首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Classic cadherins represent a family of calcium-dependent homophilic cell–cell adhesion molecules. They confer strong adhesiveness to animal cells when they are anchored to the actin cytoskeleton via their cytoplasmic binding partners, catenins. The cadherin/catenin adhesion system plays key roles in the morphogenesis and function of the vertebrate and invertebrate nervous systems. In early vertebrate development, cadherins are involved in multiple events of brain morphogenesis including the formation and maintenance of the neuroepithelium, neurite extension and migration of neuronal cells. In the invertebrate nervous system, classic cadherin-mediated cell–cell interaction plays important roles in wiring among neurons. For synaptogenesis, the cadherin/catenin system not only stabilizes cell–cell contacts at excitatory synapses but also assembles synaptic molecules at synaptic sites. Furthermore, this system is involved in synaptic plasticity. Recent studies on the role of individual cadherin subtypes at synapses indicate that individual cadherin subtypes play their own unique role to regulate synaptic activities.  相似文献   

2.
3.
4.
The InsP3 receptor: its role in neuronal physiology and neurodegeneration   总被引:1,自引:0,他引:1  
The InsP3 receptor is a ligand-gated channel that releases Ca2+ from intracellular stores in a variety of cell types, including neurons. Genetic studies from vertebrate and invertebrate model systems suggest that coordinated rhythmic motor functions are most susceptible to changes in Ca2+ release from the InsP3 receptor. In many cases, the InsP3 receptor interacts with other signaling mechanisms that control levels of cytosolic Ca2+, suggesting that the maintenance of Ca2+ homeostasis in normal cells could be controlled by the activity of the InsP3R. In support of this idea, recent studies show that altered InsP3 receptor activity can be partially responsible for Ca2+ dyshomeostasis seen in many neurodegenerative conditions. These observations open new avenues for carrying out genetic and drug screens that target InsP3R function in neurodegenerative conditions.  相似文献   

5.
Lysine acetylation appears to be crucial for diverse biological phenomena, including all the DNA-templated processes, metabolism, cytoskeleton dynamics, cell signaling, and circadian rhythm. A growing number of cellular proteins have now been identified to be acetylated and constitute the complex cellular acetylome. Cross-talk among protein acetylation together with other post-translational modifications fine-tune the cellular functions of different protein machineries. Dysfunction of acetylation process is often associated with several diseases, especially cancer. This review focuses on the recent advances in the role of protein lysine acetylation in diverse cellular functions and its implications in cancer manifestation.  相似文献   

6.
Recent studies provide insights into the mechanisms by which Abelson non-receptor tyrosine kinases relay information from axon guidance and growth factor receptors to promote cytoskeletal rearrangements in developing neurons. Abelson non-receptor tyrosine kinases are also found in mature synapses, where their activities are required for optimal synaptic function.  相似文献   

7.
8.
The methylcytosine dioxygenases TET proteins (TET1, TET2, and TET3) play important regulatory roles in neural function. In this study, we investigated the role of TET proteins in neuronal differentiation using Neuro2a cells as a model. We observed that knockdown of TET1, TET2 or TET3 promoted neuronal differentiation of Neuro2a cells, and their overexpression inhibited VPA (valproic acid)-induced neuronal differentiation, suggesting all three TET proteins negatively regulate neuronal differentiation of Neuro2a cells. Interestingly, the inducing activity of TET protein is independent of its enzymatic activity. Our previous studies have demonstrated that srGAP3 can negatively regulate neuronal differentiation of Neuro2a cells. Furthermore, we revealed that TET1 could positively regulate srGAP3 expression independent of its catalytic activity, and srGAP3 is required for TET-mediated neuronal differentiation of Neuro2a cells. The results presented here may facilitate better understanding of the role of TET proteins in neuronal differentiation, and provide a possible therapy target for neuroblastoma.  相似文献   

