首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Salmonella enterica serovar Enteritidis is one of the leading causes of food-borne diseases in Japan. Typically, Salmonella spp. test positive for lysine-decarboxylase. However, the number of isolates of serovar Enteritidis without lysine-decarboxylase activity increased in Japan in 2003. Among 109 strains from distinct outbreaks, 10 lacked lysine-decarboxylase activity. Nine of the ten lysine-decarboxylase-negative strains showed quite similar pulsed-field gel electrophoresis profiles. Their lysine-decarboxylase phenotype was recovered by introduction of the cadBA locus from an lysine-decarboxylase-positive strain. Although the cad loci of the lysine-decarboxylase-negative strains seemed to be intact without any insertion sequences, cadC, a positive regulator of cadBA, had a single-base deletion at the same position, the 973rd base (cytosine), in all the nine lysine-decarboxylase-negative strains, whereas the wild-type cadC gene has a 1542 bp coding region (514 amino acids). This deletion was expected to produce a truncated (338 amino acids) form of CadC due to a frameshift. Because CadC senses environmental cues such as external pH and lysine through its putative C-terminal periplasmic domain, it is likely that the truncated CadC is not sensitive enough to external signaling to activate the cadBA operon, resulting in loss of the lysine-decarboxylase activity. Our results suggest that dissemination of these genetically closely related strains of serovar Enteritidis accounts for the unusual increase in the isolation of lysine-decarboxylase-negative strains.  相似文献   

3.
The genotype of Salmonella enterica serovar Enteritidis was correlated with the phenotype using DNA-DNA microarray hybridization, ribotyping, and Phenotype MicroArray analysis to compare three strains that differed in colony morphology and phage type. No DNA hybridization differences were found between two phage type 13A (PT13A) strains that varied in biofilm formation; however, the ribotype patterns were different. Both PT13A strains had DNA sequences similar to that of bacteriophage Fels2, whereas the PT4 genome to which they were compared, as well as a PT4 field isolate, had a DNA sequence with some similarity to the bacteriophage ST64b sequence. Phenotype MicroArray analysis indicated that the two PT13A strains and the PT4 field isolate had similar respiratory activity profiles at 37 degrees C. However, the wild-type S. enterica serovar Enteritidis PT13A strain grew significantly better in 20% more of the 1,920 conditions tested when it was assayed at 25 degrees C than the biofilm-forming PT13A strain grew. Statistical analysis of the respiratory activity suggested that S. enterica serovar Enteritidis PT4 had a temperature-influenced dimorphic metabolism which at 25 degrees C somewhat resembled the profile of the biofilm-forming PT13A strain and that at 37 degrees C the metabolism was nearly identical to that of the wild-type PT13A strain. Although it is possible that lysogenic bacteriophage alter the balance of phage types on a farm either by lytic competition or by altering the metabolic processes of the host cell in subtle ways, the different physiologies of the S. enterica serovar Enteritidis strains correlated most closely with minor, rather than major, genomic changes. These results strongly suggest that the pandemic of egg-associated human salmonellosis that came into prominence in the 1980s is primarily an example of bacterial adaptive radiation that affects the safety of the food supply.  相似文献   

4.
The complete nucleotide sequence of pOU1113 (pSDVu), one of the two types of virulence plasmids of Salmonella enterica serovar Dublin, was determined. It contained 80 156 bp with 53.8 mol% G+C content. Approximately 70 genes could be discerned. Compared with pSTV, the virulence plasmid of serovar Typhimurium, pOU1113 was shorter owing to a missing region amounting to c. 10 kb; furthermore, except for a unique 10 849-bp region, the nucleotide as well as deduced amino acid sequences of pOU1113 were nearly identical to the corresponding regions of three S. enterica virulence plasmids, namely pSCV (virulence plasmid of Choleraesuis), pSTV and pSEV (virulence plasmids of Enteritidis), confirming their close phylogenetic relationship. Comparative analysis indicated that these virulence plasmids appeared to have descended by deletion from a relatively large plasmid to smaller ones, with some recombination events occurring over time. From a biological and evolutionary point of view, if the decreasing sizes of pOU1113 and pSCV truly reflect a process in which the virulence plasmid has been shedding unnecessary genes during evolution, our data suggest that some genes in the missing region, such as the pef and tra operons, could have a minimal role in maintaining the survival of the bacteria in their environmental niche.  相似文献   

