首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.

Introduction

Natural killer (NK) and natural killer T (NKT) cells provide a first line of defense against infection. However, these cells have not yet been examined in patients with Lyme arthritis, a late disease manifestation. Lyme arthritis usually resolves with antibiotic treatment. However, some patients have persistent arthritis after spirochetal killing, which may result from excessive inflammation, immune dysregulation and infection-induced autoimmunity.

Methods

We determined the frequencies and phenotypes of NK cells and invariant NKT (iNKT) cells in paired peripheral blood (PB) and synovial fluid (SF) samples from eight patients with antibiotic-responsive arthritis and fifteen patients with antibiotic-refractory arthritis using flow cytometry and cytokine analyses.

Results

In antibiotic-responsive patients, who were seen during active infection, high frequencies of CD56bright NK cells were found in SF, the inflammatory site, compared with PB (P <0.001); at both sites, a high percentage of cells expressed the activation receptor NKG2D and the chaperone CD94, a low percentage expressed inhibitory killer immunoglobulin-like receptors (KIR), and a high percentage produced IFN-γ. In antibiotic-refractory patients, who were usually evaluated near the conclusion of antibiotics when few if any live spirochetes remained, the phenotype of CD56bright cells in SF was similar to that in patients with antibiotic-responsive arthritis, but the frequency of these cells was significantly less (P = 0.05), and the frequencies of CD56dim NK cells tended to be higher. However, unlike typical NKdim cells, these cells produced large amounts of IFN-γ, suggesting that they were not serving a cytotoxic function. Lastly, iNKT cell frequencies in the SF of antibiotic-responsive patients were significantly greater compared with that of antibiotic-refractory patients where these cells were often absent (P = 0.003).

Conclusions

In patients with antibiotic-responsive arthritis, the high percentage of activated, IFN-γ-producing CD56bright NK cells in SF and the presence of iNKT cells suggest that these cells still have a role in spirochetal killing late in the illness. In patients with antibiotic-refractory arthritis, the frequencies of IFN-γ-producing CD56bright and CD56dim NK cells remained high in SF, even after spirochetal killing, suggesting that these cells contribute to excessive inflammation and immune dysregulation in joints, and iNKT cells, which may have immunomodulatory effects, were often absent.  相似文献   

2.
The role of natural killer (NK) cells in infection-induced liver fibrosis remains obscure. In this study, we elucidated the effect of NK cells on Schistosoma japonicum (S. japonicum) egg-induced liver fibrosis. Liver fibrosis was induced by infecting C57BL/6 mice with 18-20 cercariae of S. japonicum. Anti-ASGM1 antibody was used to deplete NK cells. Toll-like receptor 3 ligand, polyinosinic-polycytidylic acid (poly I:C) was used to enhance the activation of NK cells. Results showed that NK cells were accumulated and activated after S. japonicum infection, as evidenced by the elevation of CD69 expression and IFN-γ production. Depletion of NK cells markedly enhanced S. japonicum egg-induced liver fibrosis. Administration of poly I:C further activated NK cells to produce IFN-γ and attenuated S. japonicum egg-induced liver fibrosis. The observed protective effect of poly I:C on liver fibrosis was diminished through depletion of NK cells. Disruption of IFN-γ gene enhanced liver fibrosis and partially abolished the suppression of liver fibrosis by poly I:C. Moreover, expression of retinoic acid early inducible 1 (RAE 1), the NKG2D ligand, was detectable at high levels on activated hepatic stellate cells derived from S. japonicum-infected mice, which made them more susceptible to hepatic NK cell killing. In conclusion, our findings suggest that the activated NK cells in the liver after S. japonicum infection negatively regulate egg-induced liver fibrosis via producing IFN-γ, and killing activated stellate cells.  相似文献   

3.
4.
The initiation and the progression of autoimmune diseases stem from complex interactions that involve cells of both the innate and the adaptive immune system. As we discuss here, natural killer (NK) cells, which are components of the innate immune system, can inhibit or promote the activation of autoreactive T cells during the initiation of autoimmunity. After they have been activated, autoreactive T cells contribute to the homeostatic contraction of NK-cell populations. The dynamic interaction between NK cells and autoreactive T cells might indicate the transition from the innate immune triggering of autoimmunity to the progressive phase of the disease. Understanding the mechanisms and signals that control the reciprocal regulation of NK cells and autoreactive T cells could have important implications for treatment in the clinic.  相似文献   

5.

Problem

Recurrent spontaneous abortion (RSA) is associated with immune imbalance at the maternal–fetal interface. Decidual immune cells and cytokines expressed at this interface regulate the response of the maternal immune system to the fetus. However, the populations and cytokine expression levels of these lymphocytes in miscarriage with normal and abnormal chromosome karyotypes remain unclear.

Methods

We assessed the populations and cytokine expression levels of Natural Killer (NK), Natural Killer T (NKT), Helper T (Th) and Cytotoxic T (Tc) cells in the decidua of RSA by flow cytometry and simultaneously analyzed the fetal chromosome karyotypes of these miscarriages.

