首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Multiple sclerosis (MS) is a chronic, demyelinating disease that affects the central nervous system and is characterized by a complex pathogenesis and difficult management. The identification of new biomarkers would be clinically useful for more accurate diagnoses and disease monitoring. Metabolomics, the identification of small endogenous molecules, offers an instantaneous molecular snapshot of the MS phenotype. Here the metabolomic profiles (utilizing plasma from patients with MS) were characterized with a Gas cromatography-mass spectrometry-based platform followed by a multivariate statistical analysis and comparison with a healthy control (HC) population. The obtained partial least square discriminant analysis (PLS-DA) model identified and validated significant metabolic differences between individuals with MS and HC (R2X = 0.223, R2Y = 0.82, Q2 = 0.562; p < 0.001). Among discriminant metabolites phosphate, fructose, myo-inositol, pyroglutamate, threonate, l-leucine, l-asparagine, l-ornithine, l-glutamine, and l-glutamate were correctly identified, and some resulted as unknown. A receiver operating characteristic (ROC) curve with AUC 0.84 (p = 0.01; CI: 0.75–1) generated with the concentrations of the discriminant metabolites, supported the strength of the model. Pathway analysis indicated asparagine and citrulline biosynthesis as the main canonical pathways involved in MS. Changes in the citrulline biosynthesis pathway suggests the involvement of oxidative stress during neuronal damage. The results confirmed metabolomics as a useful approach to better understand the pathogenesis of MS and to provide new biomarkers for the disease to be used together with clinical data.  相似文献   

2.
Early findings propose that impaired neurotransmission in the brain plays a key role in the pathophysiology of schizophrenia. Recent advances in understanding its multiple etiologies and pathogenetic mechanisms provide more speculative hypotheses focused on even broader somatic systems. Using a targeted tandem mass spectrometry (MS/MS)-based metabolomic platform, we compared metabolic signatures consisting of monoamine and amino acid neurotransmitter (NT) metabolites in plasma/urine simultaneously between first-episode neuroleptic-na?ve schizophrenia patients (FENNS) and healthy controls before and after a 6-week risperidone monotherapy, which suggest that the patient NT profiles are restoring during treatment. To detect and identify potential biomarkers associated with schizophrenia and risperidone treatment, we also performed a combined ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) and (1)H nuclear magnetic resonance (NMR)-based metabolomic profiling of the same samples, indicating a further deviation of the patients' global metabolic profile from that of controls. The NTs and their metabolites together with the 32 identified biomarkers underpin that metabolic pathways including NT metabolism, amino acid metabolism, glucose metabolism, lipid metabolism, energy metabolism, antioxidant defense system, bowel microflora and endocrine system are disturbed in FENNS. Among them, pregnanediol, citrate and α-ketoglutarate (α-KG) were significantly associated with symptomatology of schizophrenia after Bonferroni correction and may be useful biomarkers for monitoring therapeutic efficacy. These findings promise to yield valuable insights into the pathophysiology of schizophrenia and may advance the approach to treatment, diagnosis and disease prevention of schizophrenia and related syndromes.  相似文献   

3.
One of the most well-characterised plant pathogenic interactions involves Arabidopsis thaliana and the bacteria Pseudomonas syringae pathovar tomato (Pst). The standard Pst inoculation procedure involves infiltration of large populations of bacteria into plant leaves which means that metabolite changes cannot be readily assigned to the host or pathogen. A plant cell–pathogen co-culture based approach has been developed where the plant and pathogen cells are separated after 12 h of co-culture via differential filtering and centrifugation. Fourier transform infrared (FT-IR) spectroscopy was employed to assess the intracellular metabolomes (metabolic fingerprints) of both host and pathogen and their extruded (extracellular) metabolites (metabolic footprints) under conditions relevant to disease and resistance. We propose that this system will enable the metabolomic profiling of the separated host and pathogen (i.e. ‘dual metabolomics’) and will facilitate the modelling of reciprocal responses.  相似文献   

