首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study was to develop a once daily sustained release tablet of aceclofenac using chitosan and an enteric coating polymer (hydroxypropyl methylcellulose phthalate or cellulose acetate phthalate). Overall sustained release for 24 h was achieved by preparing a double-layer tablet in which the immediate release layer was formulated for a prompt release of the drug and the sustained release layer was designed to achieve a prolonged release of drug. The preformulation studies like IR spectroscopic and differential scanning calorimetry showed the absence of drug–excipient interactions. The tablets were found within the permissible limits for various physicochemical parameters. Scanning electron microscopy was used to visualize the surface morphology of the tablets and to confirm drug release mechanisms. Good equivalence in the drug release profile was observed when drug release pattern of the tablet containing chitosan and hydroxypropyl methylcellulose phthalate (M-7) was compared with that of marketed tablet. The optimized tablets were stable at accelerated storage conditions for 6 months with respect to drug content and physical appearance. The results of pharmacokinetic studies in human volunteers showed that the optimized tablet (M-7) exhibited no difference in the in vivo drug release in comparison with marketed tablet. No significant difference between the values of pharmacokinetic parameters of M-7 and marketed tablets was observed (p > 0.05; 95% confidence intervals). However the clinical studies in large scale and, long term and extensive stability studies at different conditions are required to confirm these results.  相似文献   

2.
An oral sustained release dosage form of cinnarizine HCl (CNZ) based on gastric floating matrix tablets was studied. The release of CNZ from different floating matrix formulations containing four viscosity grades of hydroxypropyl methylcellulose, sodium alginate or polyethylene oxide, and gas-forming agent (sodium bicarbonate or calcium carbonate) was studied in simulated gastric fluid (pH 1.2). CNZ release data from the matrix tablets were analyzed kinetically using Higuchi, Peppas, Weibull, and Vergnaud models. From water uptake, matrix erosion studies, and drug release data, the overall release mechanism can be explained as a result of rapid hydration of polymer on the surface of the floating tablet and formation of a gel layer surrounding the matrix that controls water penetration into its center. On the basis of in vitro release data, batch HP1 (CNZ, HPMC-K100LV, SBC, LTS, and MgS) was subjected to bioavailability studies in rabbits and was compared with CNZ suspension. It was concluded that the greater bioavailability of HP1 was due to its longer retention in the gastric environment of the test animal. Batch no. HP1 of floating tablet in rabbits demonstrated that the floating tablet CNZ could be a 24-h sustained release formulation.  相似文献   

3.
The purpose of the present research was to produce a quick/slow biphasic delivery system for ibuprofen. A dual-component tablet made of a sustained release tableted core and an immediate release tableted coat was prepared by direct compression. Both the core and the coat contained a model drug (ibuprofen). The sustained release effect was achieved with a polymer (hydroxypropyl methylcellulose [HPMC] or ethylcellulose) to modulate the release of the drug. The in vitro drug release profile from these tablets showed the desired biphasic release behavior: the ibuprofen contained in the fast releasing component was dissolved within 2 minutes, whereas the drug in the core tablet was released at different times (⊂16 or >24 hours), depending on the composition of the matrix tablet. Based on the release kinetic parameters calculated, it can be concluded that the HPMC core was suitable for providing a constant and controlled release (zero order) for a long period of time. Published: September 21, 2007  相似文献   

4.
It is challenging to achieve mechanically robust drug-release profiles from hydrophilic matrices containing a high dose of a drug with good solubility. However, a mechanically robust drug release over prolonged period of time can be achieved, especially if the viscosity and amount of the polymer is sufficiently high, above the “threshold values.” The goal of this research was to determine the hydroxypropyl cellulose (HPC) and hydroxypropyl methylcellulose (HPMC) polymer threshold amount that would enable robust drug release from matrix tablets containing a high dose of levetiracetam as a class I model drug according to the Biopharmaceutical Classification System (BCS). For this purpose, formulations containing HPC or HPMC of similar viscosity range, but in different amounts, were prepared. Based on the dissolution results, two final formulations were selected for additional in vitro and in vivo evaluation to confirm the robustness and to show bioequivalence. Tablets were exposed to various stress conditions in vitro with the use of different mechanically stress-inducing dissolution methods. The in vitro results were compared with in vivo results obtained from fasted and fed bioequivalence studies. Under both conditions, the formulations were bioequivalent and food had a negligible influence on the pharmacokinetic parameters Cmax and area under the curve (AUC). It was concluded that the drug release from both selected formulations is mechanically robust and that HPC and HPMC polymers with intrinsic viscosities above 9 dL/g and in quantities above 30% enable good mechanical resistance, which ensures bioequivalence. In addition, HPC matrices were found to be more mechanically robust compared to HPMC.KEY WORDS: HPC, HPMC, matrix tablets, mechanically robust dissolution, threshold amount  相似文献   

