and differentiation of fibroblasts and the deposition of extracellular matrix. Whether these fibroblasts are locally derived or from a circulating precursor population is unclear. Fibrocytes are a distinct population of fibroblast-like cells derived from peripheral blood monocytes that enter sites of tissue injury to promote angiogenesis and wound healing. We have found that CD14(+) peripheral blood monocytes cultured in the absence of serum or plasma differentiate into fibrocytes within 72 h. We purified the factor in serum and plasma that prevents the rapid appearance of fibrocytes, and identified it as serum amyloid P (SAP). Purified SAP inhibits fibrocyte differentiation at levels similar to those found in plasma, while depleting SAP reduces the ability of plasma to inhibit fibrocyte differentiation. Compared with sera from healthy individuals and patients with rheumatoid arthritis, sera from patients with scleroderma and mixed connective tissue disease, two systemic fibrotic diseases, were less able to inhibit fibrocyte differentiation in vitro and had correspondingly lower serum levels of SAP. These results suggest that low levels of SAP may thus augment pathological processes leading to fibrosis. These data also suggest mechanisms to inhibit fibrosis in chronic inflammatory conditions, or conversely to promote wound healing.  相似文献   

13.
For both wound healing and the formation of a fibrotic lesion, circulating monocytes enter the tissue and differentiate into fibroblast-like cells called fibrocytes and pro-fibrotic M2a macrophages, which together with fibroblasts form scar tissue. Monocytes can also differentiate into classically activated M1 macrophages and alternatively activated M2 macrophages. The proteases thrombin, which is activated during blood clotting, and tryptase, which is released by activated mast cells, potentiate fibroblast proliferation and fibrocyte differentiation, but their effect on macrophages is unknown. Here we report that thrombin, tryptase, and the protease trypsin bias human macrophage differentiation towards a pro-fibrotic M2a phenotype expressing high levels of galectin-3 from unpolarized monocytes, or from M1 and M2 macrophages, and that these effects appear to operate through protease-activated receptors. These results suggest that proteases can initiate scar tissue formation by affecting fibroblasts, fibrocytes, and macrophages.  相似文献   

14.
Lung fibrosis is characterized by vascular leakage and myofibroblast recruitment, and both phenomena are mediated by lysophosphatidic acid (LPA) via its type‐1 receptor (LPA1). Following lung damage, the accumulated myofibroblasts activate and secrete excessive extracellular matrix (ECM), and form fibrotic foci. Studies have shown that bone marrow‐derived cells are an important source of myofibroblasts in the fibrotic organ. However, the type of cells in the bone marrow contributing predominantly to the myofibroblasts and the involvement of LPA‐LPA1 signalling in this is yet unclear. Using a bleomycin‐induced mouse lung‐fibrosis model with an enhanced green fluorescent protein (EGFP) transgenic mouse bone marrow replacement, we first demonstrated that bone marrow derived‐mesenchymal stem cells (BMSCs) migrated markedly to the bleomycin‐injured lung. The migrated BMSC contributed significantly to α‐smooth muscle actin (α‐SMA)‐positive myofibroblasts. By transplantation of GFP‐labelled human BMSC (hBMSC) or EGFP transgenic mouse BMSC (mBMSC), we further showed that BMSC might be involved in lung fibrosis in severe combined immune deficiency (SCID)/Beige mice induced by bleomycin. In addition, using quantitative‐RT‐PCR, western blot, Sircol collagen assay and migration assay, we determined the underlying mechanism was LPA‐induced BMSC differentiation into myofibroblast and the secretion of ECM via LPA1. By employing a novel LPA1 antagonist, Antalpa1, we then showed that Antalpa1 could attenuate lung fibrosis by inhibiting both BMSC differentiation into myofibroblast and the secretion of ECM. Collectively, the above findings not only further validate LPA1 as a drug target in the treatment of pulmonary fibrosis but also elucidate a novel pathway in which BMSCs contribute to the pathologic process.  相似文献   

15.

