首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel cold active esterase, EstLiu was cloned from the marine bacterium Zunongwangia profunda, overexpressed in E. coli BL21 (DE3) and purified by glutathione-S transferase (GST) affinity chromatography. The mature esterase EstLiu sequence encodes a protein of 273 amino acids residues, with a predicted molecular weight of 30 KDa and containing the classical pentapeptidase motif from position 156 to 160 with the catalytic triad Ser158-Asp211-His243. Although, EstLiu showed 64% similarity with the hypothetical esterase from Chryseobacterium sp. StRB126 (WP_045498424), phylogenetic analysis showed it had no similarity with any of the established family of lipases/esterases, suggesting that it could be considered as a new family. The purified enzyme showed broad substrate specificity with the highest hydrolytic activity against p-nitrophenyl butyrate (C4). EstLiu showed remarkable activity (75%) at 0 °Cand the optimal activity at pH 8.0 and 30 °C with good thermostability and quickened inactivation above 60 °C. EstLiu retained 81, 103, 67 and 78% of its original activity at 50% (v/v) in ethanol, isopropanol, DMSO and ethylene glycol, respectively. In the presence of Tween 20, Tween 80 and Triton X-100, EstLiu showed 88, 100 and 117% of relative activity. It is also co-factor independent. The high activity at low temperature and desirable stability in organic solvents and salts of this novel family esterase represents a good evidence of novel biocatalyst. Overall, this novel enzyme showed better activity than previously reported esterases in extreme reaction conditions and could promote the reaction in both aqueous and non-aqueous conditions, indicating its great potential for industrial applications.  相似文献   

2.
An esterase, designated as PE8 (219 aa, 23.19 kDa), was cloned from a marine bacterium Pelagibacterium halotolerans B2T and overexpressed in Escherichia coli Rosetta, resulting an active, soluble protein which constituted 23.1% of the total cell protein content. Phylogenetic analysis of the protein showed it was a new member of family VI lipolytic enzymes. Biochemical characterization analysis showed that PE8 preferred short chain p-nitrophenyl esters (C2–C6), exhibited maximum activity toward p-nitrophenyl acetate, and was not a metalloenzyme. PE8 was an alkaline esterase with an optimal pH of 9.5 and an optimal temperature of 45 °C toward p-nitrophenyl acetate. Furthermore, it was found that PE8 exhibited activity and enantioselectivity in the synthesis of methyl (R)-3-(4-fluorophenyl)glutarate ((R)-3-MFG) from the prochiral dimethyl 3-(4-fluorophenyl)glutarate (3-DFG). (R)-3-MFG was obtained in 71.6% ee and 73.2% yield after 36 h reaction under optimized conditions (0.6 M phosphate buffer (pH 8.0) containing 17.5% 1,4-dioxane under 30 °C). In addition, PE8 was tolerant to extremely strong basic and high ionic strength solutions as it exhibited high activity even at pH 11.0 in 1 M phosphate buffer. Given its highly soluble expression, alkalitolerance, halotolerance and enantioselectivity, PE8 could be a promising candidate for the production of (R)-3-MFG in industry. The results also demonstrate the potential of the marine environment as a source of useful biocatalysts.  相似文献   

3.
《Process Biochemistry》2014,49(7):1135-1138
Enzymatic catalytic promiscuity has received increasing attention in the past decade. In this research, ten enzymes were investigated for the promiscuous activity in catalysis of the Michael addition-cyclization cascade reaction of p-nitrobenzalacetone with 1,3-cyclohexanedione to prepare 2-hydroxy-2-methyl-4-(4-nitrophenyl)-3,4,7,8-tetrahydro-2H-chromen-5(6H)-one in anhydrous media, and control experiments were conducted to exclude false positive results. The highest yield (46.1%) was observed with Escherichia coli BioH esterase and the optimal reaction condition was: 1 mmol α,β-unsaturated ketone, 1 mmol 1,3-dicarbonyl compound, 20 mg E. coli BioH esterase, 20 ml N,N-dimethylformamide at 37 °C for 120 h. To preliminarily investigate the mechanism, site-directed mutagenesis was performed on the hydrolysis catalytic triad of BioH, and the results indicated “alternate-site enzyme promiscuity”. When a series of substituted benzalacetones and 1,3-cyclic diketones were used as the reactants, yields of up to 76.3% were achieved. These results imply the potential industrial application of E. coli BioH in the preparation of dihydropyran derivatives.  相似文献   

