首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Cell calcium》2010,47(5-6):347-355
TPEN (N,N,N′,N′-tetrakis(2-pyridylmethyl)-ethylenediamine) is a membrane-permeable heavy-metal ion chelator with a dissociation constant for Ca2+ comparable to the Ca2+ concentration ([Ca2+]) within the intracellular Ca2+ stores. It has been used as modulator of intracellular heavy metals and of free intraluminal [Ca2+], without influencing the cytosolic [Ca2+] that falls in the nanomolar range. In our previous studies, we gave evidence that TPEN modifies the Ca2+ homeostasis of striated muscle independent of this buffering ability. Here we describe the direct interaction of TPEN with the ryanodine receptor (RyR) Ca2+ release channel and the sarcoplasmic reticulum (SR) Ca2+ pump (SERCA). In lipid bilayers, at negative potentials and low [Ca2+], TPEN increased the open probability of RyR, while at positive potentials it inhibited channel activity. On permeabilized skeletal muscle fibers of the frog, but not of the rat, 50 μM TPEN increased the number of spontaneous Ca2+ sparks and induced propagating events with a velocity of 273 ± 7 μm/s. Determining the hydrolytic activity of the SR revealed that TPEN inhibits the SERCA pump, with an IC50 = 692 ± 62 μM and a Hill coefficient of 0.88 ± 0.10. These findings provide experimental evidence that TPEN directly modifies both the release of Ca2+ from and its reuptake into the SR.  相似文献   

2.
3.
4.
The mammalian ryanodine receptor Ca2+ release channel (RyR) has a single conserved high affinity calmodulin (CaM) binding domain. However, the skeletal muscle RyR1 is activated and cardiac muscle RyR2 is inhibited by CaM at submicromolar Ca2+. This suggests isoform-specific domains are involved in RyR regulation by CaM. To gain insight into the differential regulation of cardiac and skeletal muscle RyRs by CaM, RyR1/RyR2 chimeras and mutants were expressed in HEK293 cells, and their single channel activities were measured using a lipid bilayer method. All RyR1/RyR2 chimeras and mutants were inhibited by CaM at 2 μM Ca2+, consistent with CaM inhibition of RyR1 and RyR2 at micromolar Ca2+ concentrations. An RyR1/RyR2 chimera with RyR1 N-terminal amino acid residues (aa) 1–3725 and RyR2 C-terminal aa 3692–4968 were inhibited by CaM at <1 μM Ca2+ similar to RyR2. In contrast, RyR1/RyR2 chimera with RyR1 aa 1–4301 and RyR2 4254–4968 was activated at <1 μM Ca2+ similar to RyR1. Replacement of RyR1 aa 3726–4298 with corresponding residues from RyR2 conferred CaM inhibition at <1 μM Ca2+, which suggests RyR1 aa 3726–4298 are required for activation by CaM. Characterization of additional RyR1/RyR2 chimeras and mutants in two predicted Ca2+ binding motifs in RyR1 aa 4081–4092 (EF1) and aa 4116–4127 (EF2) suggests that both EF-hand motifs and additional sequences in the large N-terminal regions are required for isoform-specific RyR1 and RyR2 regulation by CaM at submicromolar Ca2+ concentrations.  相似文献   