5.
6.
Salmonella enterica serovar Enteritidis has remained a major food-borne pathogen in humans. We isolated a virulent S. enterica serovar Enteritidis bacteriophage, SE2, which belongs to the family Siphoviridae. Phage SE2 could lyse S. enterica serovar Enteritidis PT-4, and its virulence was maintained even at ambient temperature. The genomic sequence of phage SE2 was composed of 43,221 bp with close similarity to those of Salmonella phage SETP3 and Salmonella phage SS3e. The strong and stable lytic activity of this phage might enable its use as a therapeutic or biocontrol agent against S. enterica serovar Enteritidis.  相似文献   

7.
Using DNA hybridization, at least three distinct groups of low molecular mass plasmids were identified in Salmonella enterica subsp. enterica serovar Enteritidis. After sequencing representative plasmids from each group, we concluded that they belonged to ColE1, ColE2, and rolling-circle-like replicating plasmids. Plasmid pK (4245 bp) is a representative of widely distributed ColE1 plasmids. Plasmid pP (4301 bp) is homologous to ColE2 plasmids and was present predominantly in single-stranded DNA form. The smallest plasmids pJ (2096 bp) and pB (1983 bp) were classified as rolling-circle-like replicating plasmids. Both encoded only a single protein essential for their own replication, and they must have existed in an unusual molecular structure, as (i) they were capable of hybridization without denaturation, (ii) their DNA could be linearized with S1 nuclease, and (iii) even after such treatment, the ability to hybridize without denaturation did not disappear.  相似文献   

8.
Salmonella enterica serovar Enteritidis (S. Enteritidis) possesses plasmids of different sizes and roles. Besides the serovar-specific virulence plasmid present in most field strains, S. Enteritidis can harbour plasmids of low molecular mass whose biological role is poorly understood. We therefore sequenced plasmid pC present in S. Enteritidis strains belonging to phage type PT14b. The size of plasmid was determined to be 5,269 bp and it was predicted to encode four open reading frames (ORFs). The first two ORFs were found (initial 3,230 bp) to be highly homologous to rom and mbeA genes of ColE1 plasmid of Escherichia coli. Proteins encoded by the other two ORFs were 99% homologous to a restriction methylase and restriction endonuclease encoded by plasmid pECO29 of a field strain of E. coli. Using insertional mutagenesis we confirmed experimentally that the plasmid pC-encoded restriction modification system was functional and could explain the high resistance of S. Enteritidis PT14b strains to phage infection.  相似文献   

9.
AIMS: The study was undertaken to determine clonal relationship and genetic diversity of the human strains of Salmonella enterica serovar Enteritidis isolated from 1995 to 2002 from different parts of Malaysia. METHODS AND RESULTS: Antimicrobial susceptibility test, plasmid profiling and pulsed-field gel electrophoresis were applied to analyse 65 human isolates of S. Enteritidis obtained over an eight year period from different parts of Malaysia. Four nonhuman isolates were included for comparison. A total of 14 distinct XbaI-pulsed-field profiles (PFPs) were observed, although a single PFP X1 was predominant and this particular clone was found to be endemic in Malaysia. The incidence of drug resistant S. Enteritidis remained relatively low with only 37% of the strains analysed being resistant to one or more antimicrobial agents. All except one resistant strain carried at least one plasmid ranging in size from 3.7 to 62 MDa giving nine plasmid profiles. The three isolates from raw milk and one from well-water had similar PFPs to that of the human isolates. CONCLUSIONS: Salmonella Enteritidis strains were more diverse than was previously thought. Fourteen subtypes were noted although one predominant clone persisted in Malaysia. The combination of pulsed-field gel electrophoresis, plasmid profiling and antibiograms provided additional discrimination to the highly clonal strains of S. Enteritidis. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report to assess the genotypes of the predominant clinical S. Enteritidis in different parts of the country. As S. Enteritidis is highly endemic in Malaysia, the data generated would be useful for tracing the source during outbreaks of gastroenteritis in the study area.  相似文献   

