首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The reflex effect of direct mechanical stimulation of the exposed ampulla of the horizontal canal has been graphically recorded for each of the six extrinsic muscles of the eyeball. 2. Stimulation of a horizontal ampulla evokes a strong contraction of the homolateral rectus internus and of the contralateral rectus externus; at the same time the homolateral rectus externus and the contralateral rectus internus relax. 3. A single mechanical stimulus applied to the horizontal ampulla is sometimes followed by a nystagmus resulting from a series of rhythmic contractions of the externus and internus muscles. 4. Excitation of a horizontal ampulla gives rise to weak contractions of the superior and inferior recti and of the two oblique muscles of both eyes, simultaneously with the stronger contractions of the externus and internus respectively. 5. It is pointed out that the small simultaneous contractions of the four muscles just mentioned provide a virtual axis upon which the eyeball rotates. In other words these four act as fixation muscles. 6. It is suggested that some of the abnormal responses to horizontal rotation, seen in clinical cases, are due to the inaction of one or more of the fixation muscles.  相似文献   

2.
The effects of different drugs, active at certain neuromuscular junctions, have been studied on the membrane properties of three different muscles of Sarcophaga bullata. No evidence could be found to support the presence of cholinergically mediated neuromuscular transmission in these muscles. The drug having the most effect was l-glutamate, although differences in effectiveness were observed between the three muscles. Possible reasons for these differences are discussed. A transmitter rôle in the Dipteran muscles is postulated for l-glutamate.  相似文献   

3.
Summary In the arm of the ophiuroid Ophiocomina nigra the intervertebral muscles are linked to the vertebral ossicles by tendinous connective tissue fibres. When an arm autotomizes, rupture of the tendons at one end (the autotomy insertion) permits each muscle in the autotomizing segment to separate cleanly from an ossicle while its other attachment (the non-autotomy insertion) remains intact. The anatomical relations, composition and function of the tendons were investigated by histochemical, electron microscopical and experimental methods. The tendons consist of a carbohydrate-rich secreted collagen derived from the basal lamina of the muscles. At autotomy their rupture is preceded and facilitated by an increase in extensibility, which represents the first evidence for variable tensility in an echinoderm connective tissue not composed of interstitial collagen. Granule-containing juxtaligamental cell processes are associated with the tendons of the autotomy insertions but are absent from the non-autotomy insertions. There appears to be widespread release of granules from these processes at autotomy. The results of a simple experiment implicate the juxtaligamental cells in the control of tendon extensibility and a possible mechanism for this control is presented.  相似文献   

4.
Abstract. We have explored the process by which crinoids increase arm number as they grow. Two hypotheses have been proposed: (1) arm autotomy with subsequent bifurcation and regeneration of a pair of arms, and (2) growth of a pinnule into an additional arm. We have traced the development of Oxycomanthus japonicus for about a year after fertilization and provide the first confirmation that the number of arms increases by autotomy, bifurcation, and subsequent regeneration of a pair of arms. The next such addition tends to occur at some distance from the previous pair. Thus, increase of arm number takes place in such a manner that the density of the arms remains relatively constant, and an efficient filtration fan for feeding is maintained. Although arm autotomy in crinoids has been considered to occur only as a response to physical or chemical disturbance, the present results suggest that autotomy also occurs as a specific, intrinsically programmed event during normal development.  相似文献   

5.
1. The longitudinal muscle of the body wall (LMBW) of the holothurian, Isostichopus badionotus contracted when treated with acetylcholine (ACh). The threshold concentration for initiating a contraction was 10−8M ACh.2. Inward calcium (Ca2+) current blockers, diltiazem and verapamil, blocked contractions induced by ACh suggesting that Ca2+ channels are involved. Verapamil caused small rhythmic contractions to occur in some muscle preparations.3. Caffeine initiated contractions only at the high concentration of 10 mM and caused rhythmic contractions in otherwise non-spontaneously beating muscle. The caffeine-contractions were partially blocked by verapamil.  相似文献   

