首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome P-450 2E1 CYP2E1 induction has been linked to oxidative stress in a number of experimental models. The aim of this study was to investigate the relationship between CYP2E1 activity and markers of oxidative stress and cardiac cell apoptosis during the development of alcoholic cardiomyopathy (ACM). Changes in left ventricular morphology were evaluated in 4 groups of chronically instrumented dogs (control; alcohol-receiving; and alcohol-receiving plus treatment with either valsartan or carnitine) after 6 months of treatment. CYP2E1 and calpain-1 protein expression were determined by Western blotting, and apoptosis evaluated by TUNEL and immunohistochemistry. Malonyl dialdehyde levels were assessed as a marker of oxidative stress, while superoxide dismutase and glutathione peroxidase levels were evaluated as markers of antioxidant defense mechanisms. Expression of CYP2E1 was increased in the alcohol-receiving group compared with controls (P<0.05) and was associated with oxidative stress. Similarly, expression of Bad and calpain-1 protein was increased after chronic alcohol exposure, while Bcl-xL protein expression remained at a low level. Bad and calpain-1 protein expressions were significantly inhibited by treatment with valsartan or carnitine, while expression of Bcl-xL protein was increased (P<0.05). Collectively, our results indicate a possibly significant role for CYP2E1 in the oxidative stress associated with chronic alcoholism. The resulting increase in oxidative stress is accompanied by cellular apoptosis and may ultimately contribute to tissue remodeling and ACM. Importantly, these alcohol-induced effects may be abrogated by means such as angiotensin 1 receptor blockade or carnitine supplementation.  相似文献   

2.
CD74, a non-polymorphic type II transmembrane glycoprotein and MHC class II chaperone, is the cell surface receptor for the inflammatory cytokine macrophage migration inhibitory factor (MIF) and participates in inflammatory signaling regulation. This study examined the potential role of CD74 in binge drinking-induced cardiac contractile dysfunction. WT and CD74 knockout mice were exposed to ethanol (3 g/kg/d, i.p., for 3 days). Echocardiography, cardiomyocyte function, histological staining and autophagy signaling including AMPK, mTOR, and AMPK downstream signals Skp2 and Sirt1 were evaluated. Our results revealed that ethanol challenge overtly compromised echocardiographic, cardiomyocyte contractile, intracellular Ca2+ and ultrastructural properties along with overt apoptosis, inflammation (elevated MIF, IL-1β and IL-6) and mitochondrial O2 production (p < 0.01), the effect of which was reconciled by CD74 ablation (p < 0.01 vs. ethanol group) with the exception of MIF expression. Ethanol challenge upregulated autophagy (p < 0.001), promoted AMPK phosphorylation and Sirt1 levels (p < 0.003) while suppressing mTOR phosphorylation and Skp2 levels (p < 0.02). These effects were reversed by CD74 ablation. In vitro studies demonstrated that short-term ethanol challenge compromised cardiomyocyte contractile function and facilitated GFP-Puncta formation, which were mitigated by CD74 knockout (p < 0.0001). Moreover, the CD74 ablation-offered beneficial effects against ethanol-induced cardiomyocyte dysfunction, and GFP-Puncta formation were nullified by the AMPK activator AICAR, the Skp2 inhibitor C1 or the Sirt1 activator SRT1720 (p < 0.0001). Taken together, our data revealed that CD74 ablation counteracts acute ethanol challenge-induced myocardial dysfunction, inflammation and apoptosis possibly through an AMPK-mTOR-Skp2-mediated regulation of autophagy.  相似文献   

