首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Long non-coding RNAs (lncRNAs) have recently emerged as key players in many physiologic and pathologic processes. Although many lncRNAs have been identified, few lncRNAs have been characterized functionally in aging. In this study, we used human fibroblast cells to investigate genome-wide lncRNA expression during cellular senescence. We identified 968 down-regulated lncRNAs and 899 up-regulated lncRNAs in senescent cells compared with young cells. Among these lncRNAs, we characterized a senescence-associated lncRNA (SALNR), whose expression was reduced during cellular senescence and in premalignant colon adenomas. Overexpression of SALNR delayed cellular senescence in fibroblast cells. Furthermore, we found that SALNR interacts with NF90 (nuclear factor of activated T-cells, 90 kDa), an RNA-binding protein suppressing miRNA biogenesis. We demonstrated that NF90 is a SALNR downstream target, whose inhibition led to premature senescence and enhanced expressions of senescence-associated miRNAs. Moreover, our data showed that Ras-induced stress promotes NF90 nucleolus translocation and suppresses its ability to suppress senescence-associated miRNA biogenesis, which could be rescued by SALNR overexpression. These data suggest that lncRNA SALNR modulates cellular senescence at least partly through changing NF90 activity.  相似文献   

3.
4.
The assertion that a significant portion of the mammalian genome has not been translated and that non-coding RNA accounts for over half of polyadenylate RNA have received much attention. In recent years, increasing evidence proposes non-coding RNAs (ncRNAs) as new regulators of various cellular processes, including cancer progression and nerve damage. Apoptosis is a type of programmed cell death critical for homeostasis and tissue development. Cancer cells often have inhibited apoptotic pathways. It has recently been demonstrated that up/down-regulation of various lncRNAs in certain types of tumors shapes cancer cells' response to apoptotic stimuli. This review discusses the most recent studies on lncRNAs and apoptosis in healthy and cancer cells. In addition, the role of lncRNAs as novel targets for cancer therapy is reviewed here. Finally, since it has been shown that lncRNA expression is associated with specific types of cancer, the potential for using lncRNAs as biomarkers is also discussed.  相似文献   

5.
Endometrial carcinoma is one of the most frequently diagnosed cancers in females. Long non-coding RNAs (lncRNAs) have been associated with cancer; its role in endometrial carcinoma is an emerging area of research. In this article, lncRNA TDRG1 expression in human endometrial carcinoma tissues and normal endometrial tissues was quantified by qRT-PCR. LncRNA TDRG1 was overexpressed or knocked-down in neither HEC-1B nor Ishikawa endometrial carcinoma cells, respectively, to assess cellular phenotype and expression of related molecules. Our results showed that lncRNA TDRG1 was significantly overexpressed in endometrial carcinoma tissues. Overexpression of lncRNA TDRG1 promoted endometrial carcinoma cell viability, invasion and migratory ability, inhibited apoptosis, and upregulated VEGF-A, PI3K, Bcl-2, MMP2 and survivin; knockdown of lncRNA TDRG1 had the opposite effects. LncRNA TDRG1 overexpression increased tumorigenicity in vivo and was associated with the upregulation of VEGF-A. RNA binding protein immunoprecipitation (RIP) assays confirmed that lncRNA TDRG1 directly binds to VEGF-A protein. Furthermore, knockdown of VEGFA in lncRNA TDRG1-overexpressing endometrial carcinoma cells reversed the effects of lncRNA TDRG1 on cell proliferation, invasion, migration and apoptosis. In conclusion, lncRNA TDRG1 may promote endometrial carcinoma cell proliferation and invasion by positively targeting VEGF-A and modulating relative genes.  相似文献   