5.
BackgroundCytosolic Ca2 + buffers are members of the large family of Ca2 +-binding proteins and are essential components of the Ca2 + signaling toolkit implicated in the precise regulation of intracellular Ca2 + signals. Their physiological role in excitable cells has been investigated in vivo by analyzing the phenotype of mice either lacking one of the Ca2 + buffers or mice with ectopic expression.Scope of ReviewIn this review, results obtained with knockout mice for the three most prominent Ca2 + buffers, parvalbumin, calbindin-D28k and calretinin are summarized.Major ConclusionsThe absence of Ca2 + buffers in specific neuron subpopulations, and for parvalbumin additionally in fast-twitch muscles, leads to Ca2 + buffer-specific changes in intracellular Ca2 + signals. This affects the excitation–contraction cycle in parvalbumin-deficient muscles, and in Ca2 + buffer-deficient neurons, properties associated with synaptic transmission (e.g. short-term modulation), excitability and network oscillations are altered. These findings have not only resulted in a better understanding of the physiological function of Ca2 + buffers, but have revealed that the absence of Ca2 + signaling toolkit components leads to protein-and neuron-specific adaptive/homeostatic changes that also include changes in neuron morphology (e.g. altered spine morphology, changes in mitochondria content) and network properties.General SignificanceThe complex phenotype of Ca2 + buffer knockout mice arises from the direct effect of these proteins on Ca2 + signaling and moreover from the homeostatic mechanisms induced in these mice. For a better mechanistic understanding of neurological diseases linked to disturbed/altered Ca2 + signaling, a global view on Ca2 + signaling is expected to lead to new avenues for specific therapies. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signaling.  相似文献   

6.
Intracellular Ca2 + levels are tightly regulated in the neuronal system. The loss of Ca2 + homeostasis is associated with many neurological diseases and neuropsychiatric disorders such as Parkinson's, Alzheimer's, and schizophrenia. We investigated the mechanisms involved in intracellular Ca2 + signaling in PC-12 cells. The stimulation of NGF-differentiated PC-12 cells with 3 μM ATP caused an early Ca2 + release followed by a delayed Ca2 + release. The delayed Ca2 + release was dependent on prior ATP priming and on dopamine secretion by PC-12 cells. Delayed Ca2 + release was abolished in the presence of spiperone, suggesting that it is due to the activation of D2 dopamine receptors (D2R) by dopamine secreted by PC-12 cells. This was shown to be independent of PKA activation but dependent on PLC activity. An endocytosis step was required for inducing the delayed Ca2 + release. Given the importance of calcyon in clathrin-mediated endocytosis, we verified the role of this protein in the delayed Ca2 + release phenomenon. siRNA targeting of calcyon blocked the delayed Ca2 + release, decreased ATP-evoked IP3R-mediated Ca2 + release, and impaired subsequent Ca2 + oscillations. Our results suggested that calcyon is involved in an unknown mechanism that causes a delayed IP3R-mediated Ca2 + release in PC-12 cells. In schizophrenia, Ca2 + dysregulation may depend on the upregulation of calcyon, which maintains elevated Ca2 + levels as well as dopamine signaling.  相似文献   

7.
Calcium (Ca2+)-induced Ca2+ release (CICR) is widely accepted as the principal mechanism linking electrical excitation and mechanical contraction in cardiac cells. The CICR mechanism has been understood mainly based on binding of cytosolic Ca2+ with ryanodine receptors (RyRs) and inducing Ca2+ release from the sarcoplasmic reticulum (SR). However, recent experiments suggest that SR lumenal Ca2+ may also participate in regulating RyR gating through calsequestrin (CSQ), the SR lumenal Ca2+ buffer. We investigate how SR Ca2+ release via RyR is regulated by Ca2+ and calsequestrin (CSQ). First, a mathematical model of RyR kinetics is derived based on experimental evidence. We assume that the RyR has three binding sites, two cytosolic sites for Ca2+ activation and inactivation, and one SR lumenal site for CSQ binding. The open probability (Po) of the RyR is found by simulation under controlled cytosolic and SR lumenal Ca2+. Both peak and steady-state Po effectively increase as SR lumenal Ca2+ increases. Second, we incorporate the RyR model into a CICR model that has both a diadic space and the junctional SR (jSR). At low jSR Ca2+ loads, CSQs are more likely to bind with the RyR and act to inhibit jSR Ca2+ release, while at high SR loads CSQs are more likely to detach from the RyR, thereby increasing jSR Ca2+ release. Furthermore, this CICR model produces a nonlinear relationship between fractional jSR Ca2+ release and jSR load. These findings agree with experimental observations in lipid bilayers and cardiac myocytes.  相似文献   