6.
The substrate specificity of the rat mammary tissue high affinity, Na+-dependent anionic amino acid transport system has been investigated using explants and the perfused mammary gland. d-Aspartate appears to be transported via the high affinity, Na+-dependent l-glutamate carrier. Thus, d-aspartate transport by rat mammary tissue was Na+-dependent and saturable with respect to extracellular d-aspartate with a Km and Vmax of 32.4 μM and 49.0 nmol/2 min per g of cells respectively. The uptake of d-aspartate by mammary explants was cis-inhibited by l-glutamate and l-aspartate, but not by d-glutamate. l-glutamate uptake by mammary tissue explants was cis-inhibited by β-glutamate, l-cysteate, l-cysteine sulfinate and dihydrokainate but not by dl-α-aminoadipate. In addition, dihydrokainate, but not dl-α-aminoadipate inhibited d-aspartate and l-glutamate uptake by the perfused gland. d-Aspartate efflux from mammary tissue explants was trans-accelerated by external l-glutamate in a dose-dependent fashion (50-500 μM). The effect of l-glutamate on d-aspartate efflux was dependent on the presence of extracellular Na+. d-Aspartate, l-aspartate and l-cysteine sulfinate (at 500 μM) also markedly trans-stimulated d-aspartate efflux from mammary tissue explants. In contrast, l-cysteine, d-glutamate, l-leucine, dihydrokainate and dl-α-aminoadipate were either weak stimulators of d-aspartate efflux or were without effect. d-Aspartate efflux from the perfused mammary gland was trans-stimulated by l-glutamate but not by d-glutamate and only weakly by l-cysteine (all at 500 μM). It appears that the mammary tissue high affinity anionic amino acid carrier can operate in the exchange mode with a similar substrate specificity to that of the co-transport mode.  相似文献   

7.
Contractions of an echinoderm (sp. Sclerodactyla briareus) smooth muscle, the longitudinal muscle of the body wall (LMBW), were evoked by acetylcholine (ACh) and agonists: epibatidine, muscarine and nicotine (in order of force generation: ACh>muscarine=epibatidine>nicotine). ACh-induced contractions were blocked by atropine by 50%, and methoctramine, by 30%. ACh responses were also blocked by 25% by methyllycaconitine (MLA) but not by d-tubocurarine (dTC). Muscarine initiated large contractions that were completely blocked by atropine. To elucidate possible muscarinic ACh receptor (mAChR) subtypes, muscarinic agonists (oxotremorine, pilocarpine) and antagonists (methoctramine, pirenzepine) were tested. Oxotremorine, pilocarpine, and pirenzepine each enhanced resting tonus and potentiated ACh-induced contractions (order of potency: pilocarpine>oxotremorine=pirenzepine). Muscarine, oxotremorine or pirenzepine generated phasic, rhythmic contractions. Nicotine-induced contractions were almost completely blocked by dTC but were not altered by atropine. Large contractions evoked by epibatidine were potentiated by dTC whereas atropine had no effect on them. MLA blocked spontaneous rhythmicity. Cholinesterase inhibitors, neostigmine or physostigmine, caused marked potentiation of ACh-induced contractions and initiated rhythmic slow wave contractions in previously quiescent muscles. The present pharmacological evidence points to the co-existence of excitatory nicotinic ACh receptor (nAChRs) and mAChRs where nAChRs possibly modulate tone, and the mAChRs initiate and enhance rhythmicity.  相似文献   

8.
1. The longitudinal and circular muscle layers of canine colon showed a different pattern of mechanical activity: regular rhythmic phasic contractions in the circular strips and irregular rhythmic prolonged contractions in the longitudinal strips.2. The spontaneous motility of both layers was suppressed by atropine (1 μM) or hexamethonium (1 μM), suggesting the involvement of ACh.3. Somatostatin (1 nM–1μM) decreased, while CCK8 (1–10 nM) increased the spontaneous and electrically-induced contractions of the colonic muscles, the circular layer being more sensitive as compared to the longitudinal layer.4. CCK8 enhanced both resting and electrically-induced [3H]ACh release, while SOM inhibited the electrically-stimulated [3H]ACh release.  相似文献   