9.
Fibronectin is a large, adhesive glycoprotein which is found in a number of locations, most notably on cell surfaces, in extracellular matrixes, and in blood. Fibronectin has been detected in all vertebrates tested and in many invertebrates. Its presence in sponges is significant because this suggests that fibronectin may have appeared very early in evolution, possibly with the most primitive multicellular organisms. Cellular and plasma fibronectins have many striking similarities. However, the locations of the polypcptide chain differences between these two proteins indicate that plasma fibronectin cannot be derived from cellular fibronectin by means of simple post-translational proteolysis. Instead, these different types of fibronectin may be products of different genes or of differentially spliced messenger RNA molecules. Amniotic fluid fibronectin is possibly a third form of the protein. Cellular and plasma fibronectins are composed of at least six protcaseresistant domains which contain specific binding sites for actin, gelatin, heparin, Staphylococcus aureus, transglutarninase, fibrin, DNA, and a cell surface receptor. The relative locations of these domains have been mapped in the primary structure of fibronectin. The cell surface receptor for fibronectin has not been positively identified, but may be a glycoprotein, a glycolipid, or a complex of the two. Although cell-substratum adhesion is mediated by fibronectin, the locations of the areas of closest approach of the cell to the substratum (the adhesion plaques) and fibronectin are not coincident under conditions of active cell growth. Under conditions of cell growth arrest in low scrum concentrations, some fibronectin may become localized at the adhesion plaques. Models describing the domain structure of fibronectin and the molecular organization of the adhesion plaque area are presented.  相似文献   

10.
The IP3R [IP3 (inositol 1,4,5-trisphosphate) receptor] is responsible for Ca2+ release from the ER (endoplasmic reticulum). We have been working extensively on the P400 protein, which is deficient in Purkinje-neuron-degenerating mutant mice. We have discovered that P400 is an IP3R and we have determined the primary sequence. Purified IP3R, when incorporated into a lipid bilayer, works as a Ca2+ release channel and overexpression of IP3R shows enhanced IP3 binding and channel activity. Addition of an antibody blocks Ca2+ oscillations indicating that IP3R1 works as a Ca2+ oscillator. Studies on the role of IP3R during development show that IP3R is involved in fertilization and is essential for determination of dorso-ventral axis formation. We found that IP3R is involved in neuronal plasticity. A double homozygous mutant of IP3R2 (IP3R type 2) and IP3R3 (IP3R type 3) shows a deficit of saliva secretion and gastric juice secretion suggesting that IP3Rs are essential for exocrine secretion. IP3R has various unique properties: cryo-EM (electron microscopy) studies show that IP3R contains multiple cavities; IP3R allosterically and dynamically changes its form reversibly (square form-windmill form); IP3R is functional even though it is fragmented by proteases into several pieces; the ER forms a meshwork but also forms vesicular ER and moves along microtubules using a kinesin motor; X ray analysis of the crystal structure of the IP3 binding core consists of an N-terminal beta-trefoil domain and a C-terminal alpha-helical domain. We have discovered ERp44 as a redox sensor in the ER which binds to the luminal part of IP3R1 and regulates its activity. We have also found the role of IP3 is not only to release Ca2+ but also to release IRBIT which binds to the IP3 binding core of IP3R.  相似文献   

11.
The Rho family of small GTPases act as intracellular molecular switches that transduce signals from extracellular stimuli to the actin cytoskeleton and the nucleus. Recent evidence implicates Rho GTPases in the regulation of neuronal morphogenesis, including migration, polarity, axon growth and guidance, dendrite elaboration and plasticity, and synapse formation. Signalling pathways from membrane receptors to Rho GTPases and from Rho GTPases to the actin cytoskeleton are beginning to be discovered. Mutations in these signalling pathways have been reported in human neurological diseases, which underscores their importance in the development and function of the nervous system.  相似文献   