3.
Insulin resistance leads to myocardial contractile dysfunction and deranged autophagy although the underlying mechanism or targeted therapeutic strategy is still lacking. This study was designed to examine the impact of inhibition of the cytochrome P450 2E1 (CYP2E1) enzyme on myocardial function and mitochondrial autophagy (mitophagy) in an Akt2 knockout model of insulin resistance. Adult wild-type (WT) and Akt2?/? mice were treated with the CYP2E1 inhibitor diallyl sulfide (100?mg/kg/d, i.p.) for 4?weeks. Cardiac geometry and function were assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate autophagy, mitophagy, inducible NOS (iNOS), and the NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex. Akt2 deletion triggered insulin resistance, compromised cardiac contractile and intracellular Ca2+ property, mitochondrial ultrastructural damage, elevated O2 production, as well as suppressed autophagy and mitophagy, accompanied with elevated levels of NLRP3 and iNOS, the effects of which were significantly attenuated or ablated by diallyl sulfide. In vitro studies revealed that the NLRP3 activator nigericin nullified diallyl sulfide-offered benefit against Akt2 knockout on cardiomyocyte mechanical function and mitophagy (using Western blot and colocalization of GFP-LC3 and MitoTracker Red). Moreover, inhibition of iNOS but not mitochondrial ROS production attenuated Akt2 deletion-induced activation of NLRP3, substantiating a role for iNOS-mediated NLRP3 in insulin resistance-induced changes in mitophagy and cardiac dysfunction. In conclusion, these data depict that insulin resistance through CYP2E1 may contribute to the pathogenesis of myopathic changes including myocardial contractile dysfunction, oxidative stress and mitochondrial injury, possibly through activation of iNOS and NLRP3 signaling.  相似文献   

4.
Lycopene attenuates alcoholic apoptosis in HepG2 cells expressing CYP2E1   总被引:2,自引:0,他引:2  
To test the hypothesis that ethanol-induced hepatic apoptosis is secondary to the oxidative stress generated by cytochrome P4502E1 (CYP2E1), we assessed the effects of the carotenoid lycopene, a potent antioxidant extracted from tomatoes, on oxidative stress and apoptosis in HepG2 cells overexpressing CYP2E1 (2E1 cells). These were exposed for 5 days to 100mM ethanol and 10 microM lycopene or an equal volume of placebo (vehicle). Ethanol significantly increased apoptosis measured by flow cytometry and by TUNEL assay. This was accompanied by an ethanol-induced oxidative stress: hydrogen peroxide production was significantly increased and mitochondrial GSH was strikingly decreased. Both were restored by lycopene, with a significant decrease in apoptosis. The placebo had no protective effect. In conclusion, Lycopene opposes the ethanol-induced oxidative stress and apoptosis in 2E1 cells. The parallelism between these effects suggests a causal link. Furthermore, these beneficial effects and the innocuity of lycopene now justify an in vivo trial.  相似文献   

5.
Sleep apnea syndrome (SAS) is considered to be associated with heart failure (HF). It is known that autophagy is induced in various heart diseases thereby promotes survival, but its excess may be maladaptive. Intermittent hypoxia (IH) plays pivotal role in the pathogenesis of SAS. We aimed to clarify the relationships among IH, autophagy, and HF. Rats underwent IH at a rate of 20 cycles/h (nadir of 4% O2 to peak of 21% O2 with 0% CO2) or normal air breathing (control) for 8 h/d for 3 weeks. IH increased the cardiac LC3II/LC3I ratio. The IH induced upregulation of LC3II was attenuated by the administration of an inhibitor of autophagosome formation 3-methyladenine (3-MA), but enhanced by an inhibitor of autophagosome–lysosome fusion chloroquine (CQ), showing enhanced autophagic flux in IH hearts. Electron microscopy confirmed an increase in autophagosomes and lysosomes in IH. With 3-MA or CQ, IH induced progressive deterioration of fractional shortening (FS) on echocardiography over 3 weeks, although IH, 3-MA, or CQ alone had no effects. With CQ, IH for 4 weeks increased serum troponin T levels, reflecting necrosis. Western blotting analyses showed dephosphorylation of Akt and mammalian target of rapamycin (mTOR) at Akt (Ser2448, 2481) sites, suggesting the activation of autophagy via Akt inactivation. Conclusions. IH-mediated autophagy maintains contractile function, whereas when autophagy is inhibited, IH induces systolic dysfunction due to myocyte necrosis. General significance. This study highlighted the potential implications of autophagy in cardio-protection in early SAS patients without comorbidity, reproduced in normal rats by 3 ~ 4 weeks of IH.  相似文献   