8.
In the present study, the isolated cricket (Gryllus bimaculatus) lateral oviduct exhibited spontaneous rhythmic contractions (SRCs) with a frequency of 0.29 ± 0.009 Hz (n = 43) and an amplitude of 14.6 ± 1.25 mg (n = 29). SRCs completely disappeared following removal of extracellular Ca2+ using a solution containing 5 mM EGTA. Application of the non-specific Ca2+ channel blockers Co2+, Ni2+, and Cd2+ also decreased both the frequency and amplitude of SRCs in dose-dependent manners, suggesting that Ca2+ entry through plasma membrane Ca2+ channels is essential for the generation of SRCs. Application of ryanodine (30 μM), which depletes intracellular Ca2+ by locking ryanodine receptor (RyR)-Ca2+ channels in an open state, gradually reduced the frequency and amplitude of SRCs. A RyR antagonist, tetracaine, reduced both the frequency and amplitude of SRCs, whereas a RyR activator, caffeine, increased the frequency of SRCs with a subsequent increase in basal tonus, indicating that RyRs are essential for generating SRCs. To further investigate the involvement of phospholipase C (PLC) and inositol 1,4,5-trisphosphate receptors (IP3Rs) in SRCs, we examined the effect of a PLC inhibitor, U73122, and an IP3R antagonist, 2-aminoethoxydiphenyl borate (2-APB), on SRCs. Separately, U73122 (10 μM) and 2-APB (30–50 μM) both significantly reduced the amplitude of SRCs with little effect on their frequency, further indicating that the PLC/IP3R signaling pathway is fundamental to the modulation of the amplitude of SRCs. A hypotonic-induced increase in the frequency and amplitude of SRCs and a hypertonic-induced decrease in the frequency and amplitude of SRCs indicated that mechanical stretch of the lateral oviduct is involved in the generation of SRCs. The sarcoplasmic reticulum Ca2+-pump ATPase inhibitors thapsigargin and cyclopiazonic acid impaired or suppressed the relaxation phase of SRCs. Taken together, the present results indicate that Ca2+ influx through plasma membrane Ca2+ channels and Ca2+ release from RyRs play an essential role in pacing SRCs and that Ca2+ release from IP3Rs may play a role in modulating the amplitude of SRCs, probably via activation of PLC.  相似文献   

9.
《Cellular signalling》2014,26(12):2826-2833
Eight paralogue members form the family of transmembrane channel-like (TMC) proteins that share considerable sequence homology to anoctamin 1 (Ano1, TMEM16A). Ano1 is a Ca2 + activated Cl channel that is related to head and neck cancer, often caused by human papilloma virus (HPV) infection. Mutations in TMC 6 and 8 (EVER1, EVER2) cause epidermodysplasia verruciformis. This rare skin disease is characterized by abnormal susceptibility to HPV infection and cancer. We found that in contrast to Ano1 the common paralogues TMC4–TMC8 did not produce Ca2 + activated Cl currents when expressed in HEK293 cells. On the contrary, TMC8 was found to be localized in the endoplasmic reticulum (ER), where it inhibited receptor mediated Ca2 + release, activation of Ano1 and volume regulated LRRC8-related Cl currents. Zn2 + is co-released from the ER together with Ca2 + and thereby further augments Ca2 + store release. Because TMC8 is required to lower cytosolic Zn2 + concentrations by the Zn2 + transporter ZnT-1, we hypothesize that HPV infections and cancer caused by mutations in TMC8 are related to upregulated Zn2 +/Ca2 + signaling and activation of Ano1.  相似文献   

