首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Top-down mass spectrometry strategies allow identification and characterization of proteins and protein networks by direct fragmentation. These analytical processes involve a panel of fragmentation mechanisms, some of which preserve protein post-translational modifications. Thus top-down is of special interest in clinical biochemistry to probe modified proteins as potential disease biomarkers. This review describes separating methods, mass spectrometry instrumentation, bioinformatics, and theoretical aspects of fragmentation mechanisms used for top-down analysis. The biological interest of this strategy is extensively reported regarding the characterization of post-translational modifications in biochemical pathways and the discovery of biomarkers. One has to bear in mind that quantitative aspects that are beyond the focus of this review are also of critical important for biomarker discovery. The constant evolution of technologies makes top-down strategies crucial players in clinical and basic proteomics.  相似文献   

2.
Although serum/plasma has been the preferred source for identification of disease biomarkers, these efforts have been met with little success, in large part due the relatively small number of highly abundant proteins that render the reliable detection of low abundant disease-related proteins challenging due to the expansive dynamic range of concentration of proteins in this sample. Proximal fluid, the fluid derived from the extracellular milieu of tissues, contains a large repertoire of shed and secreted proteins that are likely to be present at higher concentrations relative to plasma/serum. It is hypothesized that many, if not all, proximal fluid proteins exchange with peripheral circulation, which has provided significant motivation for utilizing proximal fluids as a primary sample source for protein biomarker discovery. The present review highlights recent advances in proximal fluid proteomics, including the various protocols utilized to harvest proximal fluids along with detailing the results from mass spectrometry- and antibody-based analyses.  相似文献   

3.
Proteomics was initially viewed as a promising new scientific discipline to study complex disorders such as polygenic, infectious and environment-related diseases. However, the first attempts to understand a monogenic disease such as cystic fibrosis (CF) by proteomics-based approaches have proved quite rewarding. In CF, the impairment of a unique protein, the CF transmembrane conductance regulator, does not completely explain the complex and variable CF clinical phenotype. The great advances in our knowledge about the molecular and cellular consequences of such impairment have not been sufficient to be translated into effective treatments, and CF patients are still dying due to chronic progressive lung dysfunction. The progression of proteomics application in CF will certainly unravel new proteins that could be useful as biomarkers either to elucidate CF basic mechanisms and to better monitor the disease progression, or to promote the development of novel therapeutic strategies against CF. This review will summarize the recent technological advances in proteomics and the first results of its application to address the most important issues in the CF field.  相似文献   

4.
Proteomics was initially viewed as a promising new scientific discipline to study complex disorders such as polygenic, infectious and environment-related diseases. However, the first attempts to understand a monogenic disease such as cystic fibrosis (CF) by proteomics-based approaches have proved quite rewarding. In CF, the impairment of a unique protein, the CF transmembrane conductance regulator, does not completely explain the complex and variable CF clinical phenotype. The great advances in our knowledge about the molecular and cellular consequences of such impairment have not been sufficient to be translated into effective treatments, and CF patients are still dying due to chronic progressive lung dysfunction. The progression of proteomics application in CF will certainly unravel new proteins that could be useful as biomarkers either to elucidate CF basic mechanisms and to better monitor the disease progression, or to promote the development of novel therapeutic strategies against CF. This review will summarize the recent technological advances in proteomics and the first results of its application to address the most important issues in the CF field.  相似文献   

5.
Proteomic data are a uniquely valuable resource for drug response prediction and biomarker discovery because most drugs interact directly with proteins in target cells rather than with DNA or RNA. Recent advances in mass spectrometry and associated processing methods have enabled the generation of large-scale proteomic datasets. Here we review the significant opportunities that currently exist to combine large-scale proteomic data with drug-related research, a field termed pharmacoproteomics. We describe successful applications of drug response prediction using molecular data, with an emphasis on oncology. We focus on technical advances in data-independent acquisition mass spectrometry (DIA-MS) that can facilitate the discovery of protein biomarkers for drug responses, alongside the increased availability of big biomedical data. We spotlight new opportunities for machine learning in pharmacoproteomics, driven by the combination of these large datasets and improved high-performance computing. Finally, we explore the value of pre-clinical models for pharmacoproteomic studies and the accompanying challenges of clinical validation. We propose that pharmacoproteomics offers the potential for novel discovery and innovation within the cancer landscape.  相似文献   