4.
《Process Biochemistry》2014,49(9):1464-1471
Absidia corymbifera AS2 has been previously screened for effective biotransformation of astragalosides since it is able to catalyze the hydrolysis of acetyl ester moieties. In this study, an acetyl esterase from A. corymbifera AS2 was purified and its catalytic pathways were investigated. The purified enzyme was monomeric, with a molecular mass of 36 kDa, and with optimal activity observed at pH 8.0 and 35 °C. It was stable within pH 7.0–9.5 and at temperatures lower than 45 °C. The Km and Vmax values for p-nitrophenyl acetate was estimated to be 3.76 and 17.64 mmol (min mg)−1, respectively. We found that this enzyme can hydrolyze the acetyl groups at positions O-2 or O-3 of xylopyranosyl residue at the C-3 position of AS-I, isoAS-I, AS-II and isoAS-II, and convert these all to ASI. The pathways of deacetylation catalyzed by this enzyme were also clarified for the first time: AS-II→ASI, isoAS-II→AS-II→ASI, AS-I→(AS-II, isoAS-II)→ASI and isoAS-I→AS-II→ASI. In summary, an acetyl esterase from A. corymbifera AS2 was extracted, which showed unique enzymatic characteristics and enabled clarification of the biotransformation pathways of astragalosides. This enzyme has potential industrial applications, especially for utilizing abundant astragaloside precursors for the production of rare ASI.  相似文献   

5.
《Process Biochemistry》2007,42(12):1571-1578
A Bacillus sp. isolated from the Sundarbans region of the Bay of Bengal (NCBI GenBank Accession no. AY723697) which can tolerate 10% (w/v) NaCl, produces esterase optimally in Marine Broth 2216 medium containing 1% (w/v) NaCl. The enzyme was purified 42.7-fold with 6.4% recovery, (specific activity 569.2 U/mg protein) by ammonium sulphate precipitation followed by anion and cation exchange chromatography. The serine type esterolytic enzyme has a molecular weight of 35.0 kDa and is denatured into polypeptides of molecular weights 20 kDa and 15 kDa. The esterase was most active at pH 8.0, the pH of the seawater at the site of collection and is stable in the pH range 6.0–9.0. The optimum temperature of activity of this esterase is 45 °C and the enzyme is very stable after 1 h pre-incubation at 50 °C. Our esterase shows about 100% activity when incubated with 1 M NaCl, the activity drops to about 50% when incubated with 2.5 M sodium chloride and the enzyme is completely inactivated when 4 M NaCl is present during reaction. The esterase is almost inactivated by Ca2+, Hg2+ and Fe3+ ions, reducing agents and detergent. Interestingly, Co2+, a known inhibitor of many enzymes, preserved 70% of the activity of this esterase. Specific activity of the esterase increases more than twofold in the presence of water-miscible organic solvents as compared to that in aqueous buffer. When incubated for a period of 10 days in the presence of 30–70% dimethylsufoxide (DMSO), the specific activity increased by approximately two–threefold compared to the enzyme in aqueous buffer throughout the period of study. Specific activity between 1283 and 525 U/mg was maintained by our enzyme when incubated with 50% DMSO for 10 days. The enzyme was most active on p-nitrophenyl acetate, ethyl acetate, alpha isomer of naphthyl acetate but shows relatively lesser activity towards triglycerides of fatty acids. Certain characteristics, such as molecular weight, effects of NaCl, metal ions (Zn2+ and Mg2+) and reactivity towards para-nitrophenyl and aliphatic esters were strikingly similar to already described marine bacterial derived esterases. Extreme stability in DMSO could make this enzyme a potential immobilized biocatalyst for application in non-aqueous based continuous bioprocesses. Higher specific activity and purification factor, better thermo tolerance and solvent stability would make our enzyme more attractive for biotechnological applications than the marine microbial derived esterases described so far.  相似文献   