10.
BK channels are dually regulated by voltage and Ca2 +, providing a cellular mechanism to couple electrical and chemical signalling. Intracellular Ca2 + concentration is sensed by a large cytoplasmic region in the channel known as “gating ring”, which is formed by four tandems of regulator of conductance for K+ (RCK1 and RCK2) domains. The recent crystal structure of the full-length BK channel from Aplysia californica has provided new information about the residues involved in Ca2 + coordination at the high-affinity binding sites located in the RCK1 and RCK2 domains, as well as their cooperativity. Some of these residues have not been previously studied in the human BK channel. In this work we have investigated, through site directed mutagenesis and electrophysiology, the effects of these residues on channel activation by voltage and Ca2 +. Our results demonstrate that the side chains of two non-conserved residues proposed to coordinate Ca2 + in the A. californica structure (G523 and E591) have no apparent functional role in the human BK Ca2 + sensing mechanism. Consistent with the crystal structure, our data indicate that in the human channel the conserved residue R514 participates in Ca2 + coordination in the RCK1 binding site. Additionally, this study provides functional evidence indicating that R514 also interacts with residues E902 and Y904 connected to the Ca2 + binding site in RCK2. Interestingly, it has been proposed that this interaction may constitute a structural correlate underlying the cooperative interactions between the two high-affinity Ca2 + binding sites regulating the Ca2 + dependent gating of the BK channel. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.  相似文献   

11.
Na+- Ca2 + exchanger (NCX) has been proposed to play a role in refilling the sarco/endoplasmic reticulum (SER) Ca2 + pool along with the SER Ca2 + pump (SERCA). Here, SERCA inhibitor thapsigargin was used to determine the effects of SER Ca2 + depletion on NCX–SERCA interactions in smooth muscle cells cultured from pig coronary artery. The cells were Na+-loaded and then placed in either a Na+-containing or in a Na+-substituted solution. Subsequently, the difference in Ca2 + entry between the two groups was examined and defined as the NCX mediated Ca2 + entry. The NCX mediated Ca2 + entry in the smooth muscle cells was monitored using two methods: Ca2 +sensitive fluorescence dye Fluo-4 and radioactive Ca2 +. Ca2 +-entry was greater in the Na+-substituted cells than in the Na+-containing cells when measured by either method. This difference was established to be NCX-mediated as it was sensitive to the NCX inhibitors. Thapsigargin diminished the NCX mediated Ca2 + entry as determined by either method. Immunofluorescence confocal microscopy was used to determine the co-localization of NCX1 and subsarcolemmal SERCA2 in the cells incubated in the Na+-substituted solution with or without thapsigargin. SER Ca2 + depletion with thapsigargin increased the co-localization between NCX1 and the subsarcolemmal SERCA2. Thus, inhibition of SERCA2 leads to blockade of constant Ca2 + entry through NCX1 and also increases proximity between NCX1 and SERCA2. This blockade of Ca2 + entry may protect the cells against Ca2 +-overload during ischemia–reperfusion when SERCA2 is known to be damaged.  相似文献   

12.
Stable calcium-induced calcium release (CICR) is critical for maintaining normal cellular contraction during cardiac excitation-contraction coupling. The fundamental element of CICR in the heart is the calcium (Ca2+) spark, which arises from a cluster of ryanodine receptors (RyR). Opening of these RyR clusters is triggered to produce a local, regenerative release of Ca2+ from the sarcoplasmic reticulum (SR). The Ca2+ leak out of the SR is an important process for cellular Ca2+ management, and it is critically influenced by spark fidelity, i.e., the probability that a spontaneous RyR opening triggers a Ca2+ spark. Here, we present a detailed, three-dimensional model of a cardiac Ca2+ release unit that incorporates diffusion, intracellular buffering systems, and stochastically gated ion channels. The model exhibits realistic Ca2+ sparks and robust Ca2+ spark termination across a wide range of geometries and conditions. Furthermore, the model captures the details of Ca2+ spark and nonspark-based SR Ca2+ leak, and it produces normal excitation-contraction coupling gain. We show that SR luminal Ca2+-dependent regulation of the RyR is not critical for spark termination, but it can explain the exponential rise in the SR Ca2+ leak-load relationship demonstrated in previous experimental work. Perturbations to subspace dimensions, which have been observed in experimental models of disease, strongly alter Ca2+ spark dynamics. In addition, we find that the structure of RyR clusters also influences Ca2+ release properties due to variations in inter-RyR coupling via local subspace Ca2+ concentration ([Ca2+]ss). These results are illustrated for RyR clusters based on super-resolution stimulated emission depletion microscopy. Finally, we present a believed-novel approach by which the spark fidelity of a RyR cluster can be predicted from structural information of the cluster using the maximum eigenvalue of its adjacency matrix. These results provide critical insights into CICR dynamics in heart, under normal and pathological conditions.  相似文献   