6.
Human saliva is an attractive body fluid for disease diagnosis and prognosis because saliva testing is simple, safe, low-cost and noninvasive. Comprehensive analysis and identification of the proteomic content in human whole and ductal saliva will not only contribute to the understanding of oral health and disease pathogenesis, but also form a foundation for the discovery of saliva protein biomarkers for human disease detection. In this article, we have summarized the proteomic technologies for comprehensive identification of proteins in human whole and ductal saliva. We have also discussed potential quantitative proteomic approaches to the discovery of saliva protein biomarkers for human oral and systemic diseases. With the fast development of mass spectrometry and proteomic technologies, we are enthusiastic that saliva protein biomarkers will be developed for clinical diagnosis and prognosis of human diseases in the future.  相似文献   

7.
Identification of autoantigens and the detection of autoantibody reactivity are useful in biomarker discovery and for explaining the role of important biochemical pathways in disease. Despite all of their potential advantages, the main challenge to working with autoantibodies is their sensitivity. Nevertheless, proteomics may hold the key to overcoming this limitation by providing the means to multiplex. Clearly, the ability to detect multiple autoantigens using a platform such as a high-density antigen microarray would improve sensitivity and specificity of detection for autoantibody profiling. The aims of this review are to: briefly describe the current status of antigen–autoantibody microarrays; provide examples of their use in biomarker discoveries; address current limitations; and provide examples and strategies to facilitate their implementation in the clinical setting.  相似文献   

8.
Identification of autoantigens and the detection of autoantibody reactivity are useful in biomarker discovery and for explaining the role of important biochemical pathways in disease. Despite all of their potential advantages, the main challenge to working with autoantibodies is their sensitivity. Nevertheless, proteomics may hold the key to overcoming this limitation by providing the means to multiplex. Clearly, the ability to detect multiple autoantigens using a platform such as a high-density antigen microarray would improve sensitivity and specificity of detection for autoantibody profiling. The aims of this review are to: briefly describe the current status of antigen-autoantibody microarrays; provide examples of their use in biomarker discoveries; address current limitations; and provide examples and strategies to facilitate their implementation in the clinical setting.  相似文献   

9.
Human saliva is an attractive body fluid for disease diagnosis and prognosis because saliva testing is simple, safe, low-cost and noninvasive. Comprehensive analysis and identification of the proteomic content in human whole and ductal saliva will not only contribute to the understanding of oral health and disease pathogenesis, but also form a foundation for the discovery of saliva protein biomarkers for human disease detection. In this article, we have summarized the proteomic technologies for comprehensive identification of proteins in human whole and ductal saliva. We have also discussed potential quantitative proteomic approaches to the discovery of saliva protein biomarkers for human oral and systemic diseases. With the fast development of mass spectrometry and proteomic technologies, we are enthusiastic that saliva protein biomarkers will be developed for clinical diagnosis and prognosis of human diseases in the future.  相似文献   

10.
11.
Hua S  An HJ 《BMB reports》2012,45(6):323-330
The glycome consists of all glycans (or carbohydrates) within a biological system, and modulates a wide range of important biological activities, from protein folding to cellular communications. The mining of the glycome for disease markers represents a new paradigm for biomarker discovery; however, this effort is severely complicated by the vast complexity and structural diversity of glycans. This review summarizes recent developments in analytical technology and methodology as applied to the fields of glycomics and glycoproteomics. Mass spectrometric strategies for glycan compositional profiling are described, as are potential refinements which allow structure-specific profiling. Analytical methods that can discern protein glycosylation at a specific site of modification are also discussed in detail. Biomarker discovery applications are shown at each level of analysis, highlighting the key role that glycoscience can play in helping scientists understand disease biology.  相似文献   

12.
13.
14.

