首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Stenophagy (narrow diet breadth) represents an extreme of trophic specialization in carnivores, but little is known about the forces driving its evolution. We used spiders, the most diversified group of terrestrial predators, to investigate whether stenophagy (1) promoted diversification; (2) was phylogenetically conserved and evolutionarily derived state; and (3) was determined either by geographical distribution and foraging guild. We used published data on the prey of almost 600 species. Six categories of stenophagy were found: myrmecophagy, araneophagy, lepidopterophagy, termitophagy, dipterophagy, and crustaceophagy. We found that the species diversity of euryphagous genera and families was similar to stenophagous genera and families. At the family level, stenophagy evolved repeatedly and independently. Within families, the basal condition was oligophagy or euryphagy. Most types of stenophagy were clearly derived: myrmecophagy in Zodariidae; lepidopterophagy in Araneidae; dipterophagy in Theridiidae. In contrast, araneophagy was confined to basal and intermediate lineages, suggesting its ancestral condition. The diet breadth of species from the tropics and subtropics was less diverse than species from the temperate zone. Diet breadth was lower in cursorial spiders compared to web-building species. Thus, the evolution of stenophagy in spiders appears to be complex and governed by phylogeny as well as by ecological determinants.  相似文献   

2.
The arms race between specialist predators and their prey has resulted in the evolution of a variety of specific adaptations. In venomous predators, this can include venom composition, particularly if predators are specialized on dangerous prey. Here, we performed an integrative study using six species of highly specialized ant‐eating spiders of the genus Zodarion to investigate their phylogeny, realized trophic niche, efficacy in the capture of various ant species and venom composition. Data on natural diet obtained by next‐generation sequencing and field observations showed that the six Zodarion species exploit different ant species. Their phylogeny, based on mitochondrial and nuclear genes, correlated with the composition of their natural prey, indicating that closely related Zodarion species specialize on similar ant species. Prey‐capture parameters differed among Zodarion species suggesting prey‐specific efficacy. Similarly, the venom profiles of both low and high molecular compounds differed among species. Only the profiles of low molecular compounds were correlated with capture efficacy parameters, suggesting that the venom of Zodarion spiders contains prey‐specific components. Our study suggests that Iberian Zodarion spiders are specialized on particular ant species.  相似文献   

3.
Abstract Little attention is paid to the behavioural and physiological adaptations of ant‐eating predators. It is expected that there should be a strong selection for traits related to prey handling, leading to the evolution of morphological, behavioural and nutritional adaptations. Such adaptations may then entail trade‐offs in handling and utilization of alternative prey. To investigate behavioural as well as nutritional adaptations and the occurrence of the corresponding trade‐offs in two ant‐eating spiders of the genus Zodarion [Zodarion atlanticum Pekár & Cardoso and Zodarion germanicum (C. L. Koch)], spiders are reared on two diets: ants (i.e. their preferred prey) and fruit flies (i.e. an alternative prey that is nutritionally optimal for euryphagous spiders). Food consumption is observed and several fitness‐related life‐history parameters are measured. Although spiders readily accept ants, more than one‐third of 35 spiders refuse to consume fruit flies and starve. Furthermore, severe hunger does not induce these individuals to accept fruit flies. Starving spiders die before moulting to the second stadium. Spiders that eat fruit flies increase only little and slowly in weight, and all of these die during the first two stadia. By contrast, spiders on an ant diet increase dramatically in weight, and develop up to the fourth stadium. These data indicate that fruit flies are not suitable for Zodarion, supporting the hypothesis that there are behavioural and nutritional trade‐offs. Taking into account the results of previous studies, it is suggested that nutritional trade‐offs are generally important for stenophagous spiders.  相似文献   