4.
The effect of long-term (30 days) exposure to PCZ (0.2, 50, and 500 μg l?1) on intestine-related biochemical markers in rainbow trout was investigated. Multiple biomarkers were measured, including digestive enzymes (proteolytic enzymes and amylase), antioxidant responses (TBARS, CP, SOD, CAT, GR and GPx) and energy metabolic parameters (RNA/DNA ratio, Na+-K+-ATPase). Exposure to 500 μg l?1 PCZ led to significantly inhibited (p < 0.01) proteolytic enzyme and amylase activity. Activities of the antioxidant enzymes SOD, CAT, and GPx gradually increased at lower PCZ concentrations (0.2 and 50 μg l?1). At the highest concentration (500 μg l?1), oxidative stress was apparent as significant higher (p < 0.05) lipid peroxidation and protein carbonyls, associated with an inhibition of antioxidant enzymes activity. Moreover, energy metabolic parameters (RNA/DNA ratio, Na+-K+-ATPase) were significantly inhibited (p < 0.01) in the intestines of fish exposed to 500 μg l?1 PCZ, compared with controls. We suggest that long-term exposure to PCZ could result in several responses in intestine-related biochemical markers, which potentially could be used as indicators for monitoring residual PCZ present in the aquatic environment.  相似文献   

5.
Saccharomyces cerevisiae is a promising source organism for the development of a practical, eukaryotic crude extract based cell-free protein synthesis (CFPS) system. Crude extract CFPS systems represent a snapshot of the active metabolism in vivo, in response to the growth environment at the time of harvest. Therefore, fermentation plays a central role in determining metabolic activity in vitro. Here, we developed a fermentation protocol using chemically defined media to maximize extract performance for S. cerevisiae-based CFPS. Using this new protocol, we obtained a 4-fold increase in protein synthesis yields with extracts derived from wild-type S288c as compared to a previously developed protocol that uses complex growth media. The final luciferase yield in our new method was 8.86 ± 0.28 μg mL−1 in a 4 h batch reaction. For each of the extracts processed under different fermentation conditions, synthesized protein, precursor monomers (amino acids), and energy substrates (nucleotides) were evaluated to analyze the effect of the changes in the growth environment on cell-free metabolism. This study underscores the critical role fermentation plays in preparing crude extract for CFPS reactions and offers a simple strategy to regulate desired metabolic activity for cell-free synthetic biology applications based on crude cell extracts.  相似文献   

6.
Metabolomics is a powerful new technology that allows for the assessment of global metabolic profiles in easily accessible biofluids and biomarker discovery in order to distinguish between diseased and nondiseased status information. Deciphering the molecular networks that distinguish diseases may lead to the identification of critical biomarkers for disease aggressiveness. However, current diagnostic methods cannot predict typical Jaundice syndrome (JS) in patients with liver disease and little is known about the global metabolomic alterations that characterize JS progression. Emerging metabolomics provides a powerful platform for discovering novel biomarkers and biochemical pathways to improve diagnostic, prognostication, and therapy. Therefore, the aim of this study is to find the potential biomarkers from JS disease by using a nontarget metabolomics method, and test their usefulness in human JS diagnosis. Multivariate data analysis methods were utilized to identify the potential biomarkers. Interestingly, 44 marker metabolites contributing to the complete separation of JS from matched healthy controls were identified. Metabolic pathways (Impact-value≥0.10) including alanine, aspartate, and glutamate metabolism and synthesis and degradation of ketone bodies were found to be disturbed in JS patients. This study demonstrates the possibilities of metabolomics as a diagnostic tool in diseases and provides new insight into pathophysiologic mechanisms.  相似文献   

7.
An innovative operation mode in two-liquid phase bioreactors (TLPB) for the treatment of volatile organic compounds (VOC) was investigated. This mode was based on confining the biocatalytic activity exclusively in the non-aqueous phase (NAP) by using hydrophobic microorganisms. The TLPB was implemented in a 2.5 L stirred tank reactor using 10% (v/v) of silicone oil as NAP and hexane as model VOC. A stable elimination capacity (EC) of 21.0 ± 2.5 g m−3 h−1 (corresponding to a removal efficiency of 80%) was recorded for 26 days. The accumulation of inhibitory metabolites resulted in drastic drops in the elimination capacity (EC) and an unstable performance of the system, hexanol being identified as potential inhibitory metabolite. Aqueous culture broth exchange by fresh mineral salt medium at a dilution rate of 0.2 day−1 allowed maintaining a high and sustained VOC removal performance. Dissolved oxygen concentration measurements revealed that the oxidative metabolism was strongly stimulated by the aqueous broth exchange. The temporary blockage of the gas/water/NAP transfer pathway for O2 highlighted the paramount role of this pathway on the performance of the TLPB based on hydrophobic microorganisms.  相似文献   

8.

