首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Glucocorticoid (GC) signaling synchronizes the circadian rhythm of individual peripheral cells and induces the expression of circadian genes, including Period1 (Per1) and Period2 (Per2). However, no GC response element (GRE) has been reported in the Per2 promoter region. Here we report the molecular mechanisms of Per2 induction by GC signaling and its relevance to the regulation of circadian timing. We found that GC prominently induced Per2 expression and delayed the circadian phase. The overlapping GRE and E-box (GE2) region in the proximal Per2 promoter was responsible for GC-mediated Per2 induction. The GRE in the Per2 promoter was unique in that brain and muscle ARNT-like protein-1 (BMAL1) was essential for GC-induced Per2 expression, whereas other GRE-containing promoters, such as Per1 and mouse mammary tumor virus, responded to dexamethasone in the absence of BMAL1. This specialized regulatory mechanism was mediated by BMAL1-dependent binding of the GC receptor to GRE in Per2 promoter. When Per2 induction was abrogated by the mutation of the GRE or E-box, the circadian oscillation phase failed to be delayed compared with that of the wild-type. Therefore, the current study demonstrates that the rapid Per2 induction mediated by GC is crucial for delaying the circadian rhythm.  相似文献   

4.
5.
Androgen regulates the proper development and physiological function of the prostate. Here, we investigated the modulation of androgen and androgen receptor (AR) antagonist on circadian oscillations of a clock core gene Period 2 (Per2) in rat prostate mesenchymal cells (PMCs). Circadian oscillations were analyzed with the real-time monitoring system of gene expression using transgenic rats introduced with mouse Per2 promoter fused to a destabilized luciferase (Per2-dLuc) reporter gene. Analyses of circadian oscillations, immunofluorescence, and androgen response element (ARE)-luciferase reporter assay revealed that circadian clocks are operative and the AR protein is functional in PMCs in vitro. Androgen such as testosterone (T) and dihydrotestosterone (DHT) did not cause any changes in circadian Per2-dLuc oscillations of confluent cells. Conversely, flutamide (FL) up-regulated the amplitude of circadian Per2-dLuc oscillations in a dose-dependent manner, whereas T antagonized the action of FL. The PER2 protein was markedly accumulated by FL treatment and localized in both the nucleus and cytoplasm during the first peak period of circadian Per2-dLuc oscillations. Simultaneously, FL treatment increased apoptotic cell death. Collectively, the present study demonstrates that a clock gene Per2 is up-regulated in PMCs during FL-induced apoptotic cell death. Thus, circadian oscillations of Per2 gene expression may be closely linked to the cellular states of PMCs such as apoptotic cell death.  相似文献   