4.
Trophic specialisation can be observed in species with long-term constant exploitation of a certain prey in all populations or in a population of a species with short-term exploitation of a certain prey. While in the former case the species would evolve stereotyped or specialised trophic adaptations, the trophic traits of the latter should be versatile or generalised. Here, we studied the predatory behavioural adaptations of a presumed myrmecophagous spider, Oecobius navus. We chose two distinct populations, one in Portugal and the other in Uruguay. We analysed the actual prey of both populations and found that the Portuguese population feeds mainly on dipterans, while the Uruguayan population feeds mainly on ants. Indeed, dipterans and springtails in Portugal, and ants in Uruguay were the most abundant potential prey. In laboratory trials O. navus spiders recognised and captured a wide variety of prey. The capture efficiency of the Portuguese population measured as components of the handling time was higher for flies than for ants, while that of the Uruguayan population was higher for ants. We found phenotypic plasticity in behavioural traits that lead to increased capture efficiency with respect to the locally abundant prey, but it remains to be determined whether the traits of the two populations are genetically fixed. We conclude that O. navus is a euryphagous generalist predator which shows local specialisation on the locally abundant prey.  相似文献   

5.
Predators appear to be less frequently specialised (i.e. adapted to restricted diet) on their prey than herbivores, parasites or parasitoids. Here, we critically evaluate contemporary evolutionary hypotheses that might be used to explain the evolution of specialised foraging in predators. We propose a unifying concept within which we define four types of trophic categories using ecological (diet breadth) and evolutionary (degree of adaptations) contexts. We use data on spiders (Araneae), the most diversified order of terrestrial predators, to assess applicability of frameworks and evolutionary concepts related to trophic specialisation. The majority of spider species are euryphagous but a few have a restricted prey range, i.e. they are stenophagous. We provide a detailed overview of specialisation on different prey types, namely spiders, crustaceans, moths, dipterans, ants, and termites. We also review the available evidence for trophic adaptations, classified into four categories: behavioural, morphological, venomic and metabolic. Finally, we discuss the ecological and evolutionary implications of trophic specialisation and propose avenues for future research.  相似文献   

6.
The agonistic display repertoire of myrmecophagous Zodarion rubidum has five displays. This is fewer than in other spiders, which is a result of the short time spent in contests (4 s). Such a short duration seems to be an adaptation to living among foraging ants, which are dangerous to spiders. The interaction procedure was markedly affected by the presence of preyimmobilized ant. Contests between individuals without prey, or each holding prey, were usually resolved by leg waving. But contests between an individual without and an individual with prey escalated to more aggressive levels. Nevertheless, spiders were never observed to harm or cannibalize one another. Absence of cannibalism is explained as a result of diet specialization: only ants elicit a predatory behavior and provide Zodarion spiders with optimal nutrients. Some spiders used kleptobiosis to gain ants. They first tried to gain immobilized prey aggressively and if failed they adopted a stealthy tactic and shared the prey with the owner. Kleptobiosis is an alternative foraging strategy for Zodarion spiders as it reduces risks associated with hunting dangerous ants.  相似文献   

7.
A number of different generalist (polyphagous) predators occur in agroecosystems. Yet their biocontrol potential has been little investigated in detail. Philodromus species (Philodromidae) belong to the dominant spider species occurring in commercial orchards. We studied in detail the trophic functional traits of Philodromus albidus, Philodromus aureolus, and Philodromus cespitum (Philodromidae) by means of (1) the analysis of natural prey; and (2) experiments on acceptance of a variety of prey taxa. We found that the three philodromids are euryphagous. We classified prey species into three categories according to their function in the orchard: beneficial species, indifferent species, and pests. Philodromid spiders captured mostly other spiders in the field because spiders were most available. As concerns pests, the philodromids preyed mostly on Brachycera and Sternorrhyncha. They selected Acari and Brachycera. Indifferent species, such as Collembola and Nematocera, were also highly selected. In the laboratory, philodromids accepted mostly pests, such as lepidopterans, brachycerans, and aphids, while other spiders were accepted the least. The three philodromids have differentiated trophic niches with respect to prey size not only in the adult stage but throughout their ontogenetic development: P. albidus utilized smaller prey than the other two species. We conclude that the philodromids have a potential as biocontrol agents because they prey mostly on pests but their predation pressure is reduced due to higher selectivity for the indifferent fauna.  相似文献   