6.
CYP2E1 and oxidative liver injury by alcohol   总被引:3,自引:0,他引:3  
Ethanol-induced oxidative stress seems to play a major role in mechanisms by which ethanol causes liver injury. Many pathways have been suggested to contribute to the ability of ethanol to induce a state of oxidative stress. One central pathway seems to be the induction of cytochrome P450 2E1 (CYP2E1) by ethanol. CYP2E1 metabolizes and activates many toxicological substrates, including ethanol, to more reactive, toxic products. Levels of CYP2E1 are elevated under a variety of physiological and pathophysiological conditions and after acute and chronic alcohol treatment. CYP2E1 is also an effective generator of reactive oxygen species such as the superoxide anion radical and hydrogen peroxide and, in the presence of iron catalysts, produces powerful oxidants such as the hydroxyl radical. This review article summarizes some of the biochemical and toxicological properties of CYP2E1 and briefly describes the use of cell lines developed to constitutively express CYP2E1 and CYP2E1 knockout mice in assessing the actions of CYP2E1. Possible therapeutic implications for treatment of alcoholic liver injury by inhibition of CYP2E1 or CYP2E1-dependent oxidative stress will be discussed, followed by some future directions which may help us to understand the actions of CYP2E1 and its role in alcoholic liver injury.  相似文献   

7.
Chronic volume overload (VO) on the left ventricle (LV) augments redox stress and activates matrix metalloproteinase (MMP) which causes the endocardial endothelial-myocyte (EM) disconnection leading to myocardial contractile dysfunction. VO-induced MMP-9 activation impairs cardiac functions, in part by endothelial endocardial apoptosis, but the role of MMP-9 on EM functions remains obscure. We conjecture that chronic VO activates MMP-9 and causes EM uncoupling. Arteriovenous fistula (AVF) was created in genetically identical wild type (WT) mice (FVB/NJ) and MMP-9 knockout mice (MMP-9KO, FVB.Cg-MMP9(tm1Tvu)/J). Sham-operated mice were used as controls. Before experimentation the phenotype analysis of MMP-9KO mice was carried out. In-gel-gelatin zymography for MMP-9 activation was performed on LV homogenates. The EM functions were determined on LV rings using tissue myobath. We report a decrease in MMP-9 activity in left ventricular myocardial extracts in MMP-9 deficient mice after AVF. The responses to drugs affecting cardiac functions (acetylcholine (Ach), nitroprusside and bradykinin) were attenuated in AVF mice suggesting the impairment of EM coupling. Interestingly, the EM functions were restored in the MMP-9 deficient mice after AVF. We suggest a direct cause-and-effect relationship between MMP-9 activation and EM uncoupling in LV myocardium after chronic VO and the possible involvement of MMP-9 in myocardial contractile performance.  相似文献   

8.
《Free radical research》2013,47(10):1187-1198
Abstract

Aims. Endoplasmic reticulum (ER) stress exerts myocardial oxidative stress, apoptosis, and contractile anomalies, although the precise interplay between ER stress and apoptosis remains elusive. This study was designed to examine the impact of the cysteine-rich free radical scavenger metallothionein on ER stress-induced myocardial contractile defect and underlying mechanisms. Methods and results. Wild-type friendly virus B and transgenic mice with cardiac-specific overexpression of metallothionein were challenged with the ER stress inducer tunicamycin (1 mg/kg, intraperitoneal, 48 h) prior to the assessment of myocardial function, oxidative stress, and apoptosis. Our results revealed that tunicamycin promoted cardiac remodeling (enlarged left ventricular end systolic/diastolic diameters with little changes in left ventricular wall thickness), suppressed fractional shortening and cardiomyocyte contractile function, elevated resting Ca2+, decreased stimulated Ca2+ release, prolonged intracellular Ca2+ clearance, and downregulated sarco(endo)plasmic reticulum Ca2+-ATPase levels, the effects of which were negated by metallothionein. Treatment with tunicamycin caused cardiomyocyte mitochondrial injury, as evidenced by decreased mitochondrial membrane potential (??m, assessed by JC-1 staining), the effect of which was negated by the antioxidant. Moreover, tunicamycin challenge dramatically facilitated myocardial apoptosis as manifested by increased Bax, caspase 9, and caspase 12 protein levels, as well as elevated caspase 3 activity. Interestingly, metallothionein transgene significantly alleviated tunicamycin-induced myocardial apoptosis. Conclusion. Taken together, our data favor a beneficial effect of metallothionein against ER stress-induced cardiac dysfunction possibly associated with attenuation of myocardial apoptosis.  相似文献   