13.
The details of cardiac Ca2+ signaling within the dyadic junction remain unclear because of limitations in rapid spatial imaging techniques, and availability of Ca2+ probes localized to dyadic junctions. To critically monitor ryanodine receptors’ (RyR2) Ca2+ nano-domains, we combined the use of genetically engineered RyR2-targeted pericam probes, (FKBP-YCaMP, Kd = 150 nM, or FKBP-GCaMP6, Kd = 240 nM) with rapid total internal reflectance fluorescence (TIRF) microscopy (resolution, ∼80 nm). The punctate z-line patterns of FKBP,2-targeted probes overlapped those of RyR2 antibodies and sharply contrasted to the images of probes targeted to sarcoplasmic reticulum (SERCA2a/PLB), or cytosolic Fluo-4 images. FKBP-YCaMP signals were too small (∼20%) and too slow (2–3 s) to detect Ca2+ sparks, but the probe was effective in marking where Fluo-4 Ca2+ sparks developed. FKBP-GCaMP6, on the other hand, produced rapidly decaying Ca2+ signals that: a) had faster kinetics and activated synchronous with ICa3 but were of variable size at different z-lines and b) were accompanied by spatially confined spontaneous Ca2+ sparks, originating from a subset of eager sites. The frequency of spontaneously occurring sparks was lower in FKBP-GCaMP6 infected myocytes as compared to Fluo-4 dialyzed myocytes, but isoproterenol enhanced their frequency more effectively than in Fluo-4 dialyzed cells. Nevertheless, isoproterenol failed to dissociate FKBP-GCaMP6 from the z-lines. The data suggests that FKBP-GCaMP6 binds predominantly to junctional RyR2s and has sufficient on-rate efficiency as to monitor the released Ca2+ in individual dyadic clefts, and supports the idea that β-adrenergic agonists may modulate the stabilizing effects of native FKBP on RyR2.  相似文献   

14.
Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulate numerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca2 + overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca2 + levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca2 + influx, mitochondrial network fragmentation and loss of the mitochondrial Ca2 + buffer capacity. These biochemical events increase cytosolic Ca2 + levels and trigger cardiomyocyte death via the activation of calpains.  相似文献   

15.
The palmitate/Ca2 +-induced (Pal/Ca2 +) pore, which is formed due to the unique feature of long-chain saturated fatty acids to bind Ca2 + with high affinity, has been shown to play an important role in the physiology of mitochondria. The present study demonstrates that the efflux of Ca2 + from rat liver mitochondria induced by ruthenium red, an inhibitor of the energy-dependent Ca2 + influx, seems to be partly due to the opening of Pal/Ca2 + pores. Exogenous Pal stimulates the efflux. Measurements of pH showed that the Ca2 +-induced alkalization of the mitochondrial matrix increased in the presence of Pal. The influx of Ca2 + (Sr2 +) also induced an outflow of K+ followed by the reuptake of the ion by mitochondria. The outflow was not affected by a K+/H+ exchange blocker, and the reuptake was prevented by an ATP-dependent K+ channel inhibitor. It was also shown that the addition of Sr2 + to mitochondria under hypotonic conditions was accompanied by reversible cyclic changes in the membrane potential, the concentrations of Sr2 + and K+ and the respiratory rate. The cyclic changes were effectively suppressed by the inhibitors of Ca2 +-dependent phospholipase A2, and a new Sr2 + cycle could only be initiated after the previous cycle was finished, indicating a refractory period in the mitochondrial sensitivity to Sr2 +. All of the Ca2 +- and Sr2 +-induced effects were observed in the presence of cyclosporin A. This paper discusses a possible role of Pal/Ca2 + pores in the maintenance of cell ion homeostasis.  相似文献   