5.
In the present work, an attempt has been made to screen Prosopis africana seed gum (PG), anionic polymer for extended release tablet formulation. Different categories of drugs (charge basis) like diclofenac sodium (DS), chlorpheniramine maleate (CPM), and ibuprofen (IB) were compacted with PG and compared with different polymers (charge basis) like xanthan gum (XG), hydroxypropyl methyl cellulose (HPMC-K100M), and chitosan (CP). For each drug, 12 batches of tablets were prepared by wet granulation technique, and granules were evaluated for flow properties, compressibility, and compactibility by Heckel and Leuenberger analysis, swelling index, in vitro dissolution studies, etc. It has been observed that granules of all batches showed acceptable flowability. According to Heckel and Leuenberger analysis, granules of PG-containing compacts showed similar and satisfactory compressibility and compactibility compared to granules of other polymers. PG showed significant swelling (P < 0.05) compared to HPMC, and better than CP and XG. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) study showed no interaction between drugs and polymers. From all PG-containing compacts of aforesaid drugs, drug release was sustained for 12 h following anomalous transport. Especially, polyelectrolyte complex formation retarded the release of oppositely charged drug (CPM-PG). However, extended release was noted in both anionic (DS) and nonionic (IB) drugs, maybe due to swollen gel. All compacts were found to be stable for 3-month period during stability study. This concludes that swelling and release retardation of PG has close resemblance to HPMC, so it can be used as extended release polymer for all types of drugs.KEY WORDS: chlorpheniramine maleate, diclofenac sodium, extended release, ibuprofen, Prosopis africana  相似文献   

6.
A significant plan is executed in the present study to study the effect of double-compression coating on flurbiprofen core mini-tablets to achieve the pulsatile colonic delivery to deliver the drug at a specific time as per the patho-physiological need of the disease that results in improved therapeutic efficacy. In this study, pulsatile double-compression-coated tablets were prepared based on time-controlled hydroxypropyl methylcellulose K100M inner compression coat and pH-sensitive Eudragit S100 outer compression coat. Then, the tablets were evaluated for both physical evaluation and drug-release studies, and to prove these results, in vivo pharmacokinetic studies in human volunteers were conducted. From the in vitro drug-release studies, F6 tablets were considered as the best formulation, which retarded the drug release in the stomach and small intestine (3.42 ± 0.12% in 5 h) and progressively released to the colon (99.78 ± 0.74% in 24 h). The release process followed zero-order release kinetics, and from the stability studies, similarity factor between dissolution data before and after storage was found to be 88.86. From the pharmacokinetic evaluation, core mini-tablets producing peak plasma concentration (Cmax) was 14,677.51 ± 12.16 ng/ml at 3 h Tmax and pulsatile colonic tablets showed Cmax = 12,374.67 ± 16.72 ng/ml at 12 h Tmax. The area under the curve for the mini and pulsatile tablets was 41,238.52 and 72,369.24 ng-h/ml, and the mean resident time was 3.43 and 10.61 h, respectively. In conclusion, development of double-compression-coated tablets is a promising way to achieve the pulsatile colonic release of flurbiprofen.KEY WORDS: core mini-tablets, double-compression coating, inner compression coat, outer compression coat, similarity factor  相似文献   

7.
Drugs that have narrow absorption window in the gastrointestinal tract (GIT) will have poor absorption. For these drugs, gastroretentive drug delivery systems offer the advantage in prolonging the gastric emptying time. Swellable, floating, and sustained release tablets are developed by using a combination of hydrophilic polymer (hydroxypropyl methylcellulose), swelling agents (crospovidone, sodium starch glycolate, and croscarmelose sodium) and effervescent substance (sodium bicarbonate). Formulations are evaluated for percentage swelling, in vitro drug release, floating lag time, total duration of floating, and mean residence time (MRT) in the stomach. The drug release of optimized formulation follows the Higuchi kinetic model, and the mechanism is found to be non-Fickian/anomalous according to Krosmeyer–Peppas (n value is 0.68). The similarity factor (f 2) is found to be 26.17 for the optimized formulation, which the release is not similar to that of marketed produced (CIFRAN OD®). In vivo nature of the tablet at different time intervals is observed in the radiographic pictures of the healthy volunteers and MRT in the stomach is found to be 320?±?48.99 min (n?=?6). A combination of HPMC K100M, crospovidone, and sodium carbonate shows the good swelling, drug release, and floating characters than the CIFRAN OD®.  相似文献   