8.
The morphological, physiological, and behavioural traits of organisms are often used as surrogates for actual ecological functions. However, differences in these traits do not necessarily lead to functional differences and/or can be context–dependent. Therefore, it is necessary to explicitly test whether the surrogates have general ecological relevance. To investigate the relationship between the hunting strategies of predators (i.e., how, where, and when they hunt) and their function, we used euryphagous spiders as a model group. We used published data on the diet composition of 76 spider species based on natural prey and laboratory prey acceptance experiments. We computed differences in the position and width of trophic niches among pairs of sympatrically occurring species. Pairs were made at different classification levels, ranked according to the dissimilarity in their hunting strategies: congeners, confamiliars (as phylogenetic proxies for similarity in hunting strategy), species from the same main class of hunting strategy, from the same supra-class, and from different supra-classes. As for niche position computed from the natural prey analyses, species from the same class differed less than species from different classes. A similar pattern was obtained from the laboratory studies, but the congeners differed less than the species from the same classes. Niche widths were most similar among congeners and dissimilar among species from different supra-classes. Functional differences among euryphagous spiders increased continuously with increasing difference in their hunting strategy. The relative frequency of hunting strategies within spider assemblages can, therefore, influence the food webs through hunting strategy-specific predator–prey interactions.  相似文献   

9.
Specialist true predators are expected to exhibit higher capture efficiencies for the capture of larger and dangerous prey than generalist predators due to their possession of specialized morphological and behavioral adaptations. We used an araneophagous spider (Lampona murina) and a generalist spider (Drassodes lapidosus) as phylogenetically related model species and investigated their realized and fundamental trophic niches and their efficacy with respect to prey capture and prey handling. The trophic niche of both species confirmed that Lampona had a narrow trophic niche with a predominance of spider prey (including conspecifics), while the niche of Drassodes was wide, without any preference. DNA analysis of the gut contents of Lampona spiders collected in the field revealed that spiders form a significant part of its natural diet. Lampona captured significantly larger prey than itself and the prey captured by Drassodes. As concerns hunting strategy, Lampona grasped the prey with two pairs of legs possessing scopulae, whereas Drassodes immobilized prey with silk. Lampona possess forelegs equipped with scopulae and a thicker cuticle similar to other nonrelated araneophagous spiders. Lampona fed for a longer time and extracted more nutrients than Drassodes. We show that specialized behavioral and morphological adaptations altogether increase the hunting efficiency of specialists when compared to generalists.  相似文献   

10.
Invasive species often displace native species and can affect ecological processes in invaded habitats. If invasive species become abundant, changes in prey availability may be particularly harmful to specialist predators. The Argentine ant, Linepithema humile Mayr, is an important invasive species on nearly all continents. Spiders of the genus Zodarion are specialised ant-eating predators native to the Mediterranean yet it is unknown if they can exploit invasive ant species. Here we studied spatial and temporal abundance of this invasive ant and the native spider, Zodarion cesari Pekár, during 4?years in four citrus groves. Circadian activity of both spiders and ants, and capture efficiency and prey specificity of the predator were also evaluated. The abundance of Z. cesari was strongly correlated to L. humile abundance. The predatory activity of spiders varied seasonally with differences on the relative frequency of spiders capturing ants depending on the time of the year. In laboratory, Z. cesari displayed most efficient capture upon the native ant Tapinoma nigerrimum (Nylander) and the invasive ant L. humile in comparison with five other native ant species. These results demonstrate that the native spider Z. cesari is successfully exploiting the invasive ant species L. humile and is likely a locally monophagous predator. We suggest that Z. cesari shifted away from native T. nigerrimum post invasion as both ant species are phylogenetically related and of similar size.  相似文献   

11.
Studies on the role of natural predatory instincts in captive‐born mammalian myrmecophagy are rare. Consequently, researchers rely extensively on case reports to learn more about the contexts in which predatory behavior occurs among such animals. In this study, we recorded an uncommon case of a captive‐born southern tamandua (Tamandua tetradactyla) that accidentally escaped from a zoo into a nonnative habitat in Asia. The southern tamandua was found alive 3 months later. Two fresh fecal samples were obtained, and the diet composition was examined. Three termite species (one family, three genera), and 14 ant species (four subfamilies, nine genera) were identified in the fecal samples. The studied southern tamandua preyed on terrestrial and arboreal ants and termites, as the wild populations of its species do. Ants of the subfamily Myrmicinae and termites of the subfamily Nasutitermitinae were the most abundant prey items in the samples, which is consistent with related reports on the wild populations. Soldier ants constituted <1% of the prey items in the fecal samples, suggesting that the southern tamandua likely avoided preying on ants of the soldier caste. Fungus‐growing termites Odontotermes (Isoptera: Macrotermitinae), which are not native to neotropical regions, were also ingested by the southern tamandua. This study provides information on how a captive‐born mammalian myrmecophagy applies its natural feeding instincts in nonnative natural settings.  相似文献   