9.
Lipopolysaccharide (LPS) from gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complications in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis, and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity, and carbonyl formation. A Kaplan-Meier curve was constructed for survival after LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice after LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O(2)(-), and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury after LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by the antioxidant N-acetylcysteine and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy.  相似文献   

10.
Urethane is a multi-site animal carcinogen and was classified as "reasonably anticipated to be a human carcinogen." Urethane is a fermentation by-product and found at appreciable levels in alcoholic beverages and foods such as bread and cheese. Recent work in this laboratory demonstrated for the first time that CYP2E1 is the principal enzyme responsible for urethane metabolism. The current studies were undertaken to assess the relationships between CYP2E1-mediated metabolism and urethane-induced genotoxicity and cell proliferation as determined by induction of micronucleated erythrocytes (MN) and expression of Ki-67, respectively, using CYP2E1-null and wild-type mice. Urethane was administered at 0 (vehicle), 1, 10, or 100mg/kg/day (p.o.), 5 days/week for 6 weeks. A significant dose-dependent increase in MN was observed in wild-type mice; however, a slight increase was measured in the MN-polychromatic erythrocytes in CYP2E1-null mice treated with 100mg/kg. A significant increase in the expression of Ki-67 was detected in the livers and the lungs (terminal bronchioles, alveoli, and bronchi) of wild-type mice administered 100mg urethane/kg in comparison to controls. In contrast, CYP2E1-null mice administered this dose exhibited negligible alterations in Ki-67 expression in the livers and lungs compared to controls. Interestingly, while Ki-67 expression in the forestomach decreased in wild-type mice, it increased in CYP2E1-null mice. Subsequent comparative metabolism studies demonstrated that total urethane-derived radioactivity in the plasma, liver, and lung was significantly higher in CYP2E1-null versus wild-type mice and un-metabolized urethane constituted greater than 83% of the radioactivity in CYP2E1-null mice. Un-metabolized urethane was not detectable in the plasma, liver, and lung of wild-type mice. In conclusion, these data demonstrated that CYP2E1-mediated metabolism of urethane, presumably via epoxide formation, is necessary for the induction of genotoxicity, and cell proliferation in the liver and lung of wild-type mice.  相似文献   

11.
Following myocardial infarction (MI), contractile dysfunction develops not only in the infarct zone but also in noninfarcted regions of the left ventricle remote from the infarct zone. Inflammatory activation secondary to MI stimulates inducible nitric oxide synthase (iNOS) induction with excess production of nitric oxide. We hypothesized that the anti-inflammatory effects of selective A(2A)-adenosine receptor (A(2A)AR) stimulation would suppress inflammation and preserve cardiac function in the remote zone early after MI. A total of 53 mice underwent 60 min of coronary occlusion followed by 24 h of reperfusion. The A(2A)AR agonist (ATL146e, 2.4 microg/kg) was administered intraperitoneally 1, 3, and 6 h postreperfusion. Because of the 1-h delay in treatment after MI, ATL146e had no effect on infarct size, as demonstrated by contrast-enhanced cardiac MRI (n = 18) performed 24 h post-MI. ATL146e did however preserve global cardiac function at that time by limiting contractile dysfunction in remote regions [left ventricle wall thickening: 51 +/- 4% in treated (n = 9) vs. 29 +/- 3% in nontreated groups (n = 9), P < 0.01]. RT-PCR, immunohistochemistry, and Western blot analysis indicated that iNOS mRNA and protein expression were significantly reduced by ATL146e treatment in both infarcted and noninfarcted zones. Similarly, elevations in plasma nitrate-nitrite after MI were substantially blunted by ATL146e (P < 0.01). Finally, treatment with ATL146e reduced NF-kappaB activation in the myocardium by over 50%, not only in the infarct zone but also in noninfarcted regions (P < 0.05). In conclusion, A(2A)AR stimulation after MI suppresses inflammatory activation and preserves cardiac function, suggesting the potential utility of A(2A)AR agonists against acute heart failure in the immediate post-MI period.  相似文献   

