首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lessons learned from the dog genome   总被引:3,自引:0,他引:3  
Extensive genetic resources and a high-quality genome sequence position the dog as an important model species for understanding genome evolution, population genetics and genes underlying complex phenotypic traits. Newly developed genomic resources have expanded our understanding of canine evolutionary history and dog origins. Domestication involved genetic contributions from multiple populations of gray wolves probably through backcrossing. More recently, the advent of controlled breeding practices has segregated genetic variability into distinct dog breeds that possess specific phenotypic traits. Consequently, genome-wide association and selective sweep scans now allow the discovery of genes underlying breed-specific characteristics. The dog is finally emerging as a novel resource for studying the genetic basis of complex traits, including behavior.  相似文献   

3.
Plants can accumulate, constitutively and/or after induction, a wide variety of defense compounds in their tissues that confer resistance to herbivorous insects. The naturally occurring plant resistance gene pool can serve as an arsenal in pest management via transgenic approaches. As insect‐plant interaction research rapidly advances, it has gradually become clear that the effects of plant defense compounds are determined not only by their toxicity toward target sites, but also by how insects respond to the challenge. Insect digestive tracts are not passive targets of plant defense, but often can adapt to dietary challenge and successfully deal with various plant toxins and anti‐metabolites. This adaptive response has posed an obstacle to biotechnology‐based pest control approaches, which underscores the importance of understanding insect adaptive mechanisms. Molecular studies on the impact of protease inhibitors on insect digestion have contributed significantly to our understanding of insect adaptation to plant defense. This review will focus on exposing how the insect responds to protease inhibitors by both qualitative and quantitative remodeling of their digestive proteases using the cowpea bruchid–soybean cysteine protease inhibitor N system.  相似文献   

4.

Abstracts

Novel targets for cancer and connective tissues diseases: A meeting sponsored by the International CCN Society Coast Coal Harbour Hotel, Vancouver, BC, Canada (September 24–27, 2011)  相似文献   

5.
Prior work in the CCN field, including our own, suggested to us that there might be co-regulatory activity and function as part of the actions of this family of cysteine rich cytokines. CCN2 is now regarded as a major pro-fibrotic molecule acting both down-stream and independent of TGF-β1, and appears causal in the disease afflicting multiple organs. Since diabetic renal fibrosis is a common complication of diabetes, and a major cause of end stage renal disease (ESRD), we examined the possibility that CCN3 (NOV), might act as an endogenous negative regulator of CCN2 with the capacity to limit the overproduction of extracellular matrix (ECM), and thus prevent, or ameliorate fibrosis. We demonstrate, using an in vitro model of diabetic renal fibrosis, that both exogenous treatment with CCN3 and transfection with the over-expression of the CCN3 gene in mesangial cells markedly down-regulates CCN2 activity and blocks ECM over-accumulation stimulated by TGF-β1. Conversely, TGF-β1 treatment reduces endogenous CCN3 expression and increases CCN2 activity and matrix accumulation, indicating an important, novel yin/yang effect. Using the db/db mouse model of diabetic nephropathy, we confirm the expression of CCN3 in the kidney, with temporal localization that supports these in vitro findings. In summary, the results corroborate our hypothesis that one function of CCN3 is to regulate CCN2 activity and at the concentrations and conditions used down-regulates the effects of TGF-β1, acting to limit ECM turnover and fibrosis in vivo. The findings suggest opportunities for novel endogenous-based therapy either by the administration, or the upregulation of CCN3.  相似文献   

6.
Journal of Computational Neuroscience - The syndrome of oculopalatal tremor (OPT) featuring the olivo-cerebellar hypersychrony leads to disabling pendular nystagmus and palatal myoclonus. This rare...  相似文献   

7.

Introduction

The neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) have been identified in the human intervertebral disc (IVD) and have been implicated in the mechanisms associated with nerve ingrowth and nociception in degeneration of the IVD. The aim of the current study was to investigate an association between neurotrophin expression in the IVD and the severity of disc degeneration, including the effect of disc-related proinflammatory cytokines on neurotrophin and neuropeptide expression in cells derived from the human IVD.