6.
Objective: Diabetic cardiomyopathy (DCM) is one of the complications experienced by patients with diabetes. In recent years, long noncoding RNAs (lncRNAs) have been investigated because of their role in the progression of various diseases, including DCM. The purpose of the present study was to explore the role of lncRNA GAS5 in high glucose (HG)-induced cardiomyocyte injury and apoptosis.Materials and methods: We constructed HG-induced AC16 cardiomyocytes and a streptozotocin (STZ)-induced rat diabetes model. GAS5 was overexpressed and knocked out at the cellular level, and GAS5 was knocked down by lentiviruses at the animal level to observe its effect on myocardial injury. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of GAS5. Cell proliferation and apoptosis after GAS5 knockout were detected by CCK-8, TUNEL, and flow cytometry assays. ELISA was used to detect the changes in myocardial enzyme content in cells and animal myocardial tissues during the action of GAS5 on myocardial injury.Results: GAS5 expression was up-regulated in HG-treated AC16 cardiomyocytes and the rat diabetic myocardial injury model. The down-regulation of GAS5 could inhibit HG-induced myocardial damage. This work proved that the down-regulation of GAS5 could reverse cardiomyocyte injury and apoptosis by targeting miR-138 to down-regulate CYP11B2.Conclusion: We confirmed for the first time that the down-regulation of GAS5 could reverse CYP11B2 via the miR-138 axis to reverse HG-induced cardiomyocyte injury. This research might provide a new direction for explaining the developmental mechanism of DCM and potential targets for the treatment of myocardial injury.  相似文献   

7.
RNA G-quadruplexes (rG4s) have functional roles in many cellular processes in diverse organisms. While a number of rG4 examples have been reported in coding messenger RNAs (mRNA), so far only limited works have studied rG4s in non-coding RNAs (ncRNAs), especially in long non-coding RNAs (lncRNAs) that are of emerging interest and significance in biology. Herein, we report that MALAT1 lncRNA contains conserved rG4 motifs, forming thermostable rG4 structures with parallel topology. We also show that rG4s in MALAT1 lncRNA can interact with NONO protein with high specificity and affinity in vitro and in nuclear cell lysate, and we provide cellular data to support that NONO protein recognizes MALAT1 lncRNA via rG4 motifs. Notably, we demonstrate that rG4s in MALAT1 lncRNA can be targeted by the rG4-specific small molecule, peptide, and L-aptamer, leading to the dissociation of MALAT1 rG4-NONO protein interaction. Altogether, this study uncovers new and important rG4s in MALAT1 lncRNAs, reveals their specific interactions with NONO protein, offers multiple strategies for targeting MALAT1 and its RNA–protein complex via its rG4 structure and illustrates the prevalence and significance of rG4s in ncRNAs.  相似文献   

8.
9.
10.
The phytoalexin resveratrol exhibits anti‐tumour activity in many types of cancer. In this study, we showed that resveratrol suppressed the survival of gastric tumour cells both in vivo and in vitro. Resveratrol promoted apoptosis, autophagy and endoplasmic reticulum (ER) stress in a dose‐dependent manner. RNA‐seq analysis showed that multiple cell death signalling pathways were activated after resveratrol treatment, while the use of ER stress activators (tunicamycin and thapsigargin) in combinatorial with resveratrol led to further inhibition of cancer cell survival. Results also showed that resveratrol altered the expression of several long non‐coding RNAs (lncRNAs), including MEG3, PTTG3P, GAS5, BISPR, MALAT1 and H19. Knockdown of H19 in resveratrol‐treated cells further enhanced the effects of resveratrol on apoptosis, ER stress and cell cycle S‐phase arrest. Furthermore, the migratory ability of resveratrol‐treated cells was dramatically decreased after H19 knockdown. In conclusion, resveratrol inhibited cancer cell survival, while knockdown of lncRNA H19 resulted in increased sensitivity to resveratrol therapy.  相似文献   