12.
Myocardial ischemia/reperfusion (I/R) injury leads to high mortality and morbidity due to the incomplete understanding of the underlying mechanism and the consequent lack of effective therapy. The present study revealed and validated key candidate genes in relation to inflammation and apoptosis pathways underlying myocardial I/R injury. Cathepsin S was identified as the top hub protein based on the protein–protein interaction analysis, and, thus, its role during myocardial I/R injury was further investigated. Myocardial I/R in mice resulted in significantly increased levels of myocardial injury biomarkers (cardiac troponin I, lactic dehydrogenase, and creatinine kinase‐MB) and inflammatory cytokines (interleukin‐1β [IL‐1β], IL‐6, and tumor necrosis factor‐α), elevated apoptosis rate, and upregulated protein expression of cleaved caspase‐8, cleaved caspase‐3, and cleaved poly ADP‐ribose polymerase. These abovementioned changes were blocked by two different selective cathepsin S inhibitors, LY3000328 or MIV‐247. Moreover, Kaplan–Meier survival plot showed that cathepsin S inhibition improved 21‐day survival rate following myocardial I/R injury. This study demonstrated that the inhibition of cathepsin S alleviated myocardial I/R‐induced injury by suppressing inflammation and apoptosis, which may be used in clinical applications of cardioprotection.  相似文献   

13.
We hypothesized that myocardial stunning would be reversed through increased cyclic GMP caused by nitroprusside, and that this would be accomplished through a decreased proportion of regional work during diastole. Hearts were instrumented to measure left ventricular pressure, and regional myocardial mechanics were recorded using a miniature force transducer and ultrasonic dimension crystals in eight open-chest anesthetized dogs. Following baseline (CON), the left anterior descending coronary artery (LAD) was occluded for 15 min, followed by a 30-min recovery (STUN). Then intracoronary LAD infusion of sodium nitroprusside (NP) (4 microg/kg/ min) was begun. The time delay (msec) to regional shortening increased significantly from 18+/-13 to 73+/-13 following stunning, but was reduced to 49+/-18 by NP. Total regional work (g*mm/min) at baseline (1368+/-401 CON) was unchanged with stunning (1320+/-333 STUN), but reduced (961+/-240) following NP. Time to peak force development (msec) increased significantly with stunning from 284+/-13 (CON) to 333+/-11 (STUN), but was reduced to 269+/-12 following NP. The percentage work during systole was reduced from 96%+/-2% (CON) to 77%+/-7% (STUN), but returned to 98%+/-1% with NP. Regional O2 consumption was unaffected by either treatment. Cyclic GMP was unchanged by stunning (2.9+/-0.3-2.9+/-0.4 pmol/g) but increased significantly with NP (4.6+/-0.6). These data indicated that regional myocardial stunning could be attenuated by nitroprusside, which increased cyclic GMP, decreased contractile delay, increased the proportion of work done during systole, and reduced time of shortening.  相似文献   

14.
15.

Background

In recent years, there has been a growing interest to explore the association between liver injury and diabetes. Advanced glycated end product (AGE) formation which characterizes diabetic complications is formed through hyperglycemia mediated oxidative stress and is itself a source for ROS. Further, in VL-17A cells over-expressing ADH and CYP2E1, greatly increased oxidative stress and decreased viability have been observed with high glucose exposure.

Methods

In VL-17A cells treated with high glucose and pretreated with the different inhibitors of ADH and CYP2E1, the changes in cell viability, oxidative stress parameters and formation of AGE, were studied.

Results

Inhibition of CYP2E1 with 10 μM diallyl sulfide most effectively led to decreases in the oxidative stress and toxicity as compared with ADH inhibition with 2 mM pyrazole or the combined inhibition of ADH and CYP2E1 with 5 mM 4-methyl pyrazole. AGE formation was decreased in VL-17A cells when compared with HepG2 cells devoid of the enzymes. Further, AGE formation was decreased to the greatest extent with the inhibitor for CYP2E1 suggesting that high glucose inducible CYP2E1 and the consequent ROS aid AGE formation.