Methods

Immunohistochemical analysis was performed to examine the expression of NGF, BDNF and their high-affinity receptors Trk-A and Trk-B in human IVD samples, divided into three categories: non-degenerate, moderate degeneration and severe degeneration. In order to study the effect of disc-related cytokines on neurotrophin/neuropeptide gene expression, nucleus pulposus cells derived from non-degenerate and degenerate IVD samples were seeded in alginate and were stimulated with either IL-1β or TNFα for 48 hours. RNA was extracted, cDNA was synthesised and quantitative real-time PCR was performed to examine the expression of NGF, BDNF and substance P.

Results

Immunohistochemistry showed expression of NGF and BDNF in the native chondrocyte-like cells in all regions of the IVD and in all grades of degeneration. Interestingly only BDNF significantly increased with the severity of degeneration (P < 0.05). Similar expression was observed for Trk-A and Trk-B, although no association with disease severity was demonstrated. In cultured human nucleus pulposus cells, stimulation with IL-1β led to significant increases in NGF and BDNF gene expression (P < 0.05). Treatment with TNFα was associated with an upregulation of substance P expression only.

Conclusion

Our findings show that both the annulus fibrosus and nucleus pulposus cells of the IVD express the neurotrophins NGF and BDNF, factors that may influence and enhance innervation and pain in the degenerate IVD. Expression of Trk-A and Trk-B by cells of the nondegenerate and degenerate IVD suggests an autocrine role for neurotrophins in regulation of disc cell biology. Furthermore, modulation of neurotrophin expression by IL-1β and modulation of substance P expression by TNFα, coupled with their increased expression in the degenerate IVD, highlights novel roles for these cytokines in regulating nerve ingrowth in the degenerate IVD and associated back pain.  相似文献   

8.
Biological membranes are essential for normal function and regulation of cells, forming a physical barrier between extracellular and intracellular space and cellular compartments. These physical barriers are subject to mechanical stresses. As a consequence, nature has developed proteins that are able to transpose mechanical stimuli into meaningful intracellular signals. These proteins, termed Mechanosensitive (MS) proteins provide a variety of roles in response to these stimuli. In prokaryotes these proteins form transmembrane spanning channels that function as osmotically activated nanovalves to prevent cell lysis by hypoosmotic shock. In eukaryotes, the function of MS proteins is more diverse and includes physiological processes such as touch, pain and hearing. The transmembrane portion of these channels is influenced by the physical properties such as charge, shape, thickness and stiffness of the lipid bilayer surrounding it, as well as the bilayer pressure profile. In this review we provide an overview of the progress to date on advances in our understanding of the intimate biophysical and chemical interactions between the lipid bilayer and mechanosensitive membrane channels, focusing on current progress in both eukaryotic and prokaryotic systems. These advances are of importance due to the increasing evidence of the role the MS channels play in disease, such as xerocytosis, muscular dystrophy and cardiac hypertrophy. Moreover, insights gained from lipid–protein interactions of MS channels are likely relevant not only to this class of membrane proteins, but other bilayer embedded proteins as well. This article is part of a Special Issue entitled: Lipid–protein interactions.  相似文献   

9.
Proteoglycans extracted with 4M-guanidinium chloride from pig intervetebral discs, and purified by equilibrium density-gradient centrifugation in CsCl, were of smaller hydrodynamic size than those extracted and purified in the same way from the laryngeal cartilage of the same animal. Whether this difference in size arose from degradation during the extraction and purification of the proteoglycans of the disc was investigated. Purified proteoglycans labelled either in the chondroitin sulphate chains or in the core protein were obtained from laryngeal cartilage by short-term organ culture. These labelled proteoglycans were added at the beginning of the extraction of the disc proteoglycans, and labelled cartilage and unlabelled disc proteoglycans were isolated and purified together. There was no appreciable loss of radioactivity after density-gradient centrifugation nor decrease in hydrodynamic size of the labelled cartilage proteoglycans on chromatography on Sepharose 2B, when these were present during the extraction of disc proteoglycans. It is concluded that disc proteoglycans are intrinsically of smaller size than cartilage proteoglycans and this difference in size does not arise from degradation during the extraction.  相似文献   

