首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to present data about ovary organization and oogenesis in two small groups of clitellate annelids, i.e. in representatives of Acanthobdellida (Acanthobdella peledina) and Branchiobdellida (Branchiobdella pentodonta and Branchiobdella parasitica), and to compare them to ovaries known from true leeches and oligochaetous clitellates. In A. peledina, the ovaries have the form of elongated cords, termed ovary cords, and are enveloped by coelomic sacs, the so-called ovisacs. The ovisacs are paired and each one contains only one ovary cord. The morphology and structure of the ovary cords depend on the maturity level of the animal. In young specimens the ovary cords are short and contain mainly oogonial cells and germ cells entering meiosis. Oogonia divide mitotically without full cytokineses, and as a result germ-line cysts are formed. As the animals grow, the cords become more elongated and the germ cells within the cords differentiate into nurse cells and oocytes. Oocytes gather cell organelles and, finally, detach from the ovary cord and float freely in the ovisac lumen.In both examined branchiobdellidans the ovaries are also paired. They are short and conical and are not enclosed within ovisacs. The narrow end of each ovary is connected to the intersegmental septum via a ligament, whereas the outermost (broad) end of the ovary extends freely into the coelom. The ovaries are polarized. Their narrow ends contain oogonia, whereas nurse cells and growing oocytes, gradually projecting from the ovary, can be found in their middle and outermost parts. Early vitellogenic oocytes detach from the ovary and float freely in the coelom.In all of the species studied, the ovaries are made up of germ-line cysts associated with somatic (follicular) cells. The architecture of a germ-line cyst is exactly the same as in other clitellate annelids that have been studied to date. Each germ cell in a cyst has one stable cytoplasmic bridge connecting it with a central anuclear cytoplasmic mass, a cytophore. The fate of germ cells constituting cysts is diverse. The majority of the cells withdraw from meiosis and become nurse cells; only a few continue meiosis, grow and become oocytes. The meroistic mode of oogenesis is suggested. We suggest also that the formation of germ-line cysts and ovary meroism should be regarded as basal conditions for all Clitellata. The occurrence of ovisacs enveloping the ovaries in A. peledina and Hirudinida is regarded as a synapomorphy of both groups, whereas ovaries found in B. pentodonta and B. parasitica have no ovisacs and resemble ovaries described in Oligochaeta sensu stricto.  相似文献   

2.
Ovaries of Haplotaxis sp. were studied in active and nonactive states, that is, in a sexually mature specimen and in specimens outside of the reproductive period. Two pairs of ovaries were found in segments XI and XII. Especially in the nonactive state, they were in close contact with copulatory glands. Each ovary was composed of germ cells interconnected with syncytial cysts, which were enveloped by a layer of somatic cells. Within cysts each germ cell had one ring canal connecting it to the common anuclear cytoplasmic mass called a cytophore. During oogenesis clustering germ cells differentiated into nurse cells and oocytes; thus, the oogenesis was recognized as meroistic. Vitellogenic oocytes were detached from the ovaries and continued yolk absorption within the body cavity. Because recent studies have shown the variety of ovaries and germ line cyst organization in clitellates and suggest their evolutionary conservatism at the family or subfamily level, the data presented here can be valid in understanding the phylogenetic relationships among Clitellata. In this context, ovaries found in Haplotaxis sp. resembled those of the “Tubifex” type. “Tubifex” ovaries are characteristic for numerous microdrile taxa (tubificines, limnodriloidines, propappids, lumbriculids, and leech‐like branchiobdellids) and can be regarded as the primary character for these Clitellata in which germ‐line cysts are formed during early oogenesis. As the family Haplotaxidae is currently considered to be paraphyletic and the species studied here belongs to Haplotaxidae sensu stricto, our results support the close relationship of Haplotaxidae sensu stricto to the clade consisting of Lumbriculidae, Branchiobdellida, and Hirudinida, in which lumbriculids are sister to the latter two.  相似文献   