16.
AimsThis study was designed to investigate the effects of sodium ferulate (SF) on rat isolated thoracic aortas and the possible mechanisms.Main methodsIsometric tension was recorded in response to drugs in organ bath. Cytosolic free Ca2+ concentration ([Ca2+]i) was measured using Fluo-3 in cultured rat aortic smooth muscle cells (RASMC).Key findingsSF (0.1–30 mM) relaxed the isolated aortic rings precontracted with phenylephrine (PE) and high-K+ in a concentration-dependent manner with respective pD2 of 2.7 ± 0.02 and 2.6 ± 0.06. Mechanical removal of endothelium did not significantly modify the SF-induced relaxation. In Ca2+-free solution, SF noticeably inhibited extracellular Ca2+-induced contraction in high-K+ and PE pre-challenged rings, and suppressed the transient contraction induced by PE and caffeine. The vasorelaxant effect of SF was unaffected by various K+ channel blockers such as tetraethylammonium, glibenclamide, 4-aminopyridine, and barium chloride. In addition, SF concentration-dependently reduced the contraction induced by phorbol-12-myristate-13-acetate, an activator of protein kinase C (PKC), in the absence of extracellular Ca2+, with the pD2 of 2.9 ± 0.03. In RASMC, SF had no effect on PE- or KCl-induced [Ca2+]i increase either in the presence or in the absence of external Ca2+.SignificanceThese results indicate that SF acts directly as a non-selective relaxant to vascular smooth muscle. The direct inhibition of the common pathway after [Ca2+]i increase may account for the SF-induced relaxation in Ca2+-dependent contraction, while the blockage of the PKC-mediated contractile mechanism is likely responsible for the SF-induced relaxation in Ca2+-independent contraction.  相似文献   

17.
Recent studies have implicated a relationship between RhoA/ROCK activity and defective Ca2+ homeostasis in hypertrophic hearts. This study investigated molecular mechanism underlying ROCK inhibition-mediated cardioprotection against pressure overload-induced cardiac hypertrophy, with a focus on Ca2+ homeostasis.Cardiac hypertrophy model was established by performing transverse aortic constriction (TAC) in 8-week-old male rats. Groups were assigned as SHAM, TAC and TAC + Fas (rats undergoing TAC and treated with fasudil). Rats in the TAC + Fas group were administered fasudil (5 mg/kg/day), and rats in the SHAM and TAC groups were treated with vehicle for 10 weeks. Electrophysiological recordings were obtained from isolated left ventricular myocytes and expression levels of proteins were determined using western blotting. Rats in the TAC group showed remarkable cardiac hypertrophy, and fasudil treatment significantly reversed this alteration. TAC + Fas myocytes showed significant improvement in reduced contractility and Ca2+ transients. Moreover, these myocytes showed restoration of slow relaxation rate and Ca2+ reuptake. Although L-type Ca2+ currents did not change in TAC group, there was a significant reduction in the triggered Ca2+ transients which was reversed either by long-term fasudil treatment or incubation of TAC myocytes with fasudil. The hearts of rats in the TAC group showed a significant decrease in ROCK1, ROCK2, RyR2 protein levels and p-PLBS16/T17/SERCA2 ratio and increase in RhoA expression and MLC phosphorylation. However, fasudil treatment largely reversed TAC-induced alterations in protein expression.Thus, our findings indicate that upregulation of the RhoA/ROCK pathway is significantly associated with cardiac hypertrophy-related Ca2+ dysregulation and suggest that ROCK inhibition prevents hypertrophic heart failure.  相似文献   