12.
1. Feeding behaviour of generalist and specialist predators is determined by a variety of trophic adaptations. Specialised prey‐capture adaptations allow specialists to catch relatively large prey on a regular basis. As a result, specialists might be adapted to exploit each item of prey more thoroughly than do generalists. 2. It was expected that obligatory specialist cursorial spiders would feed less frequently than generalists but for a longer time and, thus, that their foraging pause would be longer. First, the feeding frequencies of three generalist spider species (Cybaeodamus taim, Harpactea hombergi, Hersiliola sternbergsi) were compared with those three phylogenetically related specialist species: myrmecophagous Zodarion rubidum, and araneophagous Nops aff. variabilis and Palpimanus orientalis. 3. Generalists captured more prey, exploited each item of prey for a significantly shorter time, and had a shorter foraging pause than was the case for specialists. Generalists also gained significantly less relative amount of prey mass than did specialists. 4. Second, the study compared the prey DNA degradation rate in the gut of generalists and specialists by means of PCR. The degradation rate was not significantly different between specialists and generalists: the detectability half‐life was estimated to exist for 14.3 days after feeding. 5. This study shows that the feeding strategies of cursorial generalist and obligatory specialist spiders are different. Obligatory specialists have evolved a feeding strategy that is based on thorough exploitation of a few large prey, whereas generalists have evolved a strategy that is based on short exploitation of multiple small items of prey.  相似文献   

13.
Several factors influence the partitioning of trophic resources in ecological communities, such as morphology, evolutionary history, and resource availability. Although the effects of morphology, phylogeny, and resource availability on trophic ecology have long been explored by theoretical studies, little has been done to empirically test these relationships. Here, we tested whether phylogenetic and morphological distances correlate with trophic niche overlap using a path analysis of multiple partial regression of distance matrices. Also, we tested whether niche breadth is influenced by body size using Phylogenetic Generalized Least Squares analysis. Trophic niche overlap was better explained by morphology per se than by the phylogenetic distance. We also found that predator's body size influences niche breadth calculated considering prey traits and availability, but not when we do not include these availability data. Additionally, trophic niche breadth was usually smaller when we considered prey traits and availability, differently from niche overlap, whose values increased when we did not consider these data. Our findings show that the interpretation of trophic niche in communities changes if we consider availability data, affecting inferences about coexistence and trophic specialization. Our study contributes to understanding trophic specialization and emphasizes the importance of incorporating prey availability and their traits into diet analysis.  相似文献   

14.
1. Predators select a prey according to its energetic and nutritional composition. Generalist predators avoid, whereas specialists often specialise on well‐defended prey. The aim of this study was to find the suitability of woodlice prey for generalist and specialist predators by comparing their handling efficiency. 2. Laboratory experiments were performed in which specialist and generalist predators were reared on monotypic diets comprising one or other of two woodlice species that differ in their defensive strategies: rollers (Armadillidium) and clingers (Porcellio). A control group was reared on a mixture of arthropods (excluding woodlice). Three spider predators were used that differ in their adaptations to deal with woodlice prey: a woodlice specialist, Dysdera crocata; an oligophagous generalist, Pholcus phalangioides, that also captures woodlice; and a euryphagous generalist, Tegenaria domestica, that does not feed on woodlice. The frequency of capture was recorded and various fitness parameters were measured, namely survival, growth rate, and ontogenetic development. 3. It was found that the specialist, D. crocata, performed best on the Porcellio diet, and similarly well on Armadillidium and mixed diets. The two generalists, P. phalangioides and T. domestica, had poor performance on both woodlice diets but performed well on the mixed diet. 4. The results show that woodlice are unsuitable prey for both oligophagous and euryphagous generalist predators.  相似文献   

15.

Background

Divergence in trophic niche between the sexes may function to reduce competition between the sexes (“intersexual niche partitioning hypothesis”), or may be result from differential selection among the sexes on maximizing reproductive output (“sexual selection hypothesis”). The latter may lead to higher energy demands in females driven by fecundity selection, while males invest in mate searching. We tested predictions of the two hypotheses underlying intersexual trophic niche partitioning in a natural population of spiders. Zodarion jozefienae spiders specialize on Messor barbarus ants that are polymorphic in body size and hence comprise potential trophic niches for the spider, making this system well-suited to study intersexual trophic niche partitioning.