Background

Interstitial lung disease is a frequent complication in sickle cell disease and is characterized by vascular remodeling and interstitial fibrosis. Bone marrow-derived fibrocytes have been shown to contribute to the pathogenesis of other interstitial lung diseases. The goal of this study was to define the contribution of fibrocytes to the pathogenesis of sickle cell lung disease.

Methodology/Principal Findings

Fibrocytes were quantified and characterized in subjects with sickle cell disease or healthy controls, and in a model of sickle cell disease, the NY1DD mouse. The role of the chemokine ligand CXCL12 in trafficking of fibrocytes and phenotype of lung disease was examined in the animal model. We found elevated concentration of activated fibrocytes in the peripheral blood of subjects with sickle cell disease, which increased further during vaso-occlusive crises. There was a similar elevations in the numbers and activation phenotype of fibrocytes in the bone marrow, blood, and lungs of the NY1DD mouse, both at baseline and under conditions of hypoxia/re-oxygenation. In both subjects with sickle cell disease and the mouse model, fibrocytes expressed a hierarchy of chemokine receptors, with CXCR4 expressed on most fibrocytes, and CCR2 and CCR7 expressed on a smaller subset of cells. Depletion of the CXCR4 ligand, CXCL12, in the mouse model resulted in a marked reduction of fibrocyte trafficking into the lungs, reduced lung collagen content and improved lung compliance and histology.

Conclusions

These data support the notion that activated fibrocytes play a significant role in the pathogenesis of sickle cell lung disease.  相似文献   

16.
Hypoxia, leukocytes, and the pulmonary circulation.   总被引:2,自引:0,他引:2  
Data are rapidly accumulating in support of the idea that circulating monocytes and/or mononuclear fibrocytes are recruited to the pulmonary circulation of chronically hypoxic animals and that these cells play an important role in the pulmonary hypertensive process. Hypoxic induction of monocyte chemoattractant protein-1, stromal cell-derived factor-1, vascular endothelial growth factor-A, endothelin-1, and tumor growth factor-beta(1) in pulmonary vessel wall cells, either directly or indirectly via signals from hypoxic lung epithelial cells, may be a critical first step in the recruitment of circulating leukocytes to the pulmonary circulation. In addition, hypoxic stress appears to induce release of increased numbers of monocytic progenitor cells from the bone marrow, and these cells may have upregulated expression of receptors for the chemokines produced by the lung circulation, which thus facilitates their specific recruitment to the pulmonary site. Once present, macrophages/fibrocytes may exert paracrine effects on resident pulmonary vessel wall cells stimulating proliferation, phenotypic modulation, and migration of resident fibroblasts and smooth muscle cells. They may also contribute directly to the remodeling process through increased production of collagen and/or differentiation into myofibroblasts. In addition, they could play a critical role in initiating and/or supporting neovascularization of the pulmonary artery vasa vasorum. The expanded vasa network may then act as a conduit for further delivery of circulating mononuclear cells to the pulmonary arterial wall, creating a feedforward loop of pathological remodeling. Future studies will need to determine the mechanisms that selectively induce leukocyte/fibrocyte recruitment to the lung circulation under hypoxic conditions, their direct role in the remodeling process via production of extracellular matrix and/or differentiation into myofibroblasts, their impact on the phenotype of resident smooth muscle cells and adventitial fibroblasts, and their role in the neovascularization observed in hypoxic pulmonary hypertension.  相似文献   