18.
《Cell calcium》2010,47(5-6):303-312
Using immortalized hypothalamic GT1-7 neurons, which express the CB1 cannabinoid receptor (CB1R) and three Ca2+ channel types (T, R and L), we found that the CB1R agonist WIN 55,212-2 inhibited the voltage-gated Ca2+ currents by about 35%. The inhibition by WIN 55,212-2 (10 μM) was reversible and prevented by nifedipine (3 μM), suggesting a selective action on L-type Ca2+ channels (LTCCs). WIN 55,212-2 action exhibited all the features of voltage-independent Ca2+ channel modulation: (1) no changes of the activation kinetics, (2) equal depressive action at all potentials and (3) no facilitation following strong prepulses. At variance with WIN 55,212-2, the CB1R inverse agonist AM-251 (10 μM) caused 20% increase of Ca2+ currents. The inhibition of LTCCs by WIN 55,212-2 was prevented by overnight PTX-incubation and by intracellular perfusion with GDP-β-S. The latter caused also a 20% Ca2+ current up-regulation. WIN 55,212-2 action was also prevented by application of the PKA-blocker H89 or by loading the neurons with 8-CPT-cAMP. Our results suggest that LTCCs in GT1-7 neurons are partially inhibited at rest due to a constitutive CB1R activity removed by AM-251 and GDP-β-S. Activation of CB1R via PTX-sensitive G proteins and cAMP/PKA pathway selectively depresses LTCCs that critically control the synchronized spontaneous firing and pulsatile release of gonadotropin-releasing hormone in GT1-7 neurons.  相似文献   

19.
Modulation of mitochondrial free Ca2 + ([Ca2 +]m) is implicated as one of the possible upstream factors that initiates anesthetic-mediated cardioprotection against ischemia–reperfusion (IR) injury. To unravel possible mechanisms by which volatile anesthetics modulate [Ca2 +]m and mitochondrial bioenergetics, with implications for cardioprotection, experiments were conducted to spectrofluorometrically measure concentration-dependent effects of isoflurane (0.5, 1, 1.5, 2 mM) on the magnitudes and time-courses of [Ca2 +]m and mitochondrial redox state (NADH), membrane potential (ΔΨm), respiration, and matrix volume. Isolated mitochondria from rat hearts were energized with 10 mM Na+- or K+-pyruvate/malate (NaPM or KPM) or Na+-succinate (NaSuc) followed by additions of isoflurane, 0.5 mM CaCl2 (≈ 200 nM free Ca2 + with 1 mM EGTA buffer), and 250 μM ADP. Isoflurane stepwise: (a) increased [Ca2 +]m in state 2 with NaPM, but not with KPM substrate, despite an isoflurane-induced slight fall in ΔΨm and a mild matrix expansion, and (b) decreased NADH oxidation, respiration, ΔΨm, and matrix volume in state 3, while prolonging the duration of state 3 NADH oxidation, respiration, ΔΨm, and matrix contraction with PM substrates. These findings suggest that isoflurane's effects are mediated in part at the mitochondrial level: (1) to enhance the net rate of state 2 Ca2 + uptake by inhibiting the Na+/Ca2 + exchanger (NCE), independent of changes in ΔΨm and matrix volume, and (2) to decrease the rates of state 3 electron transfer and ADP phosphorylation by inhibiting complex I. These direct effects of isoflurane to increase [Ca2 +]m, while depressing NCE activity and oxidative phosphorylation, could underlie the mechanisms by which isoflurane provides cardioprotection against IR injury at the mitochondrial level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号