8.
The current work prepared chitosan/hydroxypropyl methylcellulose (HPMC) blends and studied the possibility of chitosan/HPMC blended patches for Zingiber cassumunar Roxb. The blended patches without/with crude Z. cassumunar oil were prepared by homogeneously mixing the 3.5% w/v of chitosan solution and 20% w/v of HPMC solution, and glycerine was used as plasticizer. Then, they were poured into Petri dish and produced the blended patches in hot air oven at 70 ± 2°C. The blended patches were tested and evaluated by the physicochemical properties: moisture uptake, swelling ratio, erosion, porosity, Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction, and photographed the surface and cross-section morphology under SEM technique. Herbal blended patches were studied by the in vitro release and skin permeation of active compound D. The blended patches could absorb the moisture and became hydrated patches that occurred during the swelling of blended patches. They were eroded and increased by the number of porous channels to pass through out for active compound D. In addition, the blended patches indicated the compatibility of the blended ingredients and homogeneous smooth and compact. The blended patches made from chitosan/HPMC blends provide a controlled release and skin permeation behavior of compound D. Thus, the blended patches could be suitably used for herbal medicine application.KEY WORDS: chitosan, formulation, herbal blended patches, HPMC, Zingiber cassumunar Roxb  相似文献   

9.
The formulation factors relevant to developing immediate and controlled release dosage forms containing poorly soluble drugs dispersed in amorphous systems are poorly understood. While the utility of amorphous solid dispersions is becoming apparent in the pharmaceutical marketplace, literature reports tend to concentrate on the development of solid dispersion particulates, which then must be formulated into a tablet. Amorphous solid dispersions of itraconazole in high molecular weight hydroxypropyl methylcellulose were prepared by KinetiSol® Dispersing and tablets were formulated to immediately disintegrate or control the release of itraconazole. Formulated tablets were evaluated by two non-sink dissolution methodologies and the dosage form properties that controlled the gelling tendency of the dispersion carrier, hydroxypropyl methylcellulose, were investigated. Selected formulations were evaluated in an exploratory beagle dog pharmacokinetic study; the results of which indicate potential for a prolonged absorption phase relative to the commercially extruded control.  相似文献   

10.
The aim of this study was to formulate salbutamol sulfate (SS), a model drug, as mucoadhesive in situ gelling inserts having a high potential as nasal drug delivery system bypassing the first-pass metabolism. In situ gelling inserts, each containing 1.4% SS and 2% gel-forming polymer, hydroxypropyl methylcellulose (HPMC), carboxymethylcellulose sodium (CMC Na), sodium alginate (AL), and chitosan (CH) were prepared. The inserts were investigated for their different physicochemical properties. The weight of inserts was 16–27 mg, drug content was 3.9–4.2 mg, thickness ranged between 15 and 28 μm and surface pH was 5–7. Cumulative drug released from the inserts exhibited extended release for more than 10 h following the decreasing order: CH > AL > CMC Na > HPMC. The drug release from CMC Na and AL inserts followed zero-order kinetics while HPMC and CH inserts exhibited non-Fickian diffusion mechanism. The inserts exhibited different water uptake (7–23%) with the smallest values for CH. Differential scanning calorimetry study pointed out possible interaction of SS and oppositely charged anionic polymers (CMC Na and AL). The mucoadhesive in situ gelling inserts exhibited satisfactory mucoadhesive and extended drug release characteristics. The inserts could be used for nasal delivery of SS over about 12 h; bypassing the hepatic first-pass metabolism without potential irritation.KEY WORDS: in situ gelling inserts, mucoadhesion, nasal delivery, salbutamol sulfate  相似文献   