3.
Recent studies on the ovary organization and oogenesis in Tubificinae have revealed that their ovaries are small polarized structures that are composed of germ cells in subsequent stages of oogenesis that are associated with somatic cells. In syncytial cysts, as a rule, each germ cell is connected to the central cytoplasmic mass, the cytophore, via only one stable intercellular bridge (ring canal). In this paper we present detailed data about the composition of germ-line cysts in Tubifex tubifex with special emphasis on the occurrence and distribution of the cytoskeletal elements. Using fixed material and live cell imaging techniques, we found that the entire ovary of T. tubifex is composed of only one, huge multicellular germ-line cyst, which may contain up to 2,600 cells. Its architecture is broadly similar to the cysts that are found in other clitellate annelids, i.e. a common, anuclear cytoplasmic mass in the center of the cyst and germ cells that are connected to it via intercellular bridges. The cytophore in the T. tubifex cyst extends along the long axis of the ovary in the form of elongated and branched cytoplasmic strands. Rhodamine-coupled phalloidin staining revealed that the prominent strands of actin filaments occur inside the cytophore. Similar to the cytophore, F-actin strands are branched and they are especially well developed in the middle and outermost parts of the ovary. Microfilaments are also present in the ring canals that connect the germ cells with the cytophore in the narrow end of the ovary. Using TubulinTracker, we found that the microtubules form a prominent network of loosely and evenly distributed tubules inside the cytophore as well as in every germ cell. The well-developed cytoskeletal elements in T. tubifex ovary seem to ensure the integrity of such a huge germ-line cyst of complex (germ cells - ring canals - cytophore) organization. A comparison between the cysts that are described here and other well-known female germ-line cysts is also made.  相似文献   

4.
The ultrastructure of the ovaries and oogenesis was studied in three species of three genera of Tubificinae. The paired ovaries are small, conically shaped structures, connected to the intersegmental septum between segments X and XI by their narrow end. The ovaries are composed of syncytial cysts of germ cells interconnected by stable cytoplasmic bridges (ring canals) and surrounded by follicular cells. The architecture of the germ-line cysts is exactly the same as in all clitellate annelids studied to date, i.e. each cell in a cyst has only one ring canal connecting it to the central, anuclear cytoplasmic mass, the cytophore. The ovaries found in all of the species studied seem to be meroistic, i.e. the ultimate fate of germ cells within a cyst is different, and the majority of cells withdraw from meiosis and become nurse cells; the rest continue meiosis, gather macromolecules, cell organelles and storage material, and become oocytes. The ovaries are polarized; their narrow end contains mitotically dividing oogonia and germ cells entering the meiosis prophase; whereas within the middle and basal parts, nurse cells, a prominent cytophore and growing oocytes occur. During late previtellogenesis/early vitellogenesis, the oocytes detach from the cytophore and float in the coelom; they are usually enveloped by the peritoneal epithelium and associated with blood vessels. Generally, the organization of ovaries in all of the Tubificinae species studied resembles the polarized ovary cords found within the ovisacs of some Euhirudinea. The organization of ovaries and the course of oogenesis between the genera studied and other clitellate annelids are compared. Finally, it is suggested that germ-line cysts formation and the meroistic mode of oogenesis may be a primary character for all Clitellata.  相似文献   

5.
Ahmed  Raja Ben  Urbisz  Anna Z.  Świątek  Piotr 《Protoplasma》2021,258(1):191-207

This study reveals the ovary micromorphology and the course of oogenesis in the leech Batracobdella algira (Glossiphoniidae). Using light, fluorescence, and electron microscopies, the paired ovaries were analyzed. At the beginning of the breeding season, the ovaries were small, but as oogenesis progressed, they increased in size significantly, broadened, and elongated. A single convoluted ovary cord was located inside each ovary. The ovary cord was composed of numerous germ cells gathered into syncytial groups, which are called germ-line cysts. During oogenesis, the clustering germ cells differentiated into two functional categories, i.e., nurse cells and oocytes, and therefore, this oogenesis was recognized as being meroistic. As a rule, each clustering germ cell had one connection in the form of a broad cytoplasmic channel (intercellular bridge) that connected it to the cytophore. There was a synchrony in the development of the clustering germ cells in the whole ovary cord. In the immature leeches, the ovary cords contained undifferentiated germ cells exclusively, from which, previtellogenic oocytes and nurse cells differentiated as the breeding season progressed. Only the oocytes grew considerably, gathered nutritive material, and protruded at the ovary cord surface. The vitellogenic oocytes subsequently detached from the cord and filled tightly the ovary sac, while the nurse cells and the cytophore degenerated. Ripe eggs were finally deposited into the cocoons. A comparison of the ovary structure and oogenesis revealed that almost all of the features that are described in the studied species were similar to those that are known from other representatives of Glossiphoniidae, which indicates their evolutionary conservatism within this family.