12.
Microtubules (MTs) are essential for neuronal morphogenesis in the developing brain. The MT cytoskeleton provides physical support to shape the fine structure of neuronal processes. MT-based motors play important roles in nucleokinesis, process formation and retraction. Regulation of MT stability downstream of extracellular cues is proposed to be critical for axonogenesis. Axons and dendrites exhibit different patterns of MT organization, underlying the divergent functions of these processes. Centrosomal positioning has drawn the attention of researchers because it is a major clue to understanding neuronal MT organization. In this review, we focus on how recent advances in live imaging have revealed the dynamics of MT organization and centrosome positioning during neural development.  相似文献   

13.
The cellular prion protein (PrPC) is a membrane-bound glycoprotein especially abundant in the central nervous system (CNS). The scrapie prion protein (PrPSc, also termed prions) is responsible of transmissible spongiform encephalopathies (TSE), a group of neurodegenerative diseases which affect humans and other mammal species, although the presence of PrPC is needed for the establishment and further evolution of prions.The present work compares the expression and localization of PrPC between healthy human brains and those suffering from Alzheimer disease (AD).In both situations we have observed a rostrocaudal decrease in the amount of PrPC within the CNS, both by immunoblotting and immunohistochemistry techniques. PrPC is higher expressed in our control brains than in AD cases. There was a neuronal loss and astogliosis in our AD cases. There was a tendency of a lesser expression of PrPC in AD cases than in healthy ones. And in AD cases, the intensity of the expression of the unglycosylated band is higher than the di- and monoglycosylated bands.With regards to amyloid plaques, those present in AD cases were positively labeled for PrPC, a result which is further supported by the presence of PrPC in the amyloid plaques of a transgenic line of mice mimicking AD.The work was done according to Helsinki Declaration of 1975, and approved by the Ethics Committee of the Faculty of Medicine of the University of Navarre.Key words: cellular prion protein, Alzheimer disease, transgenic mice  相似文献   

14.
Prion diseases are caused by conversion of a normal cell-surface glycoprotein (PrP(C)) into a conformationally altered isoform (PrP(Sc)) that is infectious in the absence of nucleic acid. Although a great deal has been learned about PrP(Sc) and its role in prion propagation, much less is known about the physiological function of PrP(C). In this review, we will summarize some of the major proposed functions for PrP(C), including protection against apoptotic and oxidative stress, cellular uptake or binding of copper ions, transmembrane signaling, formation and maintenance of synapses, and adhesion to the extracellular matrix. We will also outline how loss or subversion of the cytoprotective or neuronal survival activities of PrP(C) might contribute to the pathogenesis of prion diseases, and how similar mechanisms are probably operative in other neurodegenerative disorders.  相似文献   

15.
Fluorescent proteins (FPs) have been engineered to produce an optical report in response to cellular signals. FP fluorescence can be made directly sensitive to the chemical environment, via specific mutations of or around the chromophore. Alternatively, FPs can be made indirectly sensitive to cellular signals by their fusion to 'detector' proteins that respond to specific cellular signals with structural rearrangements that act on the FP to alter fluorescence. These optical sensors of membrane voltage, neurotransmitter release, and intracellular messengers, including powerful new sensors of Ca(2+), cyclic nucleotides and nitric oxide, are likely to provide new insights into the workings of cellular signals and of information processing in neural circuits.  相似文献   

16.
Monoclonal antibody 24B10 (MAb24B10) specifically stains photoreceptor neurons in D. melanogaster. It recognizes a 160 kd glycoprotein localized to the extracellular face of the plasma membrane. Using an immunoscreen, we identified two mutations in the encoding gene that cause microvillar disorganization in developing rhabdomeres and disruption of the closely apposed membranes of adjacent cells. In accordance with the mutant phenotype, we have renamed this genetic locus chaoptic and the encoded glycoprotein, chaoptin. Immunoelectron microscopy indicates that chaoptin is distributed along the length of the microvillus. This localization and the morphological abnormalities in mutants support the hypothesis that chaoptin may mediate adhesion between closely apposed membranes. In principle, the immunoscreen utilized here can be used to identify mutations in any gene in Drosophila for which antibodies to the gene product are available.  相似文献   