9.
The term autotomy refers to the process by which some species lose limbs or parts of limbs in response to adverse biotic or abiotic conditions, as for example, predation or abnormally high temperatures. The multi-armed sea star Heliaster helianthus is a key predator of the intertidal and the shallow rocky subtidal communities of north-central Chile. Natural populations of this sea star have been found with up to 60% of the individuals showing some degree of autotomy. The present study evaluated the effects of autotomy on feeding rate and growth of juvenile and adult H. helianthus after experimentally induced autotomy of 17% and 33% of their arms, as well as on the energy content of the pyloric caeca and gonads of adults during the reproductive period. Experimental juvenile sea stars were maintained and fed in the laboratory over a period of five months and adult sea stars for one month, Intact individuals were maintained as parallel controls. The results showed that juveniles undergoing 33% autotomy decreased their feeding rates, and as a consequence showed lowered net individual growth. In contrast, adults with 17% and 33% autotomy showed marked reductions in feeding. The results showed that autotomized adults had between five and seven times lower contents of carbohydrates, lipids, and proteins (and thus energetic content) in their pyloric caeca and gonads. The loss of the arms not only decreased the capacity for feeding in sea stars, but also allocated energy away from growth and reproduction into the process of regeneration of arms. This suggests that autotomy reduces the fitness of H. helianthus. Growth was reduced in the juveniles, while adults became limited in their ability to store energy which then limited their reproductive potential. Finally, based on the important effect of autotomy on reducing the feeding capacity of H. helianthus, the role of this sea star as a predator in the environment may be strongly affected.  相似文献   

10.
Sasaki K  Ishii N 《PloS one》2010,5(9):e13043
We have previously shown that unloaded shortening velocity (V 0) of human plantar flexors can be determined in vivo, by applying the “slack test” to submaximal voluntary contractions (J Physiol 567:1047–1056, 2005). In the present study, to investigate the effect of motor unit recruitment pattern on V 0 of human muscle, we modified the slack test and applied this method to both voluntary and electrically elicited contractions of dorsiflexors. A series of quick releases (i.e., rapid ankle joint rotation driven by an electrical dynamometer) was applied to voluntarily activated dorsiflexor muscles at three different contraction intensities (15, 50, and 85% of maximal voluntary contraction; MVC). The quick-release trials were also performed on electrically activated dorsiflexor muscles, in which three stimulus conditions were used: submaximal (equal to 15%MVC) 50-Hz stimulation, supramaximal 50-Hz stimulation, and supramaximal 20-Hz stimulation. Modification of the slack test in vivo resulted in good reproducibility of V 0, with an intraclass correlation coefficient of 0.87 (95% confidence interval: 0.68–0.95). Regression analysis showed that V 0 of voluntarily activated dorsiflexor muscles significantly increased with increasing contraction intensity (R 2 = 0.52, P<0.001). By contrast, V 0 of electrically activated dorsiflexor muscles remained unchanged (R 2<0.001, P = 0.98) among three different stimulus conditions showing a large variation of tetanic torque. These results suggest that the recruitment pattern of motor units, which is quite different between voluntary and electrically elicited contractions, plays an important role in determining shortening velocity of human skeletal muscle in vivo.  相似文献   

11.
Glutamine synthetase from the plant cytosol fraction of lupin nodules was purified 89-fold to apparent homogeneity. The enzyme molecule is composed of eight subunits of Mr 44,700 ± 10%. Kinetic analysis indicates that the reaction mechanism is sequential and there is some evidence that Mg-ATP is the first substrate to bind to the enzyme. Michaelis constants for each substrate using the ammonium-dependent biosynthetic reaction are as follows: ATP, 0.24 mm; l-glutamate, 4.0–4.2 mm; ammonium, 0.16 mm. Using an hydroxamate-forming biosynthetic reaction the Km ATP is 1.1 mm but the Km for l-glutamate is not altered. The effect of pH on the Km for ammonium indicates that NH3 rather than NH4+ may be the true substrate. At 10 mm Mg2+, the pH optimum of the enzyme is between 7.5 and 8, but increasing Mg2+ concentrations produce progressively more acidic optima while lower Mg2+ concentrations raise the pH optimum. The rate-response curve for Mg2+ is sigmoidal becoming bell-shaped in alkaline conditions. The enzyme is inhibited by l-Asp (Ki, 1.4 mm) and less markedly by l-Gln and l-Asn. Inhibition by ADP and AMP is strong, both nucleotides exhibiting Ki values around 0.3 mM. Investigations of the probable physiological conditions within the nodule plant cytosol indicate that in situ glutamine synthetase has an activity greater than that required to support the efflux of amino acid nitrogen from the nodule. A possible role for glutamine synthetase in the control of nodule ammonium assimilation is suggested.  相似文献   

