首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
This study demonstrates unique differences in the conformational nature of cathepsin L compared to elastase when complexed with the serpin endopin 2C, assessed by susceptibilities of protease/endopin 2C complexes to proteolysis by trypsin. Complexed and uncomplexed cathepsin L were resistant to degradation by trypsin, which indicated that trypsin cleavage sites within cathepsin L remain inaccessible when this cysteine protease is complexed with the endopin 2C serpin. In contrast, elastase in complexes with endopin 2C was degraded by trypsin, but uncomplexed elastase was not degraded. These results demonstrate a change in the conformational properties of trypsin cleavage sites within elastase when it is complexed with endopin 2C, compared to uncomplexed elastase. Cathepsin L complexes with endopin 2C were short-lived, but elastase complexes were stable. Furthermore, cathepsin L dissociated from complexes demonstrated recovery of cathepsin L activity, and reducing conditions provided optimum recovery of cathepsin L activity. These findings suggest that cathepsin L, when complexed with endopin 2C, maintains its general conformation in a manner that allows recovery of cathepsin L activity upon dissociation from endopin 2C. These results demonstrate differences in the relative conformational properties of the cysteine protease cathepsin L, compared to the serine protease elastase, in complexes with the serpin endopin 2C.  相似文献   

3.
4.
5.
6.
The major cysteine protease in embryos and larvae of the brine shrimp Artemia franciscana is a heterodimer composed of a cathepsin L-like polypeptide of 28.5 kDa and a 31.5 kDa polypeptide called the cathepsin L-associated protein or CLAP. In a previous study, CLAP was shown to be a cell adhesion protein containing two Fas I domains and two GTP/ATP binding sites known as Walker A and B motifs. Here, we have characterized CLAP and its genes to better understand the role of this protein in Artemia development. The polymerase chain reaction was used to investigate the structure of the CLAP gene in two species of Artemia, the New World bisexual diploid A. franciscana and the Old World parthenogenetic tetraploid Artemia parthenogenetica. The protein coding region of the CLAP gene from each species was 99.5% identical for a protein of 332 amino acids, while the 3' non-coding region, representing nearly 45% of the gene, was only 86% identical between the two related species. However, while the CLAP gene is intronless in A. franciscana, in A. parthenogenetica the gene contained a mini-intron of 30 base pairs in the 3' non-coding region. The sequences representing the CLAP gene in A. franciscana and A. parthenogenetica have been entered into the NCBI database as AY757920 and DQ100385, respectively. Northern blot analysis showed that while the cathepsin L gene is expressed constitutively in Artemia franciscana embryos and young larvae, the CLAP gene is not expressed in late embryos and young larvae. In contrast, Western blots indicated that CLAP is present in developing embryos and young larvae, at least to the first larval molt, supporting results obtained previously showing CLAP's resistance to degradation by its dimeric partner, cathepsin L. At the protein level we showed that the GTP/ATP binding sites in CLAP are functional with rate constants of 0.024 and 0.022 for GTP and ATP hydrolase activity, respectively. GTP but not ATP also had a slight stimulatory effect on cathepsin L activity of the heterodimeric protease containing CLAP. Our results support the hypothesis that CLAP plays an important role in targeting and expression regulation of cathepsin L activity during early development of Artemia.  相似文献   

7.
Cathepsins have been found to have important physiological roles. The implication of cathepsin L in various types of cancers is well established. In a search for selective cathepsin L inhibitors as anticancer agents, a series of 2-cyanoprrolidine peptidomimetics, carrying a nitrile group as warhead, were designed. Two series of compounds, one with a benzyl moiety and a second with an isobutyl moiety at P2 position of the enzyme were synthesized. The synthesized compounds were evaluated for inhibitory activity against human cathepsin L and cathepsin B. Although, none of the compounds showed promising inhibitory activity, (E)N-{(S)1-[(S)2-cyano-1-pyrrolidinecarbonyl]-3-methylbutyl}-2,3-diphenylacrylamide (24) with an isobutyl moiety at P2 was found to show selectivity as a cathepsin L inhibitor (Ki 5.3 μM for cathepsin L and Ki > 100 μM for cathepsin B). This compound could act as a new lead for the further development of improved inhibitors within this inhibitor type.  相似文献   