11.
The effect of concentration of hydrophilic (hydroxypropyl methylcellulose [HPMC]) and hydrophobic polymers (hydrogenated castor oil [HCO], ethylcellulose) on the release rate of tramadol was studied. Hydrophilic matrix tablets were prepared by wet granulation technique, while hydrophobic (wax) matrix tablets were prepared by melt granulation technique and in vitro dissolution studies were performed using United States Pharmacopeia (USP) apparatus type II. Hydrophobic matrix tablets resulted in sustained in vitro drug release (>20 hours) as compared with hydrophilic matrix tablets (<14 hours). The presence of ethylcellulose in either of the matrix systems prolonged the release rate of the drug. Tablets prepared by combination of hydrophilic and hydrophobic polymers failed to prolong the drug release beyond 12 hours. The effect of ethylcellulose coating (Surelease) and the presence of lactose and HPMC in the coating composition on the drug release was also investigated. Hydrophobic matrix tablets prepared using HCO were found to be best suited for modulating the delivery of the highly water-soluble drug, tramadol hydrochloride.  相似文献   

12.
The aim of the study was to develop single-unit tablet in capsule system of aceclofenac for the treatment of late night pain and morning stiffness associated with rheumatoid arthritis. The system was conceptualized as a three-component design (1) a hard gelatin enteric-coated capsule (for carrying two pulses), (2) first-pulse granules (for rapid release in intestine), and (2) second-pulse matrix tablet (for slow release in colon). An appropriate integration of pH-sensitive (Eudragit S100) and bacteria-responsive (inulin) functions, on the basis of 32 factorial design, led to formulation of TICS 1–9 that were screened for in vitro release. TICS 2 with biphasic drug release of 98.64% from first-pulse granules in simulated intestinal fluid (12 h) and 97.82% from second-pulse matrix tablet in simulated colonic fluid (24 h) was the optimized formulation that exhibited Fickian diffusion of drug (n = 0.363). In vivo fluoroscopy in rats traced the intact tablet to colon in 7.5 h that got eroded at the tenth hour. This demonstrated the colon-specific delivery of the matrix tablet affirming the potential of the system to obviate the need for two-time administration of drug at odd hours. The experimental design was validated by extra design check point, and diffuse reflectance spectroscopy and DSC revealed absence of chemical interaction between the formulation excipients.KEY WORDS: aceclofenac, in vitro release, in vivo fluoroscopy, multipulse delivery, tablet in capsule system  相似文献   

13.
《Phytomedicine》2014,21(12):1627-1632
The aim of this study was to encapsulate, thymol, in natural polymers in order to obtain (i) taste masking effect and, then, enhancing its palatability and (ii) two formulations for systemic and local delivery of herbal drug as adjuvants or substitutes to current medications to prevent and treat several human and animal diseases. Microspheres based on methylcellulose or hydroxypropyl methylcellulose phthalate (HPMCP) were prepared by spray drying technique. Microparticles were in vitro characterized in terms of yield of production, drug content and encapsulation efficiency, particle size, morphology and drug release. Both formulations were in vivo orally administered and pharmacokinetic analysis was carried out. The polymers used affect the release and, then, the pharmacokinetic profile of thymol. Encapsulation into methylcellulose microspheres leads to short half/life but bioavailability remarkably increases compared to the free thymol. In contrast, enteric formulation based on HPMCP shows very limited systemic absorption. These formulations could be proposed as alternative or adjuvants for controlling pathogen infections in human or animal. In particular, methylcellulose microspheres can be used for thymol systemic administration at low doses and HPMCP particles for local treatment of intestinal infections.  相似文献   

14.
Dissolution studies on tablets of ibuprofen using chitosan.   总被引:1,自引:0,他引:1  
An attempt has been made to study the release retardant behaviour of chitosan in ibuprofen tablets. Three different ibuprofen tablets were prepared by using 1,3 and 5% chitosan paste. In vitro evaluations were carried out by using dissolution testing apparatus U.S.P (XXI). The dissolution pattern indicated the role of chitosan in sustained release. Bioavailability studies in male beagle dogs clearly showed the sustained nature of release from chitosan based ibuprofen tablet as compared to conventional ibuprofen marketed formulation. Potential use of chitosan as a new matrix forming material for sustained release preparation has been examined. Chitosan, a natural polysaccharide, has structural characteristics similar to glycosamino glycons. Chitosan has been shown to be non-toxic and biodegradable. It is inexpensive and has been explored in the present investigation as a release retarding agent in ibuprofen tablets.  相似文献   