10.
Salmonella enterica serovar Typhi (S. Typhi), the aetiologic agent of typhoid fever, is a human restricted pathogen. The molecular mechanism of Salmonella pathogenicity is complex. The investigations of the molecular mechanisms of Salmonella virulence factors have shown that pathogenic Salmonella spp. are distinguished from their non-pathogenic relatives by the presence of specific pathogenicity genes, often organized in so-called pathogenicity islands (PIs). The type III secretion system (T3SS) proteins encoded by two Salmonella PIs (SPIs) are associated with the pathogenicity at molecular level. The identification of T3SS has provided new insight into the molecular factors and mechanisms underlying bacterial pathogenesis. The T3SS encoded by SPI-1 contains invasion genes; while SPI-2 is responsible for intracellular pathogenesis and has a crucial role for systemic S. enterica infections. These studies reveal a complex set of pathogenic interferences between intracellular Salmonella and its host cells. The understanding of the mechanisms by which Salmonella evade the host defense system and establish pathogenesis will be important for proper disease management.  相似文献   

11.
Salmonella enterica serovar Enteritidis is one of the most frequently reported causes of foodborne illness. It is a major threat to the food safety chain and public health. A highly amplified bio-barcode DNA assay for the rapid detection of the insertion element (Iel) gene of Salmonella Enteritidis is reported in this paper. The biosensor transducer is composed of two nanoparticles: gold nanoparticles (Au-NPs) and magnetic nanoparticles (MNPs). The Au-NPs are coated with the target-specific DNA probe which can recognize the target gene, and fluorescein-labeled barcode DNA in a 1:100 probe-to-barcode ratio. The MNPs are coated with the 2nd target-specific DNA probe. After mixing the nanoparticles with the 1st target DNA, the sandwich structure (MNPs-2nd DNA probe/Target DNA/1st DNA probe-Au-NPs-barcode DNA) is formed. A magnetic field is applied to separate the sandwich from the unreacted materials. Then the bio-barcode DNA is released from the Au-NPs. Because the Au-NPs have a large number of barcode DNA per DNA probe binding event, there is substantial amplification. The released barcode DNA is measured by fluorescence. Using this technique, the detection limit of this bio-barcode DNA assay is as low as 2.15 x 10(-16)mol (or 1 ng/mL).  相似文献   

12.
In this study, we were interested in the association of attenuated mutants of Salmonella enterica serovar Enteritidis with subpopulations of porcine white blood cells (WBC). The mutants included those with inactivated aroA, phoP, rfaL, rfaG, rfaC and fliC genes and a mutant with five major pathogenicity islands removed (ΔSPI1-5 mutant). Using flow cytometry, we did not observe any difference in the interactions of the wild-type S. Enteritidis, aroA and phoP mutants with WBC. ΔSPI1-5 and fliC mutants had a minor defect in their association with granulocytes and monocytes, but not with T- or B-lymphocytes. All three rfa mutants associated with granulocytes, monocytes and B-lymphocytes more than the wild-type S. Enteritidis did. Electron microscopy confirmed that the association correlated with the intracellular presence of S. Enteritidis and that the Salmonella-containing vacuole in the WBC infected with the rfa mutants, unlike all other strains, did not develop into a spacious phagosome. Intact lipopolysaccharide, but not the type III secretion system encoded by SPI-1, SPI-2 or the flagellar operon, is important for the initial interaction of S. Enteritidis with porcine leukocytes. This information can be used for the design of live Salmonella vaccines preferentially targeting particular cell types including cancer or tumor cells.  相似文献   