10.
Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins   总被引:1,自引:0,他引:1  
Cells in various anatomical locations are constantly exposed to mechanical forces from shear, tensile and compressional forces. These forces are significantly exaggerated in a number of pathological conditions arising from various etiologies e.g., hypertension, obstruction and hemodynamic overload. Increasingly persuasive evidence suggests that altered mechanical signals induce local production of soluble factors that interfere with the physiologic properties of tissues and compromise normal functioning of organ systems. Two immediate early gene-encoded members of the family of the Cyr61/CTGF/Nov proteins referred to as cysteine-rich protein 61 (Cyr61/CCN1) and connective tissue growth factor (CTGF/CCN2), are highly expressed in several mechanical stress-related pathologies, which result from either increased externally applied or internally generated forces by the actin cytoskeleton. Both Cyr61 and CTGF are structurally related but functionally distinct multimodular proteins that are expressed in many organs and tissues only during specific developmental or pathological events. In vitro assessment of their biological activities revealed that Cyr61 expression induces a genetic reprogramming of angiogenic, adhesive and structural proteins while CTGF promotes distinctively extracellular matrix accumulation (i.e., type I collagen) which is the principal hallmark of fibrotic diseases. At the molecular level, expression of the Cyr61 and CTGF genes is regulated by alteration of cytoskeletal actin dynamics orchestrated by various components of the signaling machinery, i.e., small Rho GTPases, mitogen-activated protein kinases, and actin binding proteins. This review discusses the mechanical regulation of the Cyr61 and CTGF in various tissues and cell culture models with a special attention to the cytoskeletally based mechanisms involved in such regulation.  相似文献   

11.

Background  

Very little is known about how intervertebral disc (IVD) is formed or maintained. Members of the TGF-β superfamily are secreted signaling proteins that regulate many aspects of development including cellular differentiation. We recently showed that deletion of Tgfbr2 in Col2a expressing mouse tissue results in alterations in development of IVD annulus fibrosus. The results suggested TGF-β has an important role in regulating development of the axial skeleton, however, the mechanistic basis of TGF-β action in these specialized joints is not known. One of the hurdles to understanding development of IVD is a lack of known markers. To identify genes that are enriched in the developing mouse IVD and to begin to understand the mechanism of TGF-β action in IVD development, we undertook a global analysis of gene expression comparing gene expression profiles in developing mouse vertebrae and IVD. We also compared expression profiles in tissues from wild type and Tgfbr2 mutant mice as well as in sclerotome cultures treated with TGF-β or BMP4.  相似文献   

12.
13.
This comprehensive review provides an overview about placebo and nocebo phenomena in antidepressant trials. Improvements in the placebo groups may partly be explained through methodological issues such as natural course of depression and regression to the mean, but also fundamentally reflect investigators' and participants' expectations. A meta-analysis by our group of 96 randomized placebo-controlled trials showed large placebo responses to antidepressant medication. Moderator analyses revealed substantially larger placebo responses in observer ratings compared with self-report. Effect sizes in observer ratings showed strong increase with publication year while this effect was not found for patients' self-ratings. This reflects the strong influence of investigators' expectations. The analysis of 'nocebo effects', e.g. adverse effects in placebo groups of antidepressant trials also confirms the impact of expectations: nocebo symptoms reflected the typical side-effect patterns expected in the drug group, with higher symptoms rates in the placebo groups of tricyclic antidepressant trials compared with placebo groups of trials testing selective serotonin reuptake inhibitors. While the placebo response seems to be similar for women and men, gender differences were found for nocebo rates. In the conclusion, we discuss potential implications for clinical trial designs and argue for interventions aimed at optimizing positive expectations of treatment benefit while minimizing the impact of adverse effects.  相似文献   