17.
Glutathione and its role in cellular functions   总被引:31,自引:0,他引:31  
Glutathione (GSH) is the major cellular thiol participating in cellular redox reactions and thioether formation. This article serves as introduction to the FRBM Forum on glutathione and emphasizes cellular functions: What is GSH? Where does it come from? Where does it go? What does it do? What is new and noteworthy? Research tools, historical remarks, and links to current trends.  相似文献   

18.
The coiled-coil protein shrub controls neuronal morphogenesis in Drosophila   总被引:1,自引:0,他引:1  
The diversity of neuronal cells, especially in the size and shape of their dendritic and axonal arborizations, is a striking feature of the mature nervous system. Dendritic branching is a complex process, and the underlying signaling mechanisms remain to be further defined at the mechanistic level. Here we report the identification of shrub mutations that increased dendritic branching. Single-cell clones of shrub mutant dendritic arborization (DA) sensory neurons in Drosophila larvae showed ectopic dendritic and axonal branching, indicating a cell-autonomous function for shrub in neuronal morphogenesis. shrub encodes an evolutionarily conserved coiled-coil protein homologous to the yeast protein Snf7, a key component in the ESCRT-III (endosomal sorting complex required for transport) complex that is involved in the formation of endosomal compartments known as multivesicular bodies (MVBs). We found that mouse orthologs could substitute for Shrub in mutant Drosophila embryos and that loss of Shrub function caused abnormal distribution of several early or late endosomal markers in DA sensory neurons. Our findings demonstrate that the novel coiled-coil protein Shrub functions in the endosomal pathway and plays an essential role in neuronal morphogenesis.  相似文献   

19.
The cytoskeleton is the major intracellular structure that determines the morphology of a neuron. Thus, mechanisms that ensure a precisely regulated assembly of cytoskeletal elements in time and space have an important role in the development from a morphologically simple neuronal precursor cell to a complex polarized neuron that can establish contacts to several hundreds of other cells. Here, cytoskeletal mechanisms that underlie the formation of neurites, directed elongation and stabilization of neuronal processes are summarized. It has become evident that different cytoskeletal elements are highly crosslinked with each other by several classes of specific linker proteins. Of these, microtubule-associated proteins (MAPs) appear to have an important role in connecting the microtubule skeleton to other cytoskeletal filaments and plasma membrane components during neuronal morphogenesis. Future experiments will have to elucidate the function and the regulation of the neuronal cytoskeleton in an authentic nervous system environment during development. Recent approaches are discussed at the end of this article.  相似文献   

20.
Wang J  Ma X  Yang JS  Zheng X  Zugates CT  Lee CH  Lee T 《Neuron》2004,43(5):663-672
Besides 19,008 possible ectodomains, Drosophila Dscam contains two alternative transmembrane/juxtamembrane segments, respectively, derived from exon 17.1 and exon 17.2. We wondered whether specific Dscam isoforms mediate formation and segregation of axonal branches in the Drosophila mushroom bodies (MBs). Removal of various subsets of the 12 exon 4s does not affect MB neuronal morphogenesis, while expression of a Dscam transgene only partially rescues Dscam mutant phenotypes. Interestingly, differential rescuing effects are observed between two Dscam transgenes that each possesses one of the two possible exon 17s. Axon bifurcation/segregation abnormalities are better rescued by the exon 17.2-containing transgene, but coexpression of both transgenes is required for rescuing mutant viability. Meanwhile, exon 17.1 targets ectopically expressed Dscam-GFP to dendrites while Dscam[exon 17.2]-GFP is enriched in axons; only Dscam[exon 17.2] affects MB axons. These results suggest that exon 17.1 is minimally involved in axonal morphogenesis and that morphogenesis of MB axons probably involves multiple distinct exon 17.2-containing Dscam isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号