15.
The purpose of this work was to investigate the influence of Eudragit®E100 polymer in modifying the release rates and compaction properties of water soluble model drug paracetamol from Carbopol®971P NF polymer matrix tablets prepared by direct compression. The effects of the ratio of the two polymers, the total polymeric content, and the tablets mechanical strength on paracetamol release rates were investigated. Dissolution studies were conducted using USP XX Π rotating paddle apparatus at 50 rpm and 37°C at three different stages (pH 1.2, 4.8, and 6.8). Results showed that the polymers combination improved significantly the compaction properties of paracetamol tablets as evident by the higher crushing strengths (8.3 ± 0.4 Kp) compared to polymer-free tablets (3.4 ± 0.2 Kp) at intermediate compression pressure of 490 MPa. When combined with Carbopol®971P NF, Eudragit®E100 was found to be capable of extending paracetamol release for more than 12 h compared to 1 h for polymers-free tablets. The combined polymers were able to control paracetamol release in a pH independent pattern. The f2 (similarity factor) analysis showed that the ratio between the polymers and the total polymer concentration exhibited significant impact on drug release rates. In conclusion, Eudragit®E100 when combined with Carbopol®971P NF was capable of improving the compaction and sustained release properties of paracetamol. Korsmeyer–Peppas model was found to be the most suitable for fitting drug release data. The polymer combinations can potentially be used to control the release rates of highly water soluble drugs.KEY WORDS: Carbopol®971P NF, Eudragit®E100, matrix tablet, pH-independent release, sustained  相似文献   

16.
The objective of the study was to develop guar gum matrix tablets for oral controlled release of water-soluble diltiazem hydrochloride. Matrix tablets of diltiazem hydrochloride, using various viscosity grades of guar gum in 2 proportions, were prepared by wet granulation method and subjected to in vitro drug release studies. Diltiazem hydrochloride matrix tablets containing either 30% wt/wt lowviscosity (LM1), 40% wt/wt medium-viscosity (MM2), or 50% wt/wt high-viscosity (HM2) guar gum showed controlled release. The drug release from all guar gum matrix tablets followed first-order kinetics via Fickian-diffusion. Further, the results of in vitro drug release studies in simulated gastrointestinal and colonic fluids showed that HM2 tablets provided controlled release comparable with marketed sustained release diltiazem hydrochloride tablets (D-SR tablets). Guar gum matrix tablets HM2 showed no change in physical appearance, drug content, or in dissolution pattern after storage at 40°C/relative humidity 75% for 6 months. When subjectd to in vivo pharmacokinetic evaluation in healthy volunteers, the HM2 tablets provided a slow and prolonged drug release when compared with D-SR tablets. Based on the results of in vitro and in vivo studies it was concluded that that guar gum matrix tablets provided oral controlled release of water-soluble diltiazem hydrochloride. Published: June 30, 2005  相似文献   

17.
The aim of the present study was to prepare and characterize extended-release matrix tablets of zidovudine using hydrophilic Eudragit RLPO and RSPO alone or their combination with hydrophobic ethyl cellulose. Release kinetics was evaluated by using United States Pharmacopeia (USP)-22 type I dissolution apparatus. Scanning electron microscopy was used to visualize the effect of dissolution medium on matrix tablet surface. Furthermore, the in vitro and in vivo newly formulated sustained-release zidovudine tablets were compared with conventional marketed tablet (Zidovir, Cipla Ltd, Mumbai, India). The in-vitro drug release study revealed that either Eudragit preparation was able to sustain the drug release only for 6 hours (94.3%±4.5% release). Combining Eudragit with ethyl cellulose sustained the drug release for 12 hours (88.1%±4.1% release). Fitting the in vitro drug release data to Korsmeyer equation indicated that diffusion along with erosion could be the mechanism of drug release. In vivo investigation in rabbits showed sustained-release pharmacokinetic profile of zidovudine from the matrix tablets formulated using combination of Eudragits and ethylcellulose. In conclusion, the results suggest that the developed sustained-release tablets of zidovudine could perform therapeutically better than conventional dosage forms, leading to improve efficacy and better patient compliance. Published: January 3, 2006  相似文献   