Conclusions

Thus, CYP2E1 plays a pivotal role in the high glucose induced oxidative stress and toxicity in liver cells as observed through direct evidences obtained utilizing the different inhibitors for ADH and CYP2E1.

General significance

The study demonstrates the role of CYP2E1 mediated oxidative stress in aggravating hyperglycemic insult and suggests that CYP2E1 may be a vital component of hyperglycemia mediated oxidative injury in liver.  相似文献   

16.
Aging is associated with hepatic growth hormone resistance resulting in a fall in serum insulin-like growth factor 1 (IGF-1) level. However, whether loss of IGF-1 contributes to cardiac aging is unclear. This study was designed to examine the effect of cardiac overexpression of IGF-1 on cardiomyocyte contractile function in young (3 mo) and old (26-28 mo) mice. Cardiomyocyte contractile function was evaluated, including peak shortening (PS), time to 90% PS, time to 90% relengthening (TR(90)), and maximal velocity of shortening/relengthening (+/-dL/dt). Levels of advanced glycation end product, protein carbonyl, sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a), phospholamban, and Na(+)/Ca(2+) exchanger were assessed by Western blot analysis. SERCA activity was measured by (45)Ca(2+) uptake. Aging induced a decline in plasma IGF-1 levels. Aged cells exhibited depressed +/-dL/dt, prolonged TR(90), and a steeper PS decline in response to increasing stimulus frequency compared with those in young myocytes. IGF-1 transgene alleviated aging-induced loss in plasma IGF-1 and aging-induced mechanical defects with little effect in young mice. The beneficial effect of IGF-1 transgene on aging-associated cardiomyocyte contractile dysfunction was somewhat mimicked by short-term in vitro treatment of recombinant IGF-1 (500 nM). Advanced glycation end product and protein carbonyl levels were higher in aged mice, which were not affected by IGF-1. Expression of SERCA2a (but not Na(+)/Ca(2+) exchanger and phospholamban) and SERCA activity were reduced with aging, which was ablated by the IGF-1 transgene. Collectively, our data suggest a beneficial role of IGF-1 in aging-induced cardiac contractile dysfunction, possibly related to improved Ca(2+) uptake.  相似文献   

17.
Sepsis-induced myocardial dysfunction is associated with increased oxidative stress and mitochondrial dysfunction. Current evidence suggests a protective role of thioredoxin-1 (Trx1) in the pathogenesis of cardiovascular diseases. However, it is unknown yet a putative role of Trx1 in sepsis-induced myocardial dysfunction, in which oxidative stress is an underlying cause. Transgenic male mice with Trx1 cardiac-specific overexpression (Trx1-Tg) and its wild-type control (wt) were subjected to cecal ligation and puncture or sham surgery. After 6, 18, and 24 h, cardiac contractility, antioxidant enzymes, protein oxidation, and mitochondrial function were evaluated. Trx1 overexpression improved the average life expectancy (Trx1-Tg: 36, wt: 28 h; p = 0.0204). Sepsis induced a decrease in left ventricular developed pressure in both groups, while the contractile reserve, estimated as the response to β-adrenergic stimulus, was higher in Trx1-Tg in relation to wt, after 6 h of the procedure. Trx1 overexpression attenuated complex I inhibition, protein carbonylation, and loss of membrane potential, and preserved Mn superoxide dismutase activity at 24 h. Ultrastructural alterations in mitochondrial cristae were accompanied by reduced optic atrophy 1 (OPA1) fusion protein, and activation of dynamin-related protein 1 (Drp1) (fission protein) in wt mice at 24 h, suggesting mitochondrial fusion/fission imbalance. PGC-1α gene expression showed a 2.5-fold increase in Trx1-Tg at 24 h, suggesting mitochondrial biogenesis induction. Autophagy, demonstrated by electron microscopy and increased LC3-II/LC3-I ratio, was observed earlier in Trx1-Tg. In conclusion, Trx1 overexpression extends antioxidant protection, attenuates mitochondrial damage, and activates mitochondrial turnover (mitophagy and biogenesis), preserves contractile reserve and prolongs survival during sepsis.  相似文献   