11.
12.
Hepatocellular carcinoma (HCC) is one of the leading lethal malignancies and a hypervascular tumor. Although some long non-coding RNAs (lncRNAs) have been revealed to be involved in HCC. The contributions of lncRNAs to HCC progression and angiogenesis are still largely unknown. In this study, we identified a HCC-related lncRNA, CMB9-22P13.1, which was highly expressed and correlated with advanced stage, vascular invasion, and poor survival in HCC. We named this lncRNA Progression and Angiogenesis Associated RNA in HCC (PAARH). Gain- and loss-of function assays revealed that PAARH facilitated HCC cellular growth, migration, and invasion, repressed HCC cellular apoptosis, and promoted HCC tumor growth and angiogenesis in vivo. PAARH functioned as a competing endogenous RNA to upregulate HOTTIP via sponging miR-6760-5p, miR-6512-3p, miR-1298-5p, miR-6720-5p, miR-4516, and miR-6782-5p. The expression of PAARH was significantly positively associated with HOTTIP in HCC tissues. Functional rescue assays verified that HOTTIP was a critical mediator of the roles of PAARH in modulating HCC cellular growth, apoptosis, migration, and invasion. Furthermore, PAARH was found to physically bind hypoxia inducible factor-1 subunit alpha (HIF-1α), facilitate the recruitment of HIF-1α to VEGF promoter, and activate VEGF expression under hypoxia, which was responsible for the roles of PAARH in promoting angiogenesis. The expression of PAARH was positively associated with VEGF expression and microvessel density in HCC tissues. In conclusion, these findings demonstrated that PAARH promoted HCC progression and angiogenesis via upregulating HOTTIP and activating HIF-1α/VEGF signaling. PAARH represents a potential prognostic biomarker and therapeutic target for HCC.Subject terms: Cancer microenvironment, Oncogenes, Translational research  相似文献   

13.
14.
Functional genomics studies have led to the discovery of a large amount of non-coding RNAs from the human genome; among them are long non-coding RNAs (lncRNAs). Emerging evidence indicates that lncRNAs could have a critical role in the regulation of cellular processes such as cell growth and apoptosis as well as cancer progression and metastasis. As master gene regulators, lncRNAs are capable of forming lncRNA–protein (ribonucleoprotein) complexes to regulate a large number of genes. For example, lincRNA-RoR suppresses p53 in response to DNA damage through interaction with heterogeneous nuclear ribonucleoprotein I (hnRNP I). The present study demonstrates that hnRNP I can also form a functional ribonucleoprotein complex with lncRNA urothelial carcinoma-associated 1 (UCA1) and increase the UCA1 stability. Of interest, the phosphorylated form of hnRNP I, predominantly in the cytoplasm, is responsible for the interaction with UCA1. Moreover, although hnRNP I enhances the translation of p27 (Kip1) through interaction with the 5′-untranslated region (5′-UTR) of p27 mRNAs, the interaction of UCA1 with hnRNP I suppresses the p27 protein level by competitive inhibition. In support of this finding, UCA1 has an oncogenic role in breast cancer both in vitro and in vivo. Finally, we show a negative correlation between p27 and UCA in the breast tumor cancer tissue microarray. Together, our results suggest an important role of UCA1 in breast cancer.  相似文献   

15.
Long non-coding RNAs are a new class of non-coding RNAs that are at the crosshairs in many human diseases such as cancers, cardiovascular disorders, inflammatory and autoimmune disease like Inflammatory Bowel Disease (IBD) and Type 1 Diabetes (T1D). Nearly 90% of the phenotype-associated single-nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) lie outside of the protein coding regions, and map to the non-coding intervals. However, the relationship between phenotype-associated loci and the non-coding regions including the long non-coding RNAs (lncRNAs) is poorly understood. Here, we systemically identified all annotated IBD and T1D loci-associated lncRNAs, and mapped nominally significant GWAS/ImmunoChip SNPs for IBD and T1D within these lncRNAs. Additionally, we identified tissue-specific cis-eQTLs, and strong linkage disequilibrium (LD) signals associated with these SNPs. We explored sequence and structure based attributes of these lncRNAs, and also predicted the structural effects of mapped SNPs within them. We also identified lncRNAs in IBD and T1D that are under recent positive selection. Our analysis identified putative lncRNA secondary structure-disruptive SNPs within and in close proximity (+/−5 kb flanking regions) of IBD and T1D loci-associated candidate genes, suggesting that these RNA conformation-altering polymorphisms might be associated with diseased-phenotype. Disruption of lncRNA secondary structure due to presence of GWAS SNPs provides valuable information that could be potentially useful for future structure-function studies on lncRNAs.  相似文献   