8.
Cathepsins V and L have high identity and few structural differences. In this paper, we reported a comparative study of the hydrolytic activities of recombinant human cathepsins V and L using fluorescence resonance energy transfer peptides derived from Abz-KLRSSKQ-EDDnp (Abz = ortho-aminobenzoic acid and EDDnp = N-(2,4-dinitrophenyl)ethylenediamine). Five series of peptides were synthesized to map the S3 to S2' subsites. The cathepsin V subsites S1 and S3 present a broad specificity while cathepsin L has preference for positively charged residues. The S2 subsites of both enzymes require hydrophobic residues with preference for Phe and Leu. The S1' and S2' subsites of cathepsins V and L are less specific. Based on these data we designed substrates to explore the electrostatic potential differences of them. Finally, the kininogenase activities of these cathepsins were compared using synthetic human kininogen fragments. Cathepsin V preferentially released Lys-bradykinin while cathepsin L released bradykinin. This kininogenase activity by cathepsins V and L was also observed from human high and low molecular weight kininogens.  相似文献   

9.
10.
11.
Cathepsins, a superfamily of hydrolytic enzymes produced and enclosed within lysosomes, function in immune response in vertebrates; however, their function within the innate immune system of invertebrates remains largely unknown. Therefore, we investigated the immune functionality of cathepsin A (catA) in Chinese mitten crab (Eriocheir sinensis), a commercially important and disease vulnerable aquaculture species. The full length catA cDNA (2200 bp) was cloned via PCR based upon an initial expressed sequence tag (EST) isolated from a hepatopancreatic cDNA library. The catA cDNA contained a 1398 bp open reading frame (ORF) that encoded a putative 465 amino acid (aa) protein. Comparisons with other reported vertebrate cathepsins sequences revealed percent identity range from 48 to 51%. CatA mRNA expression in E. sinensis was (a) tissue-specific, with the highest expression observed in gill and (b) responsive in hemocytes to a Vibrio anguillarum challenge, with peak exposure observed 12 h post-injection. Collectively, data demonstrate the successful isolation of catA from the Chinese mitten crab, and its involvement in the innate immune system of an invertebrate.  相似文献   

12.
A small library of peptide amides was designed to profile the cathepsin L active site. Within the cathepsin family of cysteine proteases, the first round of selection was on cathepsin L and cathepsin B, and then selected hits were further evaluated for binding to cathepsin K and cathepsin S. Five highly selective sequences with submicromolar affinities towards cathepsin L were identified. An acyloxymethyl ketone warhead was then attached to these sequences. Although these original irreversible inhibitors inactivate cathepsin L, it appears that the nature of the warhead drastically impact the selectivity profile of the resulting covalent inhibitors.  相似文献   

13.
Human cathepsin L is a ubiquitously expressed endopeptidase and is known to play critical roles in a wide variety of cellular signaling events. Its overexpression has been implicated in numerous human diseases, including highly invasive forms of cancer. Inhibition of cathepsin L is therefore considered a viable therapeutic strategy. Unfortunately, several redundant and even opposing roles of cathepsin L have recently emerged. Selective cathepsin L probes are therefore needed to dissect its function in context-specific manner before significant resources are directed into drug discovery efforts. Herein, the development of a clickable and tagless activity-based probe of cathepsin L is reported. The probe is highly efficient, active-site directed and activity-dependent, selective, cell penetrable, and non-toxic to human cells. Using zebrafish model, we demonstrate that the probe can inhibit cathepsin L function in vivo during the hatching process. It is anticipated that the probe will be a highly effective tool in dissecting cathepsin L biology at the proteome levels in both normal physiology and human diseases, thereby facilitating drug-discovery efforts targeting cathepsin L.  相似文献   