Background

Fatigue is a sensation of unbearable tiredness that frequently accompanies chronic widespread musculoskeletal pain (CWP) and inflammatory joint disease. Its mechanisms are poorly understood and there is a lack of effective biomarkers for diagnosis and onset prediction. We studied the circulating metabolome in a population sample characterised for CWP to identify biomarkers showing specificity for fatigue.

Material and methods

Untargeted metabolomic profiling was conducted on fasting plasma and serum samples of 1106 females with and without CWP from the TwinsUK cohort. Linear mixed-effects models accounting for covariates were used to determine relationships between fatigue and metabolites. Receiver operating curve (ROC)-analysis was used to determine predictive value of metabolites for fatigue.

Results

While no association between fatigue and metabolites was identified in twins without CWP (n = 711), in participants with CWP (n = 395), levels of eicosapentaenoate (EPA) ω-3 fatty acid were significantly reduced in those with fatigue (β = ? 0.452 ± 0.116; p = 1.2 × 10? 4). A significant association between fatigue and two other metabolites also emerged when BMI was excluded from the model: 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF), and C-glycosyltryptophan (p = 1.5 × 10? 4 and p = 3.1 × 10? 4, respectively). ROC analysis has identified a combination of 15 circulating metabolites with good predictive potential for fatigue in CWP (AUC = 75%; 95% CI 69–80%).

Conclusion

The results of this agnostic metabolomics screening show that fatigue is metabolically distinct from CWP, and is associated with a decrease in circulating levels of EPA. Our panel of circulating metabolites provides the starting point for a diagnostic test for fatigue in CWP.  相似文献   

9.
Iron deficiency impairs vitamin A (VA) metabolism in the rat but the mechanisms involved are unknown and the effect during development has not been investigated. We investigated the effect of pregnancy and maternal iron deficiency on VA metabolism in the mother and fetus. 54 rats were fed either a control or iron deficient diet for 2 weeks prior to mating and throughout pregnancy. Another 15 female rats followed the same diet and were used as non-pregnant controls. Maternal liver, placenta and fetal liver were collected at d21 for total VA, retinol and retinyl ester (RE) measurement and VA metabolic gene expression analysis. Iron deficiency increased maternal hepatic RE (P < .05) and total VA (P < .0001), fetal liver RE (P < .05), and decreased placenta total VA (P < .05). Pregnancy increased Cellular Retinol Binding Protein (CRBP)-II gene expression by 7 fold (P = .001), decreased VA levels (P = .0004) and VA metabolic gene expression (P < .0001) in the liver. Iron deficiency increased hepatic CRBPII expression by a further 2 fold (P = .044) and RBP4 by ~ 20% (P = .005), increased RBPR2 and decreased CRBPII, LRAT, and TTR in fetal liver, while it had no effect on VA metabolic gene expression in the placenta. Hepatic CRBPII expression is increased by pregnancy and further increased by iron deficiency, which may play an important role in VA metabolism and homeostasis. Maternal iron deficiency also alters VA metabolism in the fetus, which is likely to have consequences for development.  相似文献   

10.
Presently existing screening approaches for lung cancer are not being proving sufficient and sensitive, so a study was conducted to identify disease related biomarker proteins for diagnostic applications. A total of 100 lung cancer patients (88 non-small cell lung cancer and 12 small cell lung cancer) and 50 healthy controls were included in this study. Serum samples of patients and healthy controls were subjected to a series of proteomic approaches and as a result of two dimensional gel electrophoresis, a ∼43 kDa protein was found to be differentially expressed compared to healthy controls. Quantitative profiling of two dimensional gels by Dymension software analysis displayed 3.58 fold increased expression of ∼43 kDa protein in squamous cell carcinoma and 2.92 fold in case of adenocarcinoma. Mass spectrometric analysis resulted in identification of 8 differentially expressed proteins, out of which human Alpha-1-acid glycoprotein 1 was targeted for further validations. This candidate protein exhibited N-linked glycosylation at five amino acid residues; 33, 56, 72, 93, and 103 with significant score of 0.66, 0.78, 0.78, 0.53 and 0.66, respectively. Sandwich ELISA quantified high serum levels of Alpha-1-acid glycoprotein 1 in squamous cell carcinoma (2.93 g/l ± 1.22) and adenocarcinoma (2.39 g/l ± 1.13) when compared with healthy controls (0.83 g/l ± 0.21). One-way ANOVA analysis predicted highly significant variation of Alpha-1-acid glycoprotein 1, among all the study types (F-value 65.37, p-value 0.000). This study may prove as a non-invasive, cost effective and sensitive scheme for diagnosis of lung cancer, by passing the expensive and painful screening procedures.  相似文献   