12.
The effect of arm movements and movements of individual arm joints on the electrophysiological and kinematic characteristics of voluntary and vibration-triggered stepping-like leg movements was studied under the conditions of horizontal support of the upper and lower limbs. The horizontal support of arms provided a significant increase in the rate of activation of locomotor automatism by noninvasive impact on tonic sensory inputs. The addition of active arm movements during involuntary stepping-like leg movements led to an increase in the EMG activity of hip muscles and was accompanied by an increase in the amplitude of hip and shin movements. The movement of the shoulder joints led to an increase in the activity of hip muscles and was accompanied by an increase in the amplitude of hip and shin movements. Passive arm movements had the same effect on induced leg movements. The movement of the shoulder joints led to an increase in the activity of hip muscles and an increase in the amplitude of movements of knee and hip joints. At the same time, the movement of forearms and wrists had a similar facilitating effect on the physiological and kinematic characteristics of rhythmic stepping-like movements, but influenced the distal segments of legs to a greater extent. Under the conditions of subthreshold vibration of leg muscles, voluntary arm movements led to activation of involuntary rhythmic stepping movements. During voluntary leg movements, the addition of arm movements had a significantly smaller impact on the parameters of rhythmic stepping than during involuntary leg movements. Thus, the simultaneous movements of the upper and lower limbs are an effective method of activation of neural networks connecting the rhythm generators of arms and legs. Under the conditions of arm and leg unloading, the interactions between the cervical and lumbosacral segments of the spinal cord seem to play the major role in the impact of arm movements on the patterns of leg movements. The described methods of activation of interlimb interactions can be used in the rehabilitation of post-stroke patients and patients with spinal cord injuries, Parkinson’s disease, and other neurological diseases.  相似文献   

13.
Peter Jurtshuk  Linda McManus 《BBA》1974,368(2):158-172
l-(+)-Glutamate oxidation that is non-pyridine nucleotide dependent is readily carried out by a membrane-bound enzyme in Azotobacter vinelandii strain O. Enzyme activity concentrates in a membranous fraction that is associated with the Azotobacter electron transport system. This l-glutamate oxidation is not dependent on externally added NAD+, NADP+, FAD, or FMN for activity. O2, phenazine methosulfate and ferricyanide all served as relatively good electron acceptors for this reaction; while cytochrome c and nitrotetrazolium blue function poorly in this capacity. Paper chromatographic analyses revealed that the 2,4-dinitrophenylhydrazine derivative formed from the enzymatic oxidation of l-glutamate was α-ketoglutarate, while microdiffusion studies indicated that ammonia was also a key end product. These findings suggest that the overall reaction is an oxidative deamination. Ammonia formation was found to be stoichiometric with the amount of oxygen consumed (2 : 1 respectively, on a molar basis). The oxidation of glutamate was limited to the l-(+)-enantiomer indicating that this reaction is not the generalized type carried out by the l-amino acid oxidase. This oxidoreductase is functionally related to the Azotobacter electron transport system: (a) the activity concentrates almost exclusively in the electron transport fraction; (b) the l-glutamate oxidase activity is markedly sensitive to electron transport inhibitors, i.e. 2-n-heptyl-4-hydroxyquinoline-N-oxide, cyanide, and 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione; and (c) spectral studies on the Azotobacter R3 fraction revealed that a substantial amount of the flavoprotein (non-heme iron) and cytochrome (a2, a1, b1, c4 and c5) are reduced by the addition of l-glutamate.  相似文献   