18.
AimThe objective of this study was to formulate and evaluate a unique matrix mixture (nanomiemgel) of nanomicelle and nanoemulsion containing aceclofenac and capsaicin using in vitro and in vivo analyses and to compare it to a marketed formulation (Aceproxyvon).MethodsNanomicelles were prepared using Vitamin E TPGS by solvent evaporation method and nanoemulsion was prepared by high-pressure homogenization method. In vitro drug release and human skin permeation studies were performed and analyzed using HPLC. The efficiency of nanomiemgel as a delivery system was investigated using an imiquimod-induced psoriatic like plaque model developed in C57BL/6 mice.ResultsAtomic Force Microscopy images of the samples exhibited a globular morphology with an average diameter of 200, 250 and 220 nm for NMI, NEM and NMG, respectively. Nanomiemgel demonstrated a controlled release drug pattern and induced 2.02 and 1.97-fold more permeation of aceclofenac and capsaicin, respectively than Aceproxyvon through dermatomed human skin. Nanomiemgel also showed 2.94 and 2.09-fold greater Cmax of aceclofenac and capsaicin, respectively than Aceproxyvon in skin microdialysis study in rats. The PASI score, ear thickness and spleen weight of the imiquimod-induced psoriatic-like plaque model were significantly (p<0.05) reduced in NMG treated mice compared to free drug, NEM, NMI & Aceproxyvon.ConclusionUsing a new combination of two different drug delivery systems (NEM+NMI), the absorption of the combined system (NMG) was found to be better than either of the individual drug delivery systems due to the utilization of the maximum possible paths of absorption available for that particular drug.  相似文献   

19.
The objective of the present study was to develop once-daily sustained-release matrix tablets of nicorandil, a novel potassium channel opener used in cardiovascular diseases. The tablets were prepared by the wet granulation method. Ethanolic solutions of ethylcellulose (EC), Eudragit RL-100, Eudragit RS-100, and polyvinylpyrrolidone were used as granulating agents along with hydrophilic matrix materials like hydroxypropyl methylcellulose (HPMC), sodium carboxymethylcellulose, and sodium alginate. The granules were evaluated for angle of repose, bulk density, compressibility index, total porosity, and drug content. The tablets were subjected to thickness, diameter, weight variation test, drug content, hardness, friability, and in vitro release studies. The granules showed satisfactory flow properties, compressibility, and drug content. All the tablet formulations showed acceptable pharmacotechnical properties and complied with in-house specifications for tested parameters. According to the theoretical release profile calculation, a oncedaily sustained-release formulation should release 5.92 mg of nicorandil in 1 hour, like conventional tablets, and 3.21 mg per hour up to 24 hours. The results of dissolution studies indicated that formulation F-I (drug-to-HPMC, 1∶4; ethanol as granulating agent) could extend the drug release up to 24 hours. In the further formulation development process, F-IX (drug-to-HPMC, 1∶4; EC 4% wt/vol as granulating agent), the most successful formulation of the study, exhibited satisfactory drug release in the initial hours, and the total release pattern was very close to the theoretical release profile. All the formulations (except F-IX) exhibited diffusion-dominated drug release. The mechanism of drug release from F-IX was diffusion coupled with erosion.  相似文献   

20.
The purpose of this study was to prepare lipospheres containing aceclofenac intended for topical skin delivery with the aim of exploiting the favorable properties of this carrier system and developing a sustained release formula to overcome the side effects resulting from aceclofenac oral administration. Lipospheres were prepared using different lipid cores and phospholipid coats adopting melt and solvent techniques. Characterization was carried out through photomicroscopy, scanning electron microscopy, particle size analysis, DSC, In vitro drug release and storage study. The anti-inflammatory effect of liposphere systems was assessed by the rat paw edema technique and compared to the marketed product. Results revealed that liposphere systems were able to entrap aceclofenac at very high levels (93.1%). The particle size of liposphere systems was well suited for topical drug delivery. DSC revealed the molecular dispersion of aceclofenac when incorporated in lipospheres. Both entrapment efficiency and release were affected by the technique of preparation, core and coat types, core to coat ratio and drug loading. Lipospheres were very stable after 3 months storage at 2–8°C manifested by low leakage rate (less than 7%) and no major changes in particle size. Finally, liposphere systems were found to possess superior anti-inflammatory activity compared to the marketed product in both lotion and paste consistencies. Liposphere systems proved to be a promising topical system for the delivery of aceclofenac as they possessed the ability to entrap the drug at very high levels and high stability, and to sustain the anti-inflammatory effect of the drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号