Results

Flow cytometry showed no significant difference between RSA and normal pregnancy in the percentages of Th, Tc, NK, and NKT cells. Type-1 cells decreased significantly in the decidua of normal pregnancy, and NK2 and NKT2 cells increased significantly in the normal pregnancy group. We also found no difference in the lymphocyte composition and the proportion of types 1 and 2 subsets of the four lymphocytes in the decidua between RSA with abnormal chromosome karyotypes of villous trophoblasts (RSA-A) and RSA with normal chromosome karyotypes of villous trophoblasts (RSA-N), but the proportion of type-1 cells in both groups was significantly higher than that in normal pregnancy.

Conclusion

No difference existed between the type-1 immune response of RSA in normal and abnormal chromosome karyotypes of villous trophoblasts.  相似文献   

6.
Immunotherapy with ligands of natural killer T cells   总被引:6,自引:0,他引:6  
Natural killer T (NKT) cells are innate lymphocytes that share receptor structures and functions with conventional T cells and natural killer cells. NKT cells are specific for glycolipid antigens bound by the major histocompatibility complex class I-like protein CD1d. One striking property of NKT cells is their capacity to rapidly produce large amounts of cytokines in response to T-cell receptor engagement, suggesting that activated NKT cells can modulate adaptive immune responses. Recent pre-clinical studies have revealed significant efficacy of NKT-cell ligands such as the glycolipid alpha-galactosylceramide for treatment of metastatic cancers and infections, and for prevention of autoimmune diseases. These findings suggest that appropriate stimulation of NKT cells could be exploited for prevention or treatment of human diseases.  相似文献   

7.
In several mouse models, natural killer T cells have recently been found to be required for the development of airway hyper-reactivity, a cardinal feature of asthma. Moreover, in patients with chronic asthma, natural killer T cells with a T-helper-2-like phenotype (that is, that express CD4 and produce T helper 2 cytokines) are present in the lungs in large numbers. In this Opinion article, we suggest that natural killer T cells, which express a restricted T-cell receptor and respond to glycolipids rather than protein antigens, have a previously unsuspected but crucial role, distinct from that of T helper 2 cells, in the pathogenesis of asthma.  相似文献   

8.
9.
10.
Precursors and effectors of murine lymphokine-activated killer cells, natural killer cells, and cytotoxic T lymphocytes are compared. Natural killer cells are resistant to gamma-irradiation (1000 R) whereas precursors of lymphokine-activated killer cells and cytotoxic T lymphocytes are sensitive. Lower doses of gamma-irradiation (500 R) remove precursors for cytotoxic T lymphocytes but not lymphokine-activated killer cells. In addition, lymphokine-activated killer cells are regenerated before classical CTL after sublethal doses of gamma-irradiation. Natural killer cells are resistant to anti-Thy 1 and C' and anti-thymocyte serum, but sensitive to anti-asialo GM1 and complement. Precursors of cytotoxic T lymphocytes are sensitive to anti-Thy 1 and complement and anti-thymocyte serum, but are resistant to anti-asialo GM1 and complement. Precursors of lymphokine-activated killer cells are partially sensitive to anti-Thy 1 and complement and anti-thymocyte serum, but are resistant to anti-asialo GM1 and complement. Effector cells of cytotoxic T lymphocytes are sensitive to anti-Thy 1 and complement and resistant to anti-asialo GM1 and complement. Lymphokine-activated killer cell effectors are sensitive to anti-asialo GM1 and complement at 24 hr after activation. These effectors are more closely aligned with classical natural killer effectors. Lymphokine-activated killer effectors, 7 days after activation, are resistant to anti-asialo GM1 and complement and sensitive to anti-Thy 1 and complement. Relationships and differences among these cytotoxic subsets are discussed.  相似文献   

11.
12.

Background  

Invariant natural killer T (iNKT) cells differ from other T cells by their hyperactive effector T-cell status, in addition to the expression of NK lineage receptors and semi-invariant T-cell receptors. It is generally agreed that the immune phenotype of iNKT cells is maintained by repeated activation in peripheral tissues although no explicit evidence for such iNKT cell activity in vivo has so far been reported.  相似文献   

13.
14.
15.
动脉粥样硬化发生发展与免疫细胞参与的免疫反应密切相关,其中自然杀伤细胞主要是通过释放IFN-γ、穿孔素和颗粒酶等方式发挥生物学作用,自然杀伤T细胞通过释放多种细胞因子影响动脉粥样硬化形成,但其具体机制未明。本文就自然杀伤细胞和自然杀伤T细胞对动脉粥样硬化的影响做一综述,为动脉粥样硬化及其相关疾病的防治研究提供新的思路。  相似文献   