16.
17.
Vascular remodeling is a pathological process following cardiovascular intervention. Vascular smooth muscle cells (VSMC) play a critical role in the vascular remodeling. Long noncoding RNAs (lncRNA) are a class of gene regulators functioning through various mechanisms in physiological and pathological conditions. By using cultured VSMC and rat carotid artery balloon injury model, we found that lncRNA growth arrest specific 5 (GAS5) serves as a negative regulator for VSMC survival in vascular remodeling. By manipulating GAS5 expression via adenoviral overexpression or short hairpin RNA knockdown, we found that GAS5 suppresses VSMC proliferation while promoting cell cycle arrest and inducing cell apoptosis. Mechanistically, GAS5 directly binds to p53 and p300, stabilizes p53-p300 interaction, and thus regulates VSMC cell survival via induction of p53-downstream target genes. Importantly, local delivery of GAS5 via adenoviral vector suppresses balloon injury-induced neointima formation along with an increased expression of p53 and apoptosis in neointimal SMCs. Our study demonstrated for the first time that GAS5 negatively impacts VSMC survival via activation the p53 pathway during vascular remodeling.  相似文献   

18.
Recent studies have demonstrated that long non-coding RNAs (lncRNAs) play critical roles in cancer development and progression. However, the mechanism by which lncRNAs contribute to colorectal cancer remains unclear. In this study, we identified the lncRNA, DANCR, which was upregulated in colorectal cancer. The upregulation of DANCR expression was associated with shorter patient survival time. DANCR depletion decreased cell proliferation, cell cycle progression, and tumorigenesis in a subcutaneous mouse xenograft model system. We further demonstrated that DANCR bound with lysine acetyltransferase 6A. This binding was essential for KAT6A acetyltransferase activity and thus, it influenced the expression of KAT6A target genes. Our data indicated that DANCR functions as an oncogenic lncRNA that promotes tumor development and progression. Therefore, DANCR may be a target molecule for colorectal cancer treatment.  相似文献   

19.
《Genomics》2020,112(3):2173-2185
ObjectiveLately, lncRNAs have been proposed to function in the radio-sensitivity of tumor cells, yet the role of lncRNA GAS5 in that of esophageal squamous cell carcinoma (ESCC) has scarcely been studied. This study aims to examine GAS5's effects on ESCC cell radio-sensitivity.MethodsGAS5, miR-21 and RECK expression in radiation-sensitive and radiation-resistant ESCC tissues, and TE-1 and TE-1-R cells was determined. TE-1 and TE-1-R cells were treated with pcDNA-GAS5 or miR-21 inhibitors to figure out their roles in ESCC cell proliferation, radio-sensitivity, and apoptosis via gain- and loss-of-function experiments.ResultsWe found underexpressed GAS5 and RECK, and overexpressed miR-21 in ESCC. GAS5 elevation and miR-21 inhibition reduced viability and the colony formation ability, and enhanced the apoptosis of ESCC cells under radiation.ConclusionOur study reveals that GAS5 elevation up-regulates RECK expression by down-regulating miR-21 to increase ESCC cell apoptosis after radiation therapy, thus enhancing cell radio-sensitivity.  相似文献   

20.
Breastmilk has many documented beneficial effects on the developing human infant, but the components of breastmilk that influence these developmental pathways have not been fully elucidated. Increasing evidence suggests that non-coding RNAs encapsulated in extracellular vesicles (EVs) represent an important mechanism of communication between the mother and child. Long non-coding RNAs (lncRNAs) are of particular interest given their key role in gene expression and development. However, it is not known whether breastmilk EVs contain lncRNAs. We used qRT-PCR to determine whether EVs isolated from human breastmilk contain lncRNAs previously reported to be important for developmental processes. We detected 55 of the 87 screened lncRNAs in EVs from the 30 analyzed breastmilk samples, and CRNDE, DANCR, GAS5, SRA1 and ZFAS1 were detected in >90% of the samples. GAS5, SNHG8 and ZFAS1 levels were highly correlated (Spearman's rho > 0.9; P < 0.0001), which may indicate that the loading of these lncRNAs into breastmilk EVs is regulated by the same pathways. The detected lncRNAs are important epigenetic regulators involved in processes such as immune cell regulation and metabolism. They may target a repertoire of recipient cells in offspring and could be essential for child development and health. Further experimental and epidemiological studies are warranted to determine the impact of breastmilk EV-encapsulated lnRNAs in mother to child signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号