  相似文献   

6.
7.
18S rDNA phylogeny of Clitellata (Annelida)   总被引:8,自引:0,他引:8  
The phylogeny of Clitellata was analysed using 18S rDNA sequences of a selection of species representing Hirudinida, Acanthobdellida, Branchiobdellida and 10 oligochaetous families. Eleven new 18S sequences of Capilloventridae (one), Haplotaxidae (one), Propappidae (one), Enchytraeidae (two), Lumbricidae (one), Almidae (one), Megascolecidae (two), Lumbriculidae (one), and Phreodrilidae (one) are reported and aligned together with corresponding sequences of 28 previously studied clitellate taxa. Twelve polychaete species were used as an outgroup. The analysis supports an earlier hypothesis based on morphological features that Capilloventridae represents a basal clade of Clitellata; in the 18S tree it shows a sister-group relationship to all other clitellates. The remaining clitellate taxa form a basal dichotomy, one clade containing Tubificidae (including the former 'Naididae'), Phreodrilidae, Haplotaxidae, and Propappidae, the other clade with two subgroups: (1) Lumbriculidae together with all leech-like taxa (Acanthobdellida, Branchiobdellida and Hirudinida), and (2) Enchytraeidae together with a monophyletic group of all earthworms included in the study (Lumbricidae, Almidae and Megascolecidae). These earthworms are members of the taxon Crassiclitellata, the monophyly of which is thus supported by the data. The tree also shows support for the hypothesis that the first clitellates were aquatic. The position of the single species representing Haplotaxidae is not as basal as could have been expected from earlier morphology-based conclusions about the ancestral status of this family. However, if Haplotaxidae is indeed a paraphyletic assemblage of relict taxa, a higher number of representatives will be needed to resolve its exact relationships with the other clitellates.  相似文献   

8.
The organization of the ovaries in representative of the Salifidae (Hirudinida, Erpobdelliformes) was studied at the ultrastructural level for the first time. Like in other leeches, the ovaries of Barbronia weberi are composed of an outer envelope (i.e., an ovisac made up of two coelomic epithelia, muscle cells, and connective tissue) and several internal units, which are broadly similar to the ovary cords found in representatives of the Erpobdellidae. There are usually 6–8 ovary cords that are twisted or cambered with a narrow apical part and a broader, irregularly shaped distal end in each ovisac of B. weberi. Each ovary cord is built from somatic and germ‐line cells and the latter tend to form multicellular cysts that are equipped with a central cytoplasmic core (cytophore). There are two morphologically different subpopulations of germ‐line cells: oocytes and more numerous nurse cells. Growing oocytes form protuberances on the ovary cord surface and eventually detach from the cord and float freely in the ovisac lumen, whereas the other components of germ‐line cysts (i.e., nurse cells and cytophore) degenerate. It should be pointed out that there is a prominent gradient of germ‐cell development along the long axis of the cord. The somatic cells form the ovary cord envelope (the so‐called spongiosa cells) and also penetrate the spaces between germ‐line cells. Both kinds of the somatic cells, that is, those forming the cord envelope and the somatic cells that are associated with oocytes (follicular cells) have a well‐developed system of intercellular channels. Additionally, one prominent somatic cell, the apical cell, was found at the apical tip of each ovary cord. Because the aforementioned features of ovary cords found in B. weberi are very similar (with a few minor exceptions) to the ovary cords that have been described in Erpobdella octoculata and E. johanssoni, we propose the term “ovary cords of the Erpobdella type” for them. Our results support a close phylogenetic relationship between Salifidae and Erpobdellidae. J. Morphol. 275:479–488, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
Piscicola has a pair of elongated sac-shaped ovaries. Inside the ovaries are numerous small somatic cells and regularly spherical egg follicles. Each follicle is composed of three types of cells: many (average 30) germ cells (cystocytes) interconnected by intercellular bridges in clones (cysts), one intermediate cell, and three to five outer follicle cells (envelope cells). Each germ cell in a clone has one intercellular bridge connecting it to the central anucleate cytoplasmic mass, the cytophore. Each cluster of germ cells is completely embedded inside a single huge somatic follicle cell, the intermediate (interstitial) cell. The most spectacular feature of the intermediate cell is its development of a system of intracytoplasmic canals apparently formed of invaginations of its cell membrane. Initially the complex of germ cell cluster + intermediate cell is enclosed within an envelope composed of squamous cells. As oogenesis progresses the envelope cells gradually degenerate. All the germ cells that have terminated their mitotic divisions are of similar size and enter meiotic prophase, but one of the cystocytes promptly starts to grow faster and differentiates into the oocyte, whereas the remaining cystocytes withdraw from meiosis and become nurse cells (trophocytes). Numerous mitochondria, ER, and a vast amount of ribosomes are transferred from the trophocytes via the cytophore toward the oocyte. Eventually the oocyte ingests all the content of the cytophore, and the trophocytes degenerate. Little vitellogenesis takes place; the oocyte gathers nutrients in the form of small lipid droplets. At the end of oogenesis, an electron-dense fibrous vitelline envelope appears around the oocyte, among short microvilli. At the same time, electron-dense cortical granules occur in the oocyte cortical cytoplasm; at the end of oogenesis they are numerous, but after fertilization they disappear from the ooplasm. In the present article we point out many differences in the course of oogenesis in two related families of rhynchobdellids: piscicolids and glossiphoniids.  相似文献   