16.
Atherosclerosis is a multifactor, highly complex disease with numerous aetiologies that work synergistically to promote lesion development. One of the emerging components that drive the development of both early- and late-stage atherosclerotic lesions is the participation of both the innate and acquired immune systems. In both humans and animal models of atherosclerosis, the most prominent cells that infiltrate evolving lesions are macrophages and T lymphocytes. The functional loss of either of these cell types reduces the extent of atherosclerosis in mice that were rendered susceptible to the disease by deficiency of either apolipoprotein E or the LDL (low density lipoprotein) receptor. In addition to these major immune cell participants, a number of less prominent leukocyte populations that can modulate the atherogenic process are also involved. This review will focus on the participatory role of two "less prominent" immune components, namely natural killer (NK) cells and natural killer T (NKT) cells. Although this review will highlight the fact that both NK and NKT cells are not sufficient for causing the disease, the roles played by both these cells types are becoming increasingly important in understanding the complexity of this disease process.  相似文献   

17.
Natural killer T cells: rapid responders controlling immunity and disease   总被引:6,自引:0,他引:6  
Natural killer T (NKT) cells are a subset of T cells that share properties of natural killer cells and conventional T cells. They are involved in immediate immune responses, tumor rejection, immune surveillance and control of autoimmune diseases. Most NKT cells express both an invariant T cell antigen receptor and the NK cell receptor NK1.1, and are referred to as invariant NKT cells. This invariant T cell receptor is restricted to interactions with glycolipids presented by the non-classical MHC, CD1d. These NKT cells rapidly produce high levels of interleukin (IL)-2, IFN-gamma, TNF-alpha, and IL-4 upon stimulation through their TCR. Most also have cytotoxic activity similar to NK cells. NKT cells are involved in a number of pathological conditions, and have been shown to regulate viral infections in vivo, and control tumor growth. They may also play both protective and harmful roles in the progression of certain autoimmune diseases, such as diabetes, lupus, atherosclerosis, and allergen-induced asthma.  相似文献   

18.
自然杀伤(natural killer,NK)细胞和自然杀伤T(natural killer T,NKT)细胞是参与机体抗病毒免疫和肿瘤免疫的两群淋巴细胞亚群,是介导先天性免疫(innate immunity)应答和调节适应性免疫(adaptive immunity)应答的重要效应细胞。近年来,随着对NK细胞和NKT细胞及其转录调控因子研究的不断深入,NK细胞和NKT细胞的发育机制逐步被阐明,这将为提高NK细胞和NKT细胞的抗病毒和肿瘤免疫疗效提供新的策略。  相似文献   

19.
The invariant (i) natural killer (NK)T cells consistently express the Valpha14 chain of the T cell receptor (TCR) and recognize alpha-galactosylceramide (alpha-GalCer) presented by the nonpolymorphic presentation molecule CD1d. Despite their name, the iNKT cells represent a heterogeneous population, which can be divided on the basis of NK1.1 surface expression. Here we show that NK1.1 surface expression on liver iNKT cells in mice fluctuates during Listeria monocytogenes infection. At early stages of listeriosis, iNKT cells expressing NK1.1 were numerically reduced and those lacking NK1.1 were increased. At later time points, the NK1.1(-) iNKT cell population contracted, whereas NK1.1(+) iNKT cells reemerged. Alterations in NK1.1 surface expression on iNKT cells were paralleled by numerical changes of interleukin (IL)-12 producers in the liver and were completely prevented by endogenous IL-12 neutralization, whereas NK1.1 surface alterations on iNKT cells following alpha-GalCer stimulation were not prevented. Adoptive cell transfer experiments revealed that the liver NK1.1(-) iNKT cells from NK1.1(+) cell-depleted L. monocytogenes-infected mice accumulated in the liver of recipient recombination-activating gene-1-deficient mice where they acquired NK1.1 surface expression. Thus, we present first evidence that NK1.1 surface expression on liver iNKT cells is reversible during L. monocytogenes infection, and that different mechanisms underlie stimulation by TCR and IL-12.  相似文献   

20.
Cells of the innate immune system interact with pathogens via conserved pattern-recognition receptors, whereas cells of the adaptive immune system recognize pathogens through diverse, antigen-specific receptors that are generated by somatic DNA rearrangement. Invariant natural killer T (iNKT) cells are a subset of lymphocytes that bridge the innate and adaptive immune systems. Although iNKT cells express T cell receptors that are generated by somatic DNA rearrangement, these receptors are semi-invariant and interact with a limited set of lipid and glycolipid antigens, thus resembling the pattern-recognition receptors of the innate immune system. Functionally, iNKT cells most closely resemble cells of the innate immune system, as they rapidly elicit their effector functions following activation, and fail to develop immunological memory. iNKT cells can become activated in response to a variety of stimuli and participate in the regulation of various immune responses. Activated iNKT cells produce several cytokines with the capacity to jump-start and modulate an adaptive immune response. A variety of glycolipid antigens that can differentially elicit distinct effector functions in iNKT cells have been identified. These reagents have been employed to test the hypothesis that iNKT cells can be harnessed for therapeutic purposes in human diseases. Here, we review the innate-like properties and functions of iNKT cells and discuss their interactions with other cell types of the immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号