11.
12.
The highly derived mechanism birds use to ventilate their lungs relies on dorsoventral excursions of their heavily muscled sternum and abdominal viscera. Our expectation of the level of mechanical work involved in this mechanism led us to hypothesize that the metabolic cost of breathing is higher in birds than in other tetrapods. To test this theory, we used unidirectional artificial ventilation (UDV) to stop normal ventilatory movements in guinea fowl (Numida meleagris L.) at rest and during treadmill locomotion at three speeds. Oxygen consumption was measured during normal breathing and UDV, and the difference was used to approximate the cost of ventilation. Contrary to our prediction, metabolism increased when ventilatory movements ceased during UDV at rest. Although we do not understand why this occurred we suspect that UDV induced a homeostatic mechanism to counteract the loss of carbon dioxide. Nevertheless, across all running speeds, metabolism decreased significantly with UDV, indicating a minimum cost of ventilation during running of 1.43 ± 0.62% of total running metabolism or 0.48 ± 0.21 mL O2 (L ventilated)? 1. These results suggest that the metabolic cost of ventilation is low in birds and that it is within the range of costs reported previously for other amniotes.  相似文献   

13.
Both the Taihang Mountain area in north-central China and Chaoshan area in the southeastern littoral of China are areas with high risk of esophageal cancer (EC). Our previous study confirmed that populations from the two areas might share similar matrilineal backgrounds and found that mitochondrial DNA (mtDNA) haplogroup D, especially subhaplogroups D4a and D5a, might be genetic background markers of EC in Chaoshan area. Here, to further determine whether D4a, D5a, and D might be susceptibility markers for EC in the two high-risk areas, we performed a case–control study with larger samples and analyzed the distributions of these three haplogroups in subjects (controls [n = 898] and patients [n = 768]) from the two areas. D4a haplogroup was significantly associated with increased risk of EC in Taihang Mountain subjects, especially women. D5 haplogroup was associated with EC at the general population level in the Taihang Mountain area and in subjects ≤ 60 years, especially women ≤ 60 years, in the Chaoshan area. D haplogroup was associated with EC only in subjects ≤ 60 years, especially men ≤ 60 years, in the Chaoshan area. D4a and D5 showing positive association with EC in the Taihang Mountain area became the predominant subhaplogroups of D in Chaoshan controls. In conclusion, D, D4a, and D5 haplogroups might be susceptibility markers for EC in the two high-risk areas in China, particularly D4a and D5 for the Taihang Mountain area and D and D5 for the Chaoshan area.  相似文献   

14.
The review deals with metabolomics, a new and rapidly growing area directed to the comprehensive analysis of metabolites of biological objects. Metabolites are characterized by various physical and chemical properties, traditionally studied by methods of analytical chemistry focused on certain groups of chemical substances. However, current progress in mass spectrometry has led to formation of rather unified methods, such as metabolic fingerprinting and metabolomic profiling, which allow defining thousands of metabolites in one biological sample and therefore draw “a modern portrait of metabolomics.” This review describes basic characteristics of these methods, ways of metabolite separation, and analysis of metabolites by mass spectrometry. The examples shown in this review, allow to estimate these methods and to compare their advantages and disadvantages. Besides that, we consider the methods, which are of the most frequent use in metabolomics; these include the methods for data processing and the required resources, such as software for mass spectra processing and metabolite search database. In the conclusion, general suggestions for successful metabolomic experiments are given.  相似文献   