13.
Salmonella enterica consists of over 2,000 serovars that are major causes of morbidity and mortality associated with contaminated food. Despite similarities among serovars of Salmonella enterica, many demonstrate unique host specificities, epidemiological characteristics, and clinical manifestations. One of the unique epidemiological characteristics of the serovar Enteritidis is that it is the only bacterium routinely transmitted to humans through intact chicken eggs. Therefore, Salmonella enterica serovar Enteritidis must be able to persist inside chicken eggs to be transmitted to humans, and its survival in egg is important for its transmission to the human population. The ability of Salmonella enterica serovar Enteritidis to survive in and transmit through eggs may have contributed to its drastically increased prevalence in the 1980s and 1990s. In the present study, using transposon-mediated mutagenesis, we have identified genes important for the association of Salmonella enterica serovar Enteritidis with chicken eggs. Our results indicate that genes involved in cell wall structural and functional integrity, and nucleic acid and amino acid metabolism are important for Salmonella enterica serovar Enteritidis to persist in egg albumen. Two regions unique to Salmonella enterica serovar Enteritidis were also identified, one of which enhanced the survival of a Salmonella enterica serovar Typhimurium isolate in egg albumen. The implication of our results to the serovar specificity of Salmonella enterica is also explored in the present study.  相似文献   

14.
Sensing and responding to environmental cues is a fundamental characteristic of bacterial physiology and virulence. Here we identify polyamines as novel environmental signals essential for virulence of Salmonella enterica serovar Typhimurium, a major intracellular pathogen and a model organism for studying typhoid fever. Central to its virulence are two major virulence loci Salmonella Pathogenicity Island 1 and 2 (SPI1 and SPI2). SPI1 promotes invasion of epithelial cells, whereas SPI2 enables S. Typhimurium to survive and proliferate within specialized compartments inside host cells. In this study, we show that an S. Typhimurium polyamine mutant is defective for invasion, intracellular survival, killing of the nematode Caenorhabditis elegans and systemic infection of the mouse model of typhoid fever. Virulence of the mutant could be restored by genetic complementation, and invasion and intracellular survival could, as well, be complemented by the addition of exogenous putrescine and spermidine to the bacterial cultures prior to infection. Interestingly, intracellular survival of the polyamine mutant was significantly enhanced above the wild type level by the addition of exogenous putrescine and spermidine to the bacterial cultures prior to infection, indicating that these polyamines function as an environmental signal that primes S. Typhimurium for intracellular survival. Accordingly, experiments addressed at elucidating the roles of these polyamines in infection revealed that expression of genes from both of the major virulence loci SPI1 and SPI2 responded to exogenous polyamines and was reduced in the polyamine mutant. Together our data demonstrate that putrescine and spermidine play a critical role in controlling virulence in S. Typhimurium most likely through stimulation of expression of essential virulence loci. Moreover, our data implicate these polyamines as key signals in S. Typhimurium virulence.  相似文献   

15.
International Microbiology - Acanthamoeba spp. and Salmonella share common habitats, and their interaction may influence the biofilm-forming ability of Salmonella. In this study, biofilm formation...  相似文献   

16.
Phages are a primary driving force behind the evolution of bacterial pathogens by transferring a variety of virulence genes into their hosts. Similar to other bacterial genomes, the Salmonella enterica serovar Enteritidis LK5 genome contains several regions that are homologous to phages. Although genomic analysis demonstrated the presence of prophages, it was unable to confirm which phage elements within the genome were viable. Genetic markers were used to tag one of the prophages in the genome to allow monitoring of phage induction. Commonly used laboratory strains of Salmonella were resistant to phage infection, and therefore a rapid screen was developed to identify susceptible hosts. This approach showed that a genetically tagged prophage, ELPhiS (Enteritidis lysogenic phage S), was capable of infecting Salmonella serovars that are diverse in host range and virulence and has the potential to laterally transfer genes between these serovars via lysogenic conversion. The rapid screen approach is adaptable to any system with a large collection of isolates and may be used to test the viability of prophages found by sequencing the genomes of various bacterial pathogens.  相似文献   