14.
Interstitial cells of Cajal (ICC-MY) are pacemakers that generate and propagate electrical slow waves in gastrointestinal (GI) muscles. Slow waves appear to be generated by the release of Ca2+ from intracellular stores and activation of Ca2+-activated Cl channels (Ano1). Conduction of slow waves to smooth muscle cells coordinates rhythmic contractions. Mitochondrial Ca2+ handling is currently thought to be critical for ICC pacemaking. Protonophores, inhibitors of the electron transport chain (FCCP, CCCP or antimycin) or mitochondrial Na+/Ca2+ exchange blockers inhibited slow waves in several GI muscles. Here we utilized Ca2+ imaging of ICC in small intestinal muscles in situ to determine the effects of mitochondrial drugs on Ca2+ transients in ICC. Muscles were obtained from mice expressing a genetically encoded Ca2+ indicator (GCaMP3) in ICC. FCCP, CCCP, antimycin, a uniporter blocker, Ru360, and a mitochondrial Na+/Ca2+ exchange inhibitor, CGP-37157 inhibited Ca2+ transients in ICC-MY. Effects were not due to depletion of ATP, as oligomycin did not affect Ca2+ transients. Patch-clamp experiments were performed to test the effects of the mitochondrial drugs on key pacemaker conductances, Ano1 and T-type Ca2+ (CaV3.2), in HEK293 cells. Antimycin blocked Ano1 and reduced CaV3.2 currents. CCCP blocked CaV3.2 current but did not affect Ano1 current. Ano1 and Cav3.2 currents were inhibited by CGP-37157. Inhibitory effects of mitochondrial drugs on slow waves and Ca2+ signalling in ICC can be explained by direct antagonism of key pacemaker conductances in ICC that generate and propagate slow waves. A direct obligatory role for mitochondria in pacemaker activity is therefore questionable.  相似文献   

15.
16.
An investigation of the subunit structure of glutamyl-tRNA synthetase (EC 6.1.1.17) from Escherichia coli indicates that this enzyme is a monomer. The enzyme purified to apparent homogeneity is a single polypeptide chain with a molecular weight of 62,000 ± 3,000 and KGlum ? 50 μM in the aminoacylation reaction. Analytical gel electrophoretic procedures were used to determine the molecular weight of species exhibiting glutamyl-tRNA synthetase activity in freshly prepared extracts of several strains of E. coli, which had been grown under various nutritional conditions and harvested at different stages of growth. In all cases, glutamyl-tRNA synthetase activity was associated with a protein having about the same molecular weight and KGlum as the purified enzyme. Thus, no evidence of an oligomeric form of glutamyl-tRNA synthetase with a greater affinity for l-glutamate was obtained, in contrast to a previous report of J. Lapointe and D. Söll (J. Biol. Chem.247, 4966–4974, 1972).  相似文献   

17.
In adult female crickets (Gryllus bimaculatus), rhythmic movements of ovipositor valves are produced by contractions of a set of ovipositor muscles that mediate egg-laying behavior. Recordings from implanted wire electrodes in the ovipositor muscles of freely moving crickets revealed sequential changes in the temporal pattern of motor activity that corresponded to shifts between behavioral steps: penetration of the ovipositor into a substrate, deposition of eggs, and withdrawal of the ovipositor from the substrate. We aimed in this study to illustrate the neuronal organization producing these motor patterns and the pattern-switching mechanism during the behavioral sequence. Firstly, we obtained intracellular recordings in tethered preparations, and identified 12 types of interneurons that were involved in the rhythmic activity of the ovipositor muscles. These interneurons fell into two classes: ‘initiator interneurons’ in which excitation preceded the rhythmic contractions of ovipositor muscles, and ‘oscillator interneurons’ in which the rhythmic oscillation and spike bursting occurred in sync with the oviposition motor rhythm. One of the oscillator interneurons exhibited different depolarization patterns in the penetration and deposition motor rhythms. It is likely that some of the oscillator interneurons are involved in producing different oviposition motor patterns. Secondly, we analyzed oviposition motor patterns when the mecahnosensory hairs located on the inside surface of the dorsal ovipositor valves were removed. In deafferented preparations, the sequential change from deposition to withdrawal did not occur. Therefore, the switching from deposition pattern to withdrawal pattern is signaled by the hair sensilla that detect the passage of an egg just before it is expelled.  相似文献   