17.
Skin fibrotic remodeling is a major feature in human atopic dermatitis (AD). Inflammation and tissue fibrosis are common consequences of Th2 responses. Elevated IL-13 and thymic stromal lymphopoietin (TSLP) have been found in the AD skin lesions. Fibrocytes can be recruited to inflamed tissues to promote wound healing and fibrosis. Dermal transgenic expression of IL-13 causes an AD-like phenotype with fibrosis and increased TSLP. However, the role of TSLP in fibrotic remodeling is unknown. In this study, we investigated the role of TSLP and fibrocytes in the generation of IL-13-induced skin fibrosis. In AD lesion, cessation of IL-13 transgene expression resulted in reduced skin inflammation but with no effect on further progression of fibrosis. This was accompanied by markedly increased CD34(+)/procollagen 1(+) fibrocytes. Furthermore, fibrocytes express TSLP receptor (TSLPR), and TSLP directly promotes PBMC-derived fibrocytes to produce collagen. Neutralization of TSLP or genetic deletion of TSLPR in IL-13 transgenic mice resulted in a significant reduction in fibrocytes and in skin fibrosis. Furthermore, reduction of fibrosis by depletion of TSLP was independent of IL-13. Interestingly, the number of fibrocytes was highly increased in the skin samples of AD patients. These data indicate that the progression of skin fibrosis in IL-13-induced AD occurs via TSLP/TSLPR-dependent but IL-13-independent novel mechanisms by promoting fibrocyte functions.  相似文献   

18.
Modulation of chemokine CXCL12 and its receptor CXCR4 has been implicated in attenuation of bleomycin (BLM)-induced pulmonary fibrosis and carbon tetrachloride (CCl4)-induced hepatic injury. In pulmonary fibrosis, published reports suggest that collagen production in the injured lung is derived from fibrocytes recruited from the circulation in response to release of pulmonary CXCL12. Conversely, in hepatic fibrosis, resident hepatic stellate cells (HSC), the key cell type in progression of fibrosis, upregulate CXCR4 expression in response to activation. Further, CXCL12 induces HSC proliferation and subsequent production of collagen I. In the current study, we evaluated AMD070, an orally bioavailable inhibitor of CXCL12/CXCR4 in alleviating BLM-induced pulmonary and CCl4-induced hepatic fibrosis in mice. Similar to other CXCR4 antagonists, treatment with AMD070 significantly increased leukocyte mobilization. However, in these two models of fibrosis, AMD070 had a negligible impact on extracellular matrix deposition. Interestingly, our results indicated that CXCL12/CXCR4 signaling has a role in improving mortality associated with BLM induced pulmonary injury, likely through dampening an early inflammatory response and/or vascular leakage. Together, these findings indicate that the CXCL12-CXCR4 signaling axis is not an effective target for reducing fibrosis.  相似文献   

19.
Regeneration and fibrosis are integral parts of the recovery process following tissue injury, and impaired regulation of these mechanisms is a hallmark of many chronic diseases. A population of bone marrow-derived mesenchymal progenitor cells known as fibrocytes, play an important role in tissue remodeling and fibrosis in both physiologic and pathologic settings. In this review we summarize the key concepts regarding the pathophysiology of wound healing and fibrosis, and present data to support the contention that circulating fibrocytes are important in both normal repair process and aberrant healing and fibrotic damage associated with a diverse set of disease states.  相似文献   

20.
Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P   总被引:2,自引:0,他引:2  
Fibrotic diseases such as scleroderma, severe chronic asthma, pulmonary fibrosis, and cardiac fibrosis kill tens of thousands of people each year in the U.S. alone. Growing evidence suggests that in fibrotic lesions, a subset of blood monocytes enters the tissue and differentiates into fibroblast-like cells called fibrocytes, causing tissue dysfunction. We previously found that a plasma protein called serum amyloid P (SAP) inhibits fibrocyte differentiation in vitro. Bleomycin treatment is a standard model for pulmonary fibrosis, and causes an increase in collagen, fibrocytes, and leukocytes in the lungs, and a decrease in peripheral blood hemoglobin oxygen saturation. We find that injections of rat SAP in rats reduce all of the above bleomycin-induced changes, suggesting that the SAP injections reduced the bleomycin-induced pulmonary fibrosis. We repeated these studies in mice, and find that injections of murine SAP decrease bleomycin-induced pulmonary fibrosis. To confirm the efficacy of SAP treatment, we used a delayed treatment protocol using SAP from day 7 to 13 only, and then measured fibrosis at day 21. Delayed SAP injections also reduce the bleomycin-induced decrease in peripheral blood hemoglobin oxygen saturation, and an increase in lung collagen, leukocyte infiltration, and fibrosis. Our data suggest the possibility that SAP may be useful as a therapy for pulmonary fibrosis in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号