10.
Glossiphonia heteroclita has paired ovaries whose shape and dimensions change as oogenesis proceeds: during early previtellogenesis they are small and club-shaped, whereas during vitellogenesis they broaden and elongate considerably. During early oogenesis (previtellogenesis), each ovary is composed of an outer envelope (ovisac) that surrounds the ovary cavity and is filled with hemocoelomic fluid, in which a single and very convoluted ovary cord is bathed. The ovary cord consists of germline cells, including nurse cells and young oocytes surrounded by a layer of elongated follicle cells. Additionally, follicle cells with long cytoplasmic projections occur inside the ovary cord, where they separate germ cells from each other. The ovary cord contains thousands of nurse cells. Each nurse cell has one intercellular bridge, connecting it to a central anucleate cytoplasmic mass, the cytophore (rachis); it in turn is connected by one intercellular bridge with each growing oocyte. Numerous mitochondria, RER cisternae, ribosomes, and Golgi complexes are transported from the nurse cells, via the intercellular bridge and cytophore, to the growing oocytes. Oogenesis in G. heteroclita is synchronous with all oocytes in the ovary in the same stage of oogenesis. The youngest observed oocytes are slightly larger than nurse cells, and usually occupy the periphery of the ovary cord. As previtellogenesis proceeds, the oocytes gather a vast amount of cell organelles and become more voluminous. As a result, in late previtellogenesis the oocytes gradually protrude into the ovary cavity. Simultaneously with oocyte growth, the follicle cells differentiate into two subpopulations. The morphology of the follicle cells surrounding the nurse cells and penetrating the ovary cord does not change, whereas those enveloping the growing oocytes become more voluminous. Their plasma membrane invaginates deeply, forming numerous broad vesicles that eventually seem to form channels or conducts through which the hemocoelomic fluid can easily access the growing oocytes.  相似文献   

11.
In Hirudo medicinalis and Haemopis sanguisuga, two convoluted ovary cords are found within each ovary. Each ovary cord is a polarized structure composed of germ cells (oogonia, developing oocytes, nurse cells) and somatic cells (apical cell, follicular cells). One end of the ovary cord is club-shaped and comprises one huge apical cell, numerous oogonia, and small cysts (clusters) of interconnected germ cells. The main part of the cord contains fully developed cysts composed of numerous nurse cells connected via intercellular bridges with the cytophore, which in turn is connected by a cytoplasmic bridge with the growing oocyte. The opposite end of the cord degenerates. Cord integrity is ensured by flattened follicular cells enveloping the cord; moreover, inside the cord, some follicular cells (internal follicular cells) are distributed among germ cells. As oogenesis progresses, the growing oocytes gradually protrude into the ovary lumen; as a result, fully developed oocytes arrested in meiotic metaphase I float freely in the ovary lumen. This paper describes the successive stages of oogenesis of H. medicinalis in detail. Ovary organization in Hirudinea was classified within four different types: non-polarized ovary cords were found in glossiphoniids, egg follicles were described in piscicolids, ovarian bodies were found characteristic for erpobdellids, and polarized ovary cords in hirudiniforms. Ovaries with polarized structures equipped with apical cell (i.e. polarized ovary cords and ovarian bodies) (as found in arhynchobdellids) are considered as primary for Hirudinea while non-polarized ovary cords and the occurrence of egg follicles (rhynchobdellids) represent derived condition.  相似文献   