6.
This study sought to investigate the anti-fibrotic effect of Corilagin via interference with the miR-21/smad7/ERK signaling pathway in a schistosomiasis-induced hepatic fibrosis mouse model. Mice were infected with Schistosoma japonicum cercaria to establish the mouse model of schistosomiasis-induced hepatic fibrosis. At four weeks after infection, the groups were given different medications. The living conditions were observed. Real-time PCR was employed to detect the mRNA levels of miR-21, smad7 and connective tissue growth factor (CTGF), and western blotting was used to examine the protein levels of smad7, CTGF, smad1, p-smad1, smad2, p-smad2, ERK1/2, p-ERK1/2 and TGF-β receptor I. Immunohistochemistry was used to examine the expression of CTGF. Compared with the model group, increasing concentrations of Corilagin improved the quality of life, inhibited the mRNA expression of miR-21, promoted smad7 protein expression, and inhibited CTGF protein expression (p < 0.05 or 0.01). Moreover, Corilagin significantly reduced the protein levels of p-smad1, p-smad2, p-ERK1/2, and TGF-β receptor I (p < 0.05 or 0.01). CTGF staining in the cytoplasm was markedly decreased by Corilagin (p < 0.05 or 0.01). In conclusion, Corilagin inhibited schistosomiasis-induced hepatic fibrosis via the miR21/smad7/ERK pathway in this animal model.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Ochratoxin A (OTA), a worldwide mycotoxin found in food and feeds, is a potent nephrotoxin in animals and humans. Porcine circovirus-associated disease (PCVAD), including porcine dermatitis and nephropathy syndrome, is a worldwide swine disease. To date, little is known concerning the relationship between OTA and porcine circovirus type 2 (PCV2), the primary causative agent of PCVAD. The effects of OTA on PCV2 replication and their mechanisms were investigated in vitro and in vivo. The results in vitro showed that low doses of OTA significantly increased PCV2 DNA copies and the number of infected cells. Maximum effects were observed at 0.05 μg/ml OTA. The results in vivo showed that PCV2 replication was significantly increased in serum and tissues of pigs fed 75 μg/kg OTA compared with the control group and pigs fed 150 μg/kg OTA. In addition, low doses of OTA significantly depleted reduced glutathione and mRNA expression of NF-E2-related factor 2 and γ-glutamylcysteine synthetase; increased reactive oxygen species, oxidants, and malondialdehyde; and induced p38 and ERK1/2 phosphorylation in PK15 cells. Adding N-acetyl-l-cysteine reversed the changes induced by OTA. Knockdown of p38 and ERK1/2 by their respective specific siRNAs or inhibition of p38 and ERK1/2 phosphorylation by their respective inhibitors (SB203580 and U0126) eliminated the increase in PCV2 replication induced by OTA. These data indicate that low doses of OTA promoted PCV2 replication in vitro and in vivo via the oxidative stress-mediated p38/ERK1/2 MAPK signaling pathway. This suggests that low doses of OTA are potentially harmful to animals, as they enhance virus replication, and partly explains why the morbidity and severity of PCVAD vary significantly in different pig farms.  相似文献   

14.
Circadian rhythms in physiology and behavior are known to be influenced by the estrous cycle in female rodents. The clock genes responsible for the generation of circadian oscillations are widely expressed both within the central nervous system and peripheral tissues, including those that comprise the reproductive system. To address whether the estrous cycle affects rhythms of clock gene expression in peripheral tissues, we first examined rhythms of clock gene expression (Per1, Per2, Bmal1) in reproductive (uterus, ovary) and non-reproductive (liver) tissues of cycling rats using quantitative real-time PCR (in vivo) and luminescent recording methods to measure circadian rhythms of PER2 expression in tissue explant cultures from cycling PER2::LUCIFERASE (PER2::LUC) knockin mice (ex vivo). We found significant estrous variations of clock gene expression in all three tissues in vivo, and in the uterus ex vivo. We also found that exogenous application of estrogen and progesterone altered rhythms of PER2::LUC expression in the uterus. In addition, we measured the effects of ovarian steroids on clock gene expression in a human breast cancer cell line (MCF-7 cells) as a model for endocrine cells that contain both the steroid hormone receptors and clock genes. We found that progesterone, but not estrogen, acutely up-regulated Per1, Per2, and Bmal1 expression in MCF-7 cells. Together, our findings demonstrate that the timing of the circadian clock in reproductive tissues is influenced by the estrous cycle and suggest that fluctuating steroid hormone levels may be responsible, in part, through direct effects on the timing of clock gene expression.  相似文献   

15.
16.
Thioredoxin reductase 1 (TrxR1) is a selenocysteine-containing redox-active enzyme that is thought to be important during carcinogenesis. We have recently shown that treatment with statins, HMGCoA reductase inhibitors, reduces the levels of TrxR1 in liver of both rat and human. The reduced TrxR1 levels were correlated with inhibited hepatocarcinogenesis in a rat model. The aim of the present study was to investigate if statins affect the activity of the human TXNRD1 core promoter, which guides expression of TrxR1, and if the effects by statins on TrxR1 expression in liver could be reproduced in a cellular model system. We found that simvastatin and fluvastatin decreased cellular TrxR activity in cultured human liver-derived HepG2 cells with approximately 40% (p < 0.05). Simvastatin, but not fluvastatin or atorvastatin, also reduced the TXNRD1 promoter activity in HepG2 cells by 20% (p < 0.01). In line with this result, TrxR1 mRNA levels decreased with about 25% in non-transfected HepG2 cells upon treatment with simvastatin (p < 0.01). Concomitant treatment with mevalonate could not reverse these effects of simvastatin, indicating that other mechanisms than HMGCoA reductase inhibition was involved. Also, simvastatin did not inhibit sulforaphane-derived stimulation of the TXNRD1 core promoter activity, suggesting that the inhibition by simvastatin was specific for basal and not Nrf2-activated TrxR1 expression. In contrast to simvastatin, the two other statins tested, atorvastatin or fluvastatin, did not influence the TrxR1 mRNA levels. Thus, our results reveal a simvastatin-specific reduction of cellular TrxR1 levels that at least in part involves direct inhibitory effects on the basal activity of the core promoter guiding TrxR1 expression.  相似文献   