18.
Acetaminophen is a commonly used drug for the treatment of patients with common cold and influenza. However, an overdose of acetaminophen may be fatal. In this study we investigated whether mice, administered intraperitoneally with a lethal dose of acetaminophen, when followed by oral administration of Phyllanthus urinaria extract, may be prevented from death. Histopathological analysis of mouse liver sections showed that Phyllanthus urinaria extract may protect the hepatocytes from acetaminophen-induced necrosis. Therapeutic dose of Phyllanthus urinaria extract did not show any toxicological phenomenon on mice. Immunohistochemical staining with the cytochrome P450 CYP2E1 antibody revealed that Phyllanthus urinaria extract reduced the cytochrome P450 CYP2E1 protein level in mice pre-treated with a lethal dose of acetaminophen. Phyllanthus urinaria extract also inhibited the cytochrome P450 CYP2E1 enzymatic activity in vitro. Heavy metals, including arsenic, cadmium, mercury and lead, as well as herbicide residues were not found above their detection limits. High performance liquid chromatography identified corilagin and gallic acid as the major components of the Phyllanthus urinaria extract. We conclude that Phyllanthus urinaria extract is effective in attenuating the acetaminophen induced hepatotoxicity, and inhibition of cytochrome P450 CYP2E1 enzyme may be an important factor for its therapeutic mechanism.  相似文献   

19.
Previously we showed that intact rat cytochrome P450 2E1, cytochrome P450 2B1 and truncated cytochrome P450 1A1 are targeted to mitochondria in rat tissues and COS cells. However, some reports suggest that truncated cytochrome P450 2E1 is targeted to mitochondria. In this study, we used a heterologous yeast system to ascertain the conservation of targeting mechanisms and the nature of mitochondria-targeted proteins. Mitochondrial integrity and purity were established using electron microscopy, and treatment with digitonin and protease. Full-length cytochrome P450 2E1 and cytochrome P450 2B1 were targeted both to microsomes and mitochondria, whereas truncated cytochrome P450 1A1 (+ 5 and + 33/cytochrome P450 1A1) were targeted to mitochondria. Inability to target intact cytochrome P450 1A1 was probably due to lack of cytosolic endoprotease activity in yeast cells. Mitochondrial targeting of cytochrome P450 2E1 was severely impaired in protein kinase A-deficient cells. Similarly, a phosphorylation site mutant cytochrome P450 2E1 (Ser129A) was poorly targeted to the mitochondria, thus confirming the importance of protein kinase A-mediated protein phosphorylation in mitochondrial targeting. Mitochondria-targeted proteins were localized in the matrix compartment peripherally associated with the inner membrane and their ethoxyresorufin O-dealkylation, erythromycin N-demethylase, benzoxyresorufin O-dealkylation and nitrosodimethylamine N-demethylase activities were fully supported by yeast mitochondrial ferredoxin and ferredoxin reductase.  相似文献   

20.
Tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) have been implicated in cardiac dysfunction during endotoxemia. Because IL-18 is a proinflammatory cytokine known to mediate the production of TNF-alpha and IL-1beta and to induce the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), we hypothesized that neutralization of IL-18 would attenuate lipopolysaccharide (LPS)-induced cardiac dysfunction. Mice (C57BL/6) were injected with LPS (0.5 mg/kg ip) or vehicle (normal saline), and left ventricular developed pressure (LVDP) was determined by the Langendorff technique. LVDP was depressed by 38% at 6 h after LPS. LPS-induced myocardial dysfunction was associated with increased myocardial levels of TNF-alpha and IL-1beta as well as increased expression of ICAM-1/VCAM-1. Pretreatment with neutralizing anti-mouse IL-18 antibody attenuated LPS-induced myocardial dysfunction (by 92%) and was associated with reduced myocardial IL-1beta production (65% reduction) and ICAM-1/VCAM-1 expression (50% and 35% reduction, respectively). However, myocardial TNF-alpha levels were not influenced by neutralization of IL-18. In conclusion, neutralization of IL-18 protects against LPS-induced myocardial dysfunction. IL-18 may mediate endotoxemic myocardial dysfunction through induction of and/or synergy with IL-1beta, ICAM-1, and VCAM-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号