12.
FMRP is an RNA binding protein linked to the most common form of inherited mental retardation, Fragile X syndrome (FraX). In addition to severe cognitive deficits, FraX etiology includes postpubescent macroorchidism, which is thought to result from overproliferation. Using a Drosophila FraX model, we show that FMRP controls germline proliferation during oogenesis. dFmr1 null ovaries contain egg chambers with both fewer and supranumerary germ cells. The mutant germaria contain a significantly increased number of cyclin E and PhosphoHistone H3 positive cells, suggesting that loss of FMRP leads to defects in cell cycle progression. BrdU incorporation and flow cytometry data suggest that, in addition to proliferation, germline endoreplication and ploidy are also affected by the loss of FMRP during ovary development. Here we report that FMRP controls the levels of cbl mRNA in the ovary and that reducing cbl gene dosage by half rescues the dFmr1 oogenesis phenotypes. These data support a model whereby FMRP controls germline proliferation by regulating the expression of cbl in the developing ovary.  相似文献   

13.
14.
Erséus  Christer 《Hydrobiologia》2005,(1):357-372
Clitellata, with more than one third of all annelid species described, is briefly introduced, and an overview of the hypotheses of phylogenetic relationships among the groups traditionally referred to as oligochaetes is given. The presentation is placed in a historical context and describes the trend to move from intuitive, narrative approaches to more formal analyses of character patterns. Monophyly of the earthworms (the megadriles, or Metagynophora sensu Jamieson), or at least a major part of them (Crassiclitellata sensu Jamieson), and paraphyly of the ‘microdrile’ largely aquatic, groups are supported by both morphological and molecular data. Further, DNA sequences as well as spermatozoal ultrastructure corroborate that all leech-like taxa (Hirudinida, Acanthobdellida and Branchiobdellida) constitute a clade derived within ‘Oligochaeta’, closely related to the family Lumbriculidae. Molecular systematic studies also support relationships already identified on the basis of morphological data, e.g., the position of Naididae within Tubificidae, the position of Phreodrilidae close to, but outside, the same family, and the putative sistergroup relationship between the newly discovered Capilloventridae and the rest of Clitellata. A recent study using 18S rDNA suggests that Enchytraeidae is closely related to Metagynophora, and that these two taxa, which contain all terrestrial oligochaetous clitellates, form a clade derived from aquatic ‘microdriles’ This refutes a recent hypothesis proposing that the ancestor of Clitellata was terrestrial. To a great extent, however, the basal resolution of the oligochaetous clitellates remains unclear.  相似文献   

15.
On the origin of the Hirudinea and the demise of the Oligochaeta   总被引:10,自引:0,他引:10  
The phylogenetic relationships of the Clitellata were investigated with a data set of published and new complete 18S rRNA gene sequences of 51 species representing 41 families. Sequences were aligned on the basis of a secondary structure model and analysed with maximum parsimony and maximum likelihood. In contrast to the latter method, parsimony did not recover the monophyly of Clitellata. However, a close scrutiny of the data suggested a spurious attraction between some polychaetes and clitellates. As a rule, molecular trees are closely aligned with morphology-based phylogenies. Acanthobdellida and Euhirudinea were reconciled in their traditional Hirudinea clade and were included in the Oligochaeta with the Branchiobdellida via the Lumbriculidae as a possible link between the two assemblages. While the 18S gene yielded a meaningful historical signal for determining relationships within clitellates, the exact position of Hirudinea and Branchiobdellida within oligochaetes remained unresolved. The lack of phylogenetic signal is interpreted as evidence for a rapid radiation of these taxa. The placement of Clitellata within the Polychaeta remained unresolved. The biological reality of polytomies within annelids is suggested and supports the hypothesis of an extremely ancient radiation of polychaetes and emergence of clitellates.  相似文献   