17.
Houseflies (Musca domestica) released into rooms containing hens challenged with Salmonella enterica serovar Enteritidis (Salmonella serovar Enteritidis) rapidly became contaminated with Salmonella serovar Enteritidis. Forty to 50% of the flies were contaminated at 48 h, and the percentage increased to 50 to 70% at 4 and 7 days postexposure and then decreased to 30% at day 15. Initial attempts at recovering surface organisms for culture using an aqueous rinse were largely unsuccessful, while cultures of internal contents readily recovered Salmonella serovar Enteritidis. However, when 0.5% detergent was incorporated into the rinse, high recovery levels of bacteria were observed from both external and internal culture regimens, indicating equal distribution of the organism on and in the fly and a tighter interaction of the organism with the host than previously thought. Salmonella serovar Enteritidis was isolated routinely from the fly gut, on rare occasions from the crop, and never from the salivary gland. Feeding contaminated flies to hens resulted in gut colonization of a third of the birds, but release of contaminated flies in a room containing previously unchallenged hens failed to result in colonization of any of the subject birds. These results indicate that flies exposed to an environment containing Salmonella serovar Enteritidis can become colonized with the organism and might serve as a source for transmission of Salmonella serovar Enteritidis within a flock situation.  相似文献   

18.
Salmonella enterica is an animal and zoonotic pathogen of worldwide importance and may be classified into serovars differing in virulence and host range. We sequenced and annotated the genomes of serovar Typhimurium, Choleraesuis, Dublin, and Gallinarum strains of defined virulence in each of three food-producing animal hosts. This provides valuable measures of intraserovar diversity and opportunities to formally link genotypes to phenotypes in target animals.  相似文献   

19.
Disruption of the seqA gene of Salmonella enterica serovar Typhimurium causes defects similar to those described in E. coli: filament formation, aberrant nucleoid segregation, induction of the SOS response, envelope instability, and increased sensitivity to membrane-damaging agents. Differences between SeqA mutants of E. coli and S. enterica, however, are found. SeqA mutants of S. enterica form normal colonies and do not exhibit alterations in phage plaquing morphology. Lack of SeqA causes attenuation of S. enterica virulence by the oral route but not by the intraperitoneal route, suggesting a virulence defect in the intestinal stage of infection. However, SeqA mutants are fully proficient in the invasion of epithelial cells. We hypothesize that attenuation of SeqA mutants by the oral route may be caused by bile sensitivity, which in turn may be a consequence of envelope instability.  相似文献   

20.
A total of 84 Salmonella enterica serovar Enteritidis (S. Enteritidis) isolates, 42 of human and 42 of poultry origin, were characterized for antimicrobial resistance patterns and class I integrons. Among them, 58 (69%) S. Enteritidis were multidrug-resistant (MDR) and showed resistance to two or more antibiotic classes. By PCR assays and DNA sequencing, 50 (59.5%) S. Enteritidis isolates were found to carry class I integrons. Amplification of internal variable regions of class I integrons revealed five different arrays (0.75 kb only, 1 kb only, 1.3 kb only, both 1 and 1.2 kb, and both 1 and 1.3 kb). The integrons were further sequenced and the dfrA25 (0.75 kb), aadA1 (1 kb), aadA2 (1 kb), bla(PSE1) (1.2 kb) aadA6-orfD (1.3 kb) gene cassette arrays were identified. Ciprofloxacin minimum inhibitory concentration (MIC) values for the three isolates that showed resistance or reduced susceptibility via the disc diffusion method were 0.5-4 μg mL(-1), although only three isolates exhibited resistance to cefteriaxone (MIC: 128-256 μg mL(-1)) and four isolates were resistant to florfenicol (MIC: 32-128 μg mL(-1)). In conclusion, the high rates of multidrug-resistance and class I integrons found among S. Enteritidis isolates in humans and poultry in Tehran suggest that efforts are needed to confine the prevalence of MDR Salmonella isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号