15.
The purpose of the present study was to identify genetic variants that confer susceptibility to chronic kidney disease (CKD) in Japanese individuals with metabolic syndrome. The study population comprised 2150 Japanese individuals with metabolic syndrome, including 411 subjects with CKD [estimated glomerular filtration rate (eGFR) < 50 mL/min/1.73m2] and 1739 controls (eGFR ≥ 60 mL/min/1.73m2). The genotypes for 100 polymorphisms of 80 candidate genes were determined. The chi-square test, multivariable logistic regression analysis with adjustment for covariates, as well as a stepwise forward selection procedure revealed that nine polymorphisms of APOE, ABCA1, PTGS1, TNF, CPB2, AGTR1, OR13G1, and GNB3 were associated (P < 0.05) with the prevalence of CKD. Among these polymorphisms, the ? 219G  T polymorphism of APOE (rs405509) was most significantly associated with CKD in Japanese individuals with metabolic syndrome.  相似文献   

16.

Introduction

Exercise-associated metabolism in type 1 diabetes (T1D) remains under-studied due to the complex interplay between exogenous insulin, counter-regulatory hormones and insulin-sensitivity.

Objective

To identify the metabolic differences induced by two exercise modalities in T1D using ultra high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC–HRMS) based metabolomics.

Methods

Twelve T1D adults performed intermittent high-intensity (IHE) and continuous-moderate-intensity (CONT) exercise. Serum samples were analysed by UHPLC–HRMS.

Results

Metabolic profiling of IHE and CONT highlighted exercise-induced changes in purine and acylcarnitine metabolism.

Conclusion

IHE may increase beta-oxidation through higher ATP-turnover. UHPLC–HRMS based metabolomics as a data-driven approach without an a priori hypothesis may help uncover distinctive metabolic effects during exercise in T1D.Clinical trial registration number is www.clinicaltrials.gov: NCT02068638.
  相似文献   

17.
In the Patagonian region (∼37–56°S) E of the Andes, the salinity and solute composition of lakes is strongly related to their location along the marked W-E decreasing precipitation gradient that is one of the main climatic features of the area. A calibration function (n = 34) based on 12 ostracod species (Ostracoda, Crustacea) was developed by WA-PLS to quantitatively reconstruct electrical conductivity (EC) values as a salinity proxy. The selected one component model had a r2 = 0.74 and RMSEP and maximum bias equal to 16% and 31% of the sampled range, respectively, comparable to other published ostracod-based calibration functions. This model was applied to the ostracod record of the closed lake Laguna Cháltel (49°58′S, 71°07′W), comprising seven species and dominated by two species of the genus Limnocythere. In order to evaluate the calibration function’s robustness, the obtained EC values were compared with qualitative lake level and salinity variations inferred through a multiproxy hydrological reconstruction of the lake. Both reconstructions show good overall agreement, with reconstructed EC values in the oligo-mesohaline range (average: 11 060 ± 680 μS/cm) between 4570 and 3190 cal BP, corresponding to the ephemeral and shallow lake phases, and a marked decrease in EC concurrent with a lake level rise, reaching an average EC of 1140 ± 90 μS/cm during the deep lake phase (1720 cal BP to present). The variability in the reconstructed EC values for the ephemeral lake phase showed some inconsistency with the expected trend, which was attributed to time-averaging effects; for its part, the pace of the decrease in EC during the medium-depth phase (3190–1720 cal BP) differed from the expected, which could be due to autigenic effects (redissolution of salts) at the onset of this phase. This comparison not only lends support to the adequacy of the calibration function, but also suggests that its application in the context of a multiproxy study can greatly contribute to distinguish between autigenic and climatic-related controls of paleosalinity in closed lakes, allowing performing more accurate paleoenvironmental inferences on the basis of paleohydrological reconstructions.  相似文献   