Methodology/Principal Findings

Comparative analysis of trophic morphology (the chelicerae) and body size of males, females and juveniles demonstrated highly female biased SSD (Sexual Size Dimorphism) in body size, body weight, and in the size of chelicerae, the latter arising from sex-specific growth patterns in trophic morphology. In the field, female spiders actively selected ant sub-castes that were larger than the average prey size, and larger than ants captured by juveniles and males. Female fecundity was highly positively correlated with female body mass, which reflects foraging success during the adult stage. Females in laboratory experiments preferred the large ant sub-castes and displayed higher capture efficiency. In contrast, males occupied a different trophic niche and showed reduced foraging effort and reduced prey capture and feeding efficiency compared with females and juveniles.

Conclusions/Significance

Our data indicate that female-biased dimorphism in trophic morphology and body size correlate with sex-specific reproductive strategies. We propose that intersexual trophic niche partitioning is shaped primarily by fecundity selection in females, and results from sex-differences in the route to successful reproduction where females are selected to maximize energy intake and fecundity, while males switch from foraging to invest in mating effort.  相似文献   

16.
  1. Generalistic interactions between predator and prey may vary with ecosystem type, predator traits, and prey traits, but the interplay of these factors has not been assessed in ground food webs.
  2. We investigated trophic interactions of ground-dwelling spiders across eight forests in European Russia associated with body size, hunting strategy, microhabitat specialization, potential prey type, potential prey population density, and forest type (coniferous vs. broadleaved). We analyzed 128 individual spiders, including juveniles, all identified to the family level with two complementary methods: molecular gut content analysis, and stable isotope analysis of carbon and nitrogen.
  3. The results suggest that feeding frequency of spiders is affected by predator body size and by selection of certain prey type. Stable isotope analysis showed similar trophic niches among spider families, varying moderately with forest type. Larger spiders had higher Δ13C values than smaller ones, but similar Δ15N values, suggesting that different size classes of spiders belong to different food chains. Results based on stable isotope and molecular gut content analyses were weakly linked, indicating them targeting different trophic niche dimensions.
  4. At least for the group-level interactions, family identity and hunting strategy of predator has little predictive power while predator body size and prey traits affected trophic niche dimensions calling for future studies in this direction. Large spiders feed more and rely on different basal resources than small spiders, suggesting that including small species and juveniles provides a more comprehensive picture of food web organization.
  相似文献   

17.
Sanders D  Platner C 《Oecologia》2007,150(4):611-624
In most terrestrial ecosystems ants (Formicidae) as eusocial insects and spiders (Araneida) as solitary trappers and hunters are key predators. To study the role of predation by these generalist predators in a dry grassland, we manipulated densities of ants and spiders (natural and low density) in a two-factorial field experiment using fenced plots. The experiment revealed strong intraguild interactions between ants and spiders. Higher densities of ants negatively affected the abundance and biomass of web-building spiders. The density of Linyphiidae was threefold higher in plots without ant colonies. The abundance of Formica cunicularia workers was significantly higher in spider-removal plots. Also, population size of springtails (Collembola) was negatively affected by the presence of wandering spiders. Ants reduced the density of Lepidoptera larvae. In contrast, the abundance of coccids (Ortheziidae) was positively correlated with densities of ants. To gain a better understanding of the position of spiders, ants and other dominant invertebrate groups in the studied food web and important trophic links, we used a stable isotope analysis (15N and 13C). Adult wandering spiders were more enriched in 15N relative to 14N than juveniles, indicating a shift to predatory prey groups. Juvenile wandering and web-building spiders showed δ15N ratios just one trophic level above those of Collembola, and they had similar δ13C values, indicating that Collembola are an important prey group for ground living spiders. The effects of spiders demonstrated in the field experiment support this result. We conclude that the food resource of spiders in our study system is largely based on the detrital food web and that their effects on herbivores are weak. The effects of ants are not clear-cut and include predation as well as mutualism with herbivores. Within this diverse predator guild, intraguild interactions are important structuring forces.  相似文献   