14.
Recent new findings indicate significant biological roles of cysteine cathepsin proteases in secretory vesicles for production of biologically active peptides. Notably, cathepsin L in secretory vesicles functions as a key protease for proteolytic processing of proneuropeptides (and prohormones) into active neuropeptides that are released to mediate cell-cell communication in the nervous system for neurotransmission. Moreover, cathepsin B in secretory vesicles has been recently identified as a β-secretase for production of neurotoxic β- amyloid (Aβ) peptides that accumulate in Alzheimer's disease (AD), participating as a notable factor in the severe memory loss in AD. These secretory vesicle functions of cathepsins L and B for production of biologically active peptides contrast with the well-known role of cathepsin proteases in lysosomes for the degradation of proteins to result in their inactivation. The unique secretory vesicle proteome indicates proteins of distinct functional categories that provide the intravesicular environment for support of cysteine cathepsin functions. Features of the secretory vesicle protein systems insure optimized intravesicular conditions that support the proteolytic activity of cathepsins. These new findings of recently discovered biological roles of cathepsins L and B indicate their significance in human health and disease. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

15.
There is limited information on the biology and pathogenesis of Leishmania aethiopica, causative agent of cutaneous leishmaniasis (CL) in Ethiopia. In this study we have identified and characterized two cathepsin L-like cysteine protease genes, Laecpa and Laecpb, from L. aethiopica. The predicted amino acid sequence of Laecpa and Laecpb is more than 75% identical with homologous cathepsin L-like cysteine protease genes of other Leishmania species and less than 50% identical with human cathepsin L. Laecpa is expressed predominantly in the stationary, and to a lower level, during the amastigote stage while Laecpb is specifically expressed in the stationary stage of L. aethiopica development. Phylogenetic analysis showed that the two genes are grouped into separate clades which are the result of gene duplication. The isolation of these genes will be useful in developing Leishmania species specific diagnostics for molecular epidemiological studies and serves as a first step to study the role of cysteine proteases in L. aethiopica pathogenesis.  相似文献   

16.
17.
In order to diversify the pharmacological activity of chalcones and extend the scaffold of topoisomerase and cathepsins B and L inhibitors, we have designed and synthesized total 18 chalcone compounds and tested their biological activity. In the topoisomerase inhibition test, most analogues in group III and IV except compound 11 exhibited more efficient topoisomerase I inhibitory activity than camptothecin at 20 μM. Compounds 15, 16 and 18 in group IV showed significant cathepsin B and L inhibitory activity. Among the compounds, compound 15 was most active with IC50 values of 1.81 ± 0.05 μM on cathepsin B and 3.15 ± 0.07 μM on cathepsin L, respectively. Compound 15 also showed most potent cytotoxic activity against T47D and SNU638 cells with IC50 values of 1.37 ± 0.05 μM and 0.62 ± 0.01 μM, respectively. Overall, although more compounds should be tested and analyzed for clear SAR against topoisomerase I and cathepsin B and L, compound 15 showed consistent inhibitory ability on the tested assays, which can implicate the cytotoxic activity of compound 15 on topoisomerase I and cathepsin B and L inhibitory pathways.  相似文献   

18.
19.
Diaprepes abbreviatus is an important pest that causes extensive damage to citrus in the USA. Analysis of an expressed sequence tag (EST) library from the digestive tract of larvae and adult D. abbreviatus identified cathepsins as major putative digestive enzymes. One class, sharing amino acid sequence identity with cathepsin L’s, was the most abundant in the EST dataset representing 14.4% and 3.6% of the total sequences in feeding larvae and adults, respectively. The predominant cathepsin (Da-CTSL1) among this class was further studied. Three dimensional modeling of the protein sequence showed that the mature Da-CTSL1 protein folds into an expected cathepsin L structure producing a substrate binding pocket with appropriate positioning of conserved amino acid residues. A full-length cDNA was obtained and the proCTSL1 encoding sequence was expressed in Rosetta™ Escherichia coli cells engineered to express tRNAs specific for eukaryotic codon usage. The Da-CTSL1 was expressed as a fusion protein with GST and His6 tags and purified in the presence of 1% Triton X-100 by Ni-NTA affinity and size exclusion chromatography. Recombinant mature Da-CTSL1 (23 KDa) exhibits optimal activity at pH 8, rather than at acidic pH that was shown of all previously characterized cathepsins L. Substrate specificity supports the hypothesis that Da-CTSL1 is a unique basic cathepsin L and protease inhibitor studies also suggest unique activity, unlike other characterized acidic cathepsin Ls. This paper describes for the first time a prokaryotic expression system for the production of a functional eukaryotic cathepsin L1 from larval gut of D. abbreviatus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号