16.
In both examined species of Hirudinea there are paired spheroid ovisacs, and within each ovisac two convoluted ovary cords occur. The morphology of the cords is characteristic: their apical end is club-shaped, the central part is narrow and may contain developing oocytes, whereas the basal end of the cord is irregularly shaped and composed of degenerating cells. The ovary cords are built of somatic and germ-line cells; the latter are united into syncytial cysts. Each germ cell in such a cyst has only one stable cytoplasmic bridge connecting it to the central anuclear cytoplasmic mass, the cytophore. Initially all germ-line cells in a given cyst are morphologically identical, then the fates of cells diversify. Most of them become nurse cells and eventually degenerate; the rest continue meiosis, gather macromolecules, cell organelles and nutritive material and become oocytes. The oogenesis found in the species studied should be regarded as meroistic. Previtellogenic oocytes protrude from the cord into the ovisac lumen, whereas the vitellogenic ones float freely in the ovisac lumen. The somatic cells found in the ovary cords are: follicular cells which form the envelope of the cord and are also found among germ cells inside the cord, and one, huge apical cell that always is located at the top of the club-shaped end of the ovary cord. The apical cell has several characteristic features, e.g., it forms long cytoplasmic projections filled with intermediate filaments and it is connected to the neighbouring cells (both somatic and germ-line) via hemidesmosomes. We suggest that the apical cell forms the niche for maintaining germ and somatic stem cells. Generally, the organization of the ovary cords found in both studied species is broadly similar to those described in other hirudiniform leeches studied to date.  相似文献   

17.
To investigate the phylogenetic relationships of leeches, branchiobdellidans, and acanthobdellidans, whole nuclear 18S rDNA and over 650 bp of mitochondrial cytochrome c oxidase subunit I were acquired from 101 annelids, including 36 leeches, 18 branchiobdellidans, Acanthobdella peledina, as well as 28 oligochaetes and combined with homologous data for 17 polychaete outgroup taxa. Parsimony analysis of the combined aligned dataset supported monophyly of leeches, branchiobdellidans, and acanthobdellidans in 100% of jackknife replicates. Monophyly of the oligochaete order Lumbriculida with Acanthobdellida, Branchiobdellida, and Hirudinea was supported in 84% of jackknife replicates. These results provide support for the hypotheses that leeches and branchiobdellidans are sister groups, that acanthobdellidans are sister to them, and that together with the family Lumbriculidae they all constitute a clade within Oligochaeta. Results support synonymy of the classes Clitellata and the more commonly used Oligochaeta. Leeches branchiobdellidans, and acanthobdellidans should be regarded as orders equal to their closest relatives, the order Lumbriculida.  相似文献   

18.
To investigate the phylogenetic relationships of leeches, branchiobdellidans, and acanthobdellidans, whole nuclear 18S rDNA and over 650 bp of mitochondrial cytochrome c oxidase subunit I were acquired from 101 annelids, including 36 leeches, 18 branchiobdellidans, Acanthobdella peledina, as well as 28 oligochaetes and combined with homologous data for 17 polychaete outgroup taxa. Parsimony analysis of the combined aligned dataset supported monophyly of leeches, branchiobdellidans, and acanthobdellidans in 100% of jackknife replicates. Monophyly of the oligochaete order Lumbriculida with Acanthobdellida, Branchiobdellida, and Hirudinea was supported in 84% of jackknife replicates. These results provide support for the hypotheses that leeches and branchiobdellidans are sister groups, that acanthobdellidans are sister to them, and that together with the family Lumbriculidae they all constitute a clade within Oligochaeta. Results support synonymy of the classes Clitellata and the more commonly used Oligochaeta. Leeches branchiobdellidans, and acanthobdellidans should be regarded as orders equal to their closest relatives, the order Lumbriculida.  相似文献   

19.
20.
Drosophila oogenesis is especially well suited for studying stem cell biology, cellular differentiation, and morphogenesis. The small modifier protein ubiquitin regulates many cellular pathways. Ubiquitin is conjugated to target proteins by a diverse class of enzymes called ubiquitin E3 ligases. Here we characterize the requirement of Cul-5, a key component of a subgroup of Cullin-RING-type ubiquitin E3 ligases, in Drosophila oogenesis. We find that reduced cul-5 activity causes the formation of aberrant follicles that are characterized by excess germ cells. We show that germ line cells overproliferate in cul-5 mutant females, causing the formation of abnormally large germ line cysts. Also, the follicular epithelium that normally encapsulates single germ line cysts develops aberrantly in cul-5 mutant, leading to defects in cyst formation. We additionally found that Cul-5 is required for germ cell maintenance, as germ cells are depleted in a substantial fraction of cul-5 mutant ovaries. All of these cul-5 phenotypes are strongly enhanced by reduced activity of gustavus (gus), which encodes a substrate receptor of Cul-5-based ubiquitin E3 ligases. Taken together, our results implicate Cul-5/Gus ubiquitin E3 ligases in ovarian tissue morphogenesis, germ cell proliferation and maintenance of the ovarian germ cell population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号