18.
Multiple sclerosis (MS) is a primary inflammatory demyelinating disease associated with a probably secondary progressive neurodegenerative component. Impaired mitochondrial functioning has been hypothesized to drive neurodegeneration and to cause increased anaerobic metabolism in MS. The aim of our multicentre study was to determine whether MS patients had values of circulating lactate different from those of controls. Patients (n = 613) were recruited, assessed for disability and clinically classified (relapsing–remitting, secondary progressive, primary progressive) at the Catholic University of Rome, Italy (n = 281), at the MS Centre Amsterdam, The Netherlands (n = 158) and at the S. Camillo Forlanini Hospital, Rome, Italy (n = 174). Serum lactate levels were quantified spectrophotometrically with the analyst being blinded to all clinical information. In patients with MS serum lactate was three times higher (3.04 ± 1.26 mmol/l) than that of healthy controls (1.09 ± 0.25 mmol/l, p < 0.0001) and increased across clinical groups, with higher levels in cases with a progressive than with a relapsing–remitting disease course. In addition, there was a linear correlation between serum lactate levels and the expanded disability scale (EDSS) (R2 = 0.419; p < 0.001). These data support the hypothesis that mitochondrial dysfunction is an important feature in MS and of particular relevance to the neurodegenerative phase of the disease. Measurement of serum lactate in MS might be a relative inexpensive test for longitudinal monitoring of “virtual hypoxia” in MS and also a secondary outcome for treatment trials aimed to improve mitochondrial function in patients with MS.  相似文献   

19.
《Aquatic Botany》2001,69(2-4):217-234
Decomposition processes were investigated in the soil of a declining, more eutrophic and a healthy, less eutrophic freshwater reed (Phragmites australis (Cav.) Trin. ex Steudel) stand in the littoral zone of Rožmberk fishpond, Czech Republic. Soil and pore water were sampled five times from April to October 1998. Chemical properties, CO2 production in oxic and anoxic conditions, CH4 production, denitrifying enzyme activity (DEA) and bacterial biomass were measured under laboratory conditions in suspensions prepared from homogenised soil samples. The more eutrophic West stand was more anaerobic than the East stand, with lower redox potential, lower pH and with a higher amount of organic acids, mainly acetic and lactic acid. Mean seasonal concentrations of total nitrogen in pore water, nitrogen of amino acids and proteins, and reducing sugars were all higher in the soil at the more eutrophic stand. Higher nutrient status and more reduced conditions at the more eutrophic stand were accompanied by (i) a limitation of aerobic microbial activities (CO2 production in oxic conditions: 0.35 versus 0.54 μmol CO2 cm−3 h−1); lower DEA (4.0 versus 20.2 nmol N2O cm−3 h−1) and a lower proportion of bacteria that were active in aerobic conditions; (ii) by a prevalence of anaerobic over aerobic microbial processes; (iii) by a higher rate of methanogenesis (15.0 versus 11.5 nmol CH4 cm−3 h−1) and (iv) by an overall lower rate of microbial processes as compared to less eutrophied stand. The shift from aerobic to anaerobic microbial metabolism, and a coinciding restriction of metabolic activities at the more eutrophic stand are indicative of an elevated oxygen stress in the soil, associated with accumulation of metabolites toxic to both the micro-organisms and the reed. Possible links between eutrophication, decomposition processes in the soil and reed decline are discussed.  相似文献   

20.
Background and objectives1) Nutritional assessment of the diet followed by patients with metabolic syndrome, and 2) biochemical analysis of the oxidation-reduction level in patients with metabolic syndrome.Material and methodsA cross-sectional study was conducted in patients with metabolic syndrome in Murcia. Fifty-three patients, 33 with and 20 without (control group) metabolic syndrome, were selected. The intervention consisted of completion of a recall survey and a test to nutritionally assess dietary intake. Anthropometric and laboratory variables, including those related to antioxidant activity, were also tested.ResultsAntioxidant activity was within normal limits in both groups (1.7 ± 0.2 mmol/L in the control group and 1.8 ± 0.1 mmol/L in the metabolic syndrome group) (NS). Superoxide dismutase levels were not significantly different between the groups. Mean glutathione reductase levels (U/L) were higher in the control group as compared to patients with metabolic syndrome (P < .05). As regards oxidative stress biomarkers, mean isoprostane levels were higher in the control group (4.9 ± 6.2 ng/mL) than in metabolic syndrome patients (3.5 ± 3.9 ng/mL) (P < .05). Oxidized LDL values tended to be higher in metabolic syndrome patients (96 ± 23.2 U/L) as compared to the control group (86.2 ± 17.3  U/L), but differences were not significant.ConclusionsThere is a trend to a poorer nutritional and biochemical profile in patients with metabolic syndrome, who also tend to have a greater degree of oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号