14.
15.
The bacterial pathogen Listeria monocytogenes displays the remarkable ability to reorganize the actin cytoskeleton within host cells as a means for promoting cell-to-cell transfer of the pathogen, in a manner that evades humoral immunity. In a series of events commencing with the biosynthesis of the bacterial surface protein ActA, host cell actin and many actin-associated protein self-assemble to from rocket-tail structures that continually grow at sites proximal to the bacterium and depolymerize distally. Widespread interest in the underlying molecular mechanism of Listeria locomotion stems from the likelihood that the dynamic remodeling of the host cell actin cytoskeleton at the cell's leading edge involves mechanistically analogous interactions. Recent advances in our understanding of these fundamental cytoskeletal rearrangements have been achieved through a clearer recognition of the central role of oligo-proline sequence repeats present in ActA, and these findings provide a basis for inferring the role of analogous host cell proteins in the force-producing and position-securing steps in pseudopod and lamellipod formation at the peripheral membrane.  相似文献   

16.
The amino acid sequence suggests that glutamate receptor delta2 (GluRdelta2) belongs to an ionotropic GluR (iGluR) subunit family. However, neither the direct binding to glutamate nor the incorporation into any native iGluRs has been demonstrated. One prominent feature of GluRdelta2 is its predominant expression at parallel fiber-Purkinje cell synapses in the cerebellum. Knockdown or knockout of GluRdelta2 impairs synaptic plasticity, stabilization, elimination, motor control, and learning. Therefore, GluRdelta2 plays a crucial role in the cerebellar function. Several ataxic spontaneous mutant mice have defects in the GluRdelta gene. Numerous proteins interacting with GluRdelta2 have been identified. Recent in vivo studies on GluRdelta2 knockout mice shed light on the mechanism by which GluRdelta2 deficiency causes ataxia and unveiled some secondary influence of the GluRdelta2 deficiency on the function of the central nervous system. Studies on GluRdelta2 might provide unique clues regarding not only the molecular mechanism of synaptic regulations but also the functioning mechanism of the entire cerebellar system.  相似文献   

17.
Degeneration of the intervertebral disc   总被引:3,自引:0,他引:3  
The intervertebral disc is a cartilaginous structure that resembles articular cartilage in its biochemistry, but morphologically it is clearly different. It shows degenerative and ageing changes earlier than does any other connective tissue in the body. It is believed to be important clinically because there is an association of disc degeneration with back pain. Current treatments are predominantly conservative or, less commonly, surgical; in many cases there is no clear diagnosis and therapy is considered inadequate. New developments, such as genetic and biological approaches, may allow better diagnosis and treatments in the future.  相似文献   

18.
19.
Plants produce a plethora of secondary metabolites which constitute a wealth of potential pharmaceuticals, pro-vitamins, flavours, fragrances, colorants and toxins as well as a source of natural pesticides. Many of these valuable compounds are only synthesized in exotic plant species or in concentrations too low to facilitate commercialization. In some cases their presence constitutes a health hazard and renders the crops unsuitable for consumption. Metabolic engineering is a powerful tool to alter and ameliorate the secondary metabolite composition of crop plants and gain new desired traits. The interplay of a multitude of biosynthetic pathways and the possibility of metabolic cross-talk combined with an incomplete understanding of the regulation of these pathways, explain why metabolic engineering of plant secondary metabolism is still in its infancy and subject to much trial and error. Cyanogenic glucosides are ancient defense compounds that release toxic HCN upon tissue disruption caused e.g. by chewing insects. The committed steps of the cyanogenic glucoside biosynthetic pathway are encoded by three genes. This unique genetic simplicity and the availability of the corresponding cDNAs have given cyanogenic glucosides pioneering status in metabolic engineering of plant secondary metabolism. In this review, lessons learned from metabolic engineering of cyanogenic glucosides in Arabidopsis thaliana (thale cress), Nicotiana tabacum cv Xanthi (tobacco), Manihot esculenta Crantz (cassava) and Lotus japonicus (bird’s foot trefoil) are presented. The importance of metabolic channelling of toxic intermediates as mediated by metabolon formation in avoiding unintended metabolic cross-talk and unwanted pleiotropic effects is emphasized. Likewise, the potential of metabolic engineering of plant secondary metabolism as a tool to elucidate, for example, the impact of secondary metabolites on plant–insect interactions is demonstrated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号