18.
The aim of this work was to study the influence of aging, obesity, metabolic syndrome (MS), hypertension (HT), and type 2 diabetes (T2D) on the endogenous rhythmic activity and the development acetylcholine resistance in aorta rings of male rats. T2D was produced by a free access to fat (lard). It was shown that phenylephrine (PE) or 5-hydroxytryptamine (5-HT) induces two types of rhythmic contractions: with periods T 1 = 3–10 s and T 2 = 50–70 s and amplitudes A 1 = 1–5% and A 2 = 20–40% of the maximal contraction force (F max), respectively. Such periodic modes can be caused by the operation of two known positive feedback loops (PFL) based on the Ca2+-induced activation of IP3 receptor (IP3R) or phospholipase C PFL1 and PFL2, respectively, and are not eliminated by L-NAME. Slow rhythmic activity induced by acetylcholine (Ach) with period T 3 = 7–20 min and amplitude A 3 = 20–30% of F max was observed only in young animals (under 6 months) and can be determined by the operation of PFL3, involving Ca2+, NO, kinase G, cADP-ribose, and the ryanodine receptor (RyR). Fast mode of contractions (T 1, A 1) is maintained regardless of age and the presence of MS and HT (140 mm Hg and higher) and disappears only at later stages of the T2D development. Probability of intermediate mode of contractions (T 2, A 2) decreases to 0.20–0.25 at the age of 14–16 months or during the development of HT and MS. In these circumstances, Ach could cause relaxation of preconstricted rings only to 40 and 60% of F max, respectively. At the stages of the T2D development characterized by high values of arterial pressure (above 150 mm Hg) and of the glucose (10–12 mM), ammonium (120–180 μM), and blood lipid levels, as well as by liver dysfunction (fibrosis/cirrhosis), the rhythmic activity of any type is lost and dysfunction of the initial part of the signaling cascade with the participation of PFL3 is manifested by the absence of responses to Ach or L-NAME. Coenzyme NAD (agonist of the P2Y receptors, К+ channel activator and a precursor of cADP-ribose) can exert a partial relaxation of aorta rings from healthy animals and animals with MS. Nicotinamide (product and an inhibitor of ADP-ribosyl cyclase) and SNP (donor of NO) produce an effective relaxation of aorta rings from healthy animals and animals with T2D. Relaxing effect of nicotinamide may suggest a tandem operation of IP3R and RyR in the control of intracellular Ca2+ stores in vascular cells.  相似文献   

19.
We evaluated the effect of autotomy on feeding, energy storage and growth of juvenile Stichaster striatus kept in the laboratory for five months with a limited supply of the mussel Semimytilus algosus. Autotomy strongly decreased feeding, energy storage and growth. Intact juveniles showed a ∼ 3 fold higher feeding rate than autotomized individuals throughout the experiment. Intact juveniles also had a higher (∼ 5 fold) energy content per pyloric caeca in each arm. This was mainly due to higher lipid content, the main proximate constituent of pyloric caeca. Intact juveniles showed a greater growth rate and reached a greater size than autotomized individuals, more evident for underwater mass than radius length. The reduced capacity to feed reduced energy intake in autotomized individuals. However, low energy reserves along with low growth in autotomized sea stars, support the hypothesis that juveniles of this species allocate energy to regeneration to the detriment of growth. This was also supported by the ∼ 25% of arm length regeneration after 5 mo. Remaining small could increase risk of lethal predation, however, S. striatus may reduce predation risk by using crevices and kelp holdfasts as refuges from predators. Given the strong impact of autotomy on feeding, regeneration of arms to recover full capacity to forage and grow seems a better strategy for juvenile S. striatus, than merely growing.  相似文献   

20.
Geometric and tendon excursion methods have both been used extensively for estimating plantarflexor muscle moment arm in vivo. Geometric measures often utilize magnetic resonance imaging, which can be costly and impractical for many investigations. Estimating moment arm from tendon excursion measured with ultrasonography may provide a cost-effective alternative to geometric measures of moment arm, but how well such measures represent geometry-based moment arms remains in question. The purpose of this study was to determine whether moment arms from tendon excursion can serve as a surrogate for moment arms measured geometrically. Magnetic resonance and ultrasound imaging were performed on 19 young male subjects to quantify plantarflexor moment arm based on geometric and tendon excursion paradigms, respectively. These measurements were weakly correlated that approached statistical significance (R2 = 0.21, p = 0.052), and moment arm from tendon excursion under-approximated geometric moment arm by nearly 40% (p < 0.001). This weak correlation between methods is at odds with a prior report (N = 9) of a strong correlation (R2 = 0.94) in a similar study. Therefore, we performed 92,378 regression analyses (19 choose 9) to determine if such a strong correlation existed in our study population. We found that certain sub-populations of the current study generated similarly strong coefficients of determination (R2 = 0.92), but 84% of all analyses revealed no correlation (p > 0.05). Our results suggest that the moment arms from musculoskeletal geometry cannot be otherwise obtained by simply scaling moment arms estimated from tendon excursion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号