17.
Folate deficiency contributes to impaired adult hippocampal neurogenesis, yet the mechanisms remain unclear. Here we use HT-22 hippocampal neuron cells as model to investigate the effect of folate deprivation (FD) on cell proliferation and apoptosis, and to elucidate the underlying mechanism. FD caused cell cycle arrest at G0/G1 phase and increased the rate of apoptosis, which was associated with disrupted expression of folate transport and methyl transfer genes. FOLR1 and SLC46A1 were (P < 0.01) down-regulated, while SLC19A1 was up-regulated (P < 0.01) in FD group. FD cells exhibited significantly (P < 0.05) higher protein content of BHMT, MAT2b and DNMT3a, as well as increased SAM/SAH concentrations and global DNA hypermethylation. The expression of the total and all the 3 classes of IGF-1 mRNA variants was significantly (P < 0.01) down-regulated and IGF-1 concentration was decreased (P < 0.05) in the culture media. IGF-1 signaling pathway was also compromised with diminished activation (P < 0.05) of STAT3, AKT and mTOR. CpG hypermethylation was detected in the promoter regions of IGF-1 and FOLR1 genes, while higher SLC19A1 mRNA corresponded to hypomethylation of its promoter. IGF-1 supplementation in FD media significantly abolished FD-induced decrease in cell viability. However, IGF-1 had limited effect in rescuing the cell phenotype when added 24 h after FD. Taken together, down-regulation of IGF-1 expression and signaling is involved in FD-induced cell cycle arrest and apoptosis in HT-22 hippocampal neuron cells, which is associated with an abnormal activation of methyl transfer pathway and hypermethylation of IGF-1 gene promoter.  相似文献   

18.
19.
Cataract-induced by sodium selenite in suckling rats is one of the suitable animal models to study the basic mechanism of human cataract formation. The aim of this present investigation is to study the endoplasmic reticulum (ER) stress-mediated activation of unfolded protein response (UPR), overproduction of reactive oxygen species (ROS), and suppression of Nrf2/Keap1-dependent antioxidant protection through endoplasmic reticulum-associated degradation (ERAD) pathway and Keap1 promoter DNA demethylation in human lens epithelial cells (HLECs) treated with sodium selenite. Lenses enucleated from sodium selenite injected rats generated overproduction of ROS in lens epithelial cells and newly formed lens fiber cells resulting in massive lens epithelial cells death after 1–5 days. All these lenses developed nuclear cataracts after 4–5 days. Sodium selenite treated HLECs induced ER stress and activated the UPR leading to release of Ca2 + from ER, ROS overproduction and finally HLECs death. Sodium selenite also activated the mRNA expressions of passive DNA demethylation pathway enzymes such as Dnmt1, Dnmt3a, and Dnmt3b, and active DNA demethylation pathway enzyme, Tet1 leading to DNA demethylation in the Keap1 promoter of HLECs. This demethylated Keap1 promoter results in overexpression of Keap1 mRNA and protein. Overexpression Keap1 protein suppresses the Nrf2 protein through ERAD leading to suppression of Nrf2/Keap1 dependent antioxidant protection in the HLECs treated with sodium selenite. As an outcome, the cellular redox status is altered towards lens oxidation and results in cataract formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号