Background

The interrogation of proteomes (“proteomics”) in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine.

Methodology/Principal Findings

We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma). Our current assay measures 813 proteins with low limits of detection (1 pM median), 7 logs of overall dynamic range (∼100 fM–1 µM), and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states.

Conclusions/Significance

We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine.  相似文献   

15.
Glycosylation is estimated to be found in over 50% of human proteins. Aberrant protein glycosylation and alteration of glycans are closely related to many diseases. More than half of the cancer biomarkers are glycosylated-proteins, and specific glycoforms of glycosylated-proteins may serve as biomarkers for either the early detection of disease or the evaluation of therapeutic efficacy for treatment of diseases. Glycoproteomics, therefore, becomes an emerging field that can make unique contributions to the discovery of biomarkers of cancers. The recent advances in mass spectrometry (MS)-based glycoproteomics, which can analyze thousands of glycosylated-proteins in a single experiment, have shown great promise for this purpose. Herein, we described the MS-based strategies that are available for glycoproteomics, and discussed the sensitivity and high throughput in both qualitative and quantitative manners. The discovery of glycosylated-proteins as biomarkers in some representative diseases by employing glycoproteomics was also summarized.  相似文献   

16.
Innovative proteomic approaches for cancer biomarker discovery   总被引:1,自引:0,他引:1  
Faca V  Krasnoselsky A  Hanash S 《BioTechniques》2007,43(3):279, 281-273, 285
Substantial technological advances in proteomics and related computational science have been made in the past few years. These advances overcome in part the complexity and heterogeneity of the human proteome, permitting quantitative analysis and identification of protein changes associated with tumor development. Here, we discuss some of these advances that are uncovering new cancer biomarkers that have potential to detect cancer at early and curable stages and address remaining challenges.  相似文献   

17.
18.
19.
Proteomic technologies have experienced major improvements in recent years. Such advances have facilitated the discovery of potential tumor markers with improved sensitivities and specificities for the diagnosis, prognosis and treatment monitoring of cancer patients. This review will focus on four state-of-the-art proteomic technologies, namely 2D difference gel electrophoresis, MALDI imaging mass spectrometry, electron transfer dissociation mass spectrometry and reverse-phase protein array. The major advancements these techniques have brought about and examples of their applications in cancer biomarker discovery will be presented in this review, so that readers can appreciate the immense progress in proteomic technologies from 1997 to 2008. Finally, a summary will be presented that discusses current hurdles faced by proteomic researchers, such as the wide dynamic range of protein abundance, standardization of protocols and validation of cancer biomarkers, and a 5-year view of potential solutions to such problems will be provided.  相似文献   

20.
There is considerable interest in using mass spectrometry for biomarker discovery in human blood plasma. We investigated aspects of experimental design for large studies that require analysis of multiple sample sets using iTRAQ reagents for sample multiplexing and quantitation. Immunodepleted plasma samples from healthy volunteers were compared to immunodepleted plasma from patients with osteoarthritis in eight separate iTRAQ experiments. Our analyses utilizing ProteinPilot software for peptide identification and quantitation showed that the methodology afforded excellent reproducibility from run to run for determining protein level ratios (coefficient of variation 11.7%), in spite of considerable quantitative variances observed between different peptides for a given protein. Peptides with high variances were associated with lower intensity iTRAQ reporter ions, while immunodepletion prior to sample analysis had a negligible affect on quantitative variance. We examined the influence of different reference samples, such as pooled samples or individual samples on calculating quantitative ratios. Our findings are discussed in the context of optimizing iTRAQ experimental design for robust plasma-based biomarker discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号