18.
 Spiders and ants are potential competitors and mutual predators. Indirect evidence from previous research has suggested that ant foraging may significantly lower the abundance of arboreal spiders in young Douglas-fir plantations in western Oregon. This study tested the effect of foraging by ants, dominated by Camponotus spp., on spider assemblages in Douglas-fir canopies in a 5-month ant-exclusion experiment. The biomass of potential prey organisms on foliage, dominated by Psocoptera, increased significantly by 1.9- to 2.4-fold following ant exclusion. The removal of ants did not affect the abundance of flying arthropods in the vicinity of tree canopies as indicated by sticky trap catches. The abundance of hunting spiders, the majority being Salticidae, increased significantly by 1.5- to 1.8-fold in trees without ants in the late summer; neither the abundance of web-building spiders nor the average body size of hunting and web-building spiders were significantly affected by ant removal. Spider diversity and community structure did not differ significantly between control and ant-removal trees. The majority of prey captured by ants were Aphidoidea (48.1%) and Psocoptera (12.5%); spiders represented only 1.4% of the ants’ diet. About 40% of observed ants were tending Cinara spp. aphids. Our observations suggest that the lower abundance of hunting spiders in control canopies with ants may be due to interference competition with ants resulting from ant foraging and aphid-tending activities. Direct predation of spiders by ants appeared to be of minor importance in this study system. This study did not provide sufficient evidence for exploitative competition for prey between ants and spiders. Received: 21 February 1996 / Accepted: 14 August 1996  相似文献   

19.
Summary Optimal foraging theory is based on the assumption that at least some aspects of foraging behavior are genetically determined (Pyke et al. 1977; Kamil and Sargent 1980; Pyke 1984). Nonetheless, very few studies have examined the role of genetics in foraging behavior. Here, we report on geographical differences in the foraging behavior of a spider (Agelenopsis aperta) and investigate whether these differences are genetically determined. Field studies were conducted on two different populations of A. aperta: one residing in a desert riparian habitat, and the other in a desert grassland habitat. Data from the spiders' natural encounters with prey demonstrated that grassland spiders exhibited a higher frequency of attack than riparian spiders towards 13 of 15 prey types, including crickets and ants. Grassland spiders also had shorter latencies to attack 12 of 15 prey types, including crickets and ants, than riparian spiders. Subsequently, we reared grassland and riparian spiders under controlled conditions in the laboratory and observed their interactions with prey to determine whether the populational differences we found in the field could be genetic. Again, grassland spiders showed a shorter latency to attack prey (crickets, ants) than riparian spiders. These latencies were not significantly affected by the hunger state or age of the spiders. Finally, we reared a second generation (F2) of grassland and riparian spiders in the laboratory and observed their interactions with prey to determine whether the populational differences in the previous generation were due to genetic effects or maternal effects. As before, grassland spiders exhibited a shorter latency to attack prey (crickets) than riparian spiders. We conclude that the foraging differences we observed between these two populations of A. aperta are genetically determined. These differences probably have resulted from either natural selection acting directly on attack frequency and the latency to attack prey, or natural selection acting on traits which are genetically correlated with these aspects of foraging behavior.  相似文献   

20.
The processes that drive the evolution of snake venom variability, particularly the role of diet, have been a topic of intense recent research interest. Here, we test whether extensive variation in venom composition in the medically important viper genus Echis is associated with shifts in diet. Examination of stomach and hindgut contents revealed extreme variation between the major clades of Echis in the proportion of arthropod prey consumed. The toxicity (median lethal dose, LD50) of representative Echis venoms to a natural scorpion prey species was found to be strongly associated with the degree of arthropod feeding. Mapping the results onto a novel Echis phylogeny generated from nuclear and mitochondrial sequence data revealed two independent instances of coevolution of venom toxicity and diet. Unlike venom LD50, the speed with which venoms incapacitated and killed scorpions was not associated with the degree of arthropod feeding. The prey-specific venom toxicity of arthropod-feeding Echis may thus be adaptive primarily by reducing venom expenditure. Overall, our results provide strong evidence that variation in snake venom composition results from adaptive evolution driven by natural selection for different diets, and underscores the need for a multi-faceted, integrative approach to the study of the causes of venom evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号