6.
A β-glucosidase gene from Putranjiva roxburghii (PRGH1) was heterologously expressed in Saccharomyces cerevisiae to enable growth on cellobiose. The recombinant enzyme was secreted to the culture medium, purified and biochemically characterized. The enzyme is a glycoprotein with a molecular weight of ∼68 kDa and exhibited enzymatic activity with β‐linked aryl substrates like pNP-Fuc, pNP-Glc, pNP-Gal and pNP-Cel with catalytic efficiency in that order. Significant enzyme activity was observed for cellobiose, however the enzyme activity was decreased with increase in chain length of glycan substrates. Using cellobiose as substrate, the enzyme showed optimal activity at pH 5.0 and 65 °C. The enzyme was thermostable up to 75 °C for 60 min. The enzyme showed significant resistance towards both glucose and ethanol induced inhibition. The recombinant S. cerevisiae strain showed advantages in cell growth, glucose and bio-ethanol production over the native strain with cellobiose as sole carbon source. In simultaneous saccharification and fermentation (SSF) experiments, the recombinant strain was used for bio-ethanol production from two different cellulosic biomass sources. At the end of the SSF, we obtained 9.47 g L−1 and 14.32 g L−1 of bio-ethanol by using carboxymethyl cellulose and pre-treated rice straw respectively. This is first report where a β-glucosidase gene from plant origin has been expressed in S. cerevisiae and used in SSF.  相似文献   

7.
An organic solvent-tolerant lipase from newly isolated Pseudomonas aeruginosa LX1 has been purified by ammonium sulfate precipitation and ion-exchange chromatography leading to 4.3-fold purification and 41.1% recovery. The purified lipase from P. aeruginosa LX1 was homogeneous as determined by SDS-PAGE, and the molecular mass was estimated to be 56 kDa. The optimum pH and temperature for lipase activity were found to be 7.0 and 40 °C, respectively. The lipase was stable in the pH range 4.5–12.0 and at temperatures below 50 °C. Its hydrolytic activity was found to be highest towards p-nitrophenyl palmitate (C16) among the various p-nitrophenol esters investigated. The lipase displayed higher stability in the presence of various organic solvents, such as n-hexadecane, isooctane, n-hexane, DMSO, and DMF, than in the absence of an organic solvent. The immobilized lipase was more stable in the presence of n-hexadecane, tert-butanol, and acetonitrile. The transesterification activity of the lipase from P. aeruginosa LX1 indicated that it is a potential biocatalyst for biodiesel production.  相似文献   

8.
Bacteria capable of using dimethyl phthalate (DMP) as the sole carbon and energy source were isolated from the sediments collected at a depth of 1340 m from the South China Sea. Sphingomonas yanoikuyae DOS01, identified based on 16S rRNA gene sequence, utilized DMP from an initial level of 180 mg l?1 to non-detectable in 35 h at 30 °C, the optical density (OD600) values increased over the time of incubation. Degradation intermediate monomethyl phthalate (MMP) accumulated up to 21.3 mg l?1 and then disappeared in the culture medium. When MMP or another intermediate phthalate (PA) was used as the sole substrate, this strain was only capable of degrading MMP, but not PA. Total organic carbon (TOC) analysis of the culture medium suggested that both DMP and MMP were mineralized, but not PA. This strain from the deep-ocean sediment transforms DMP to MMP using a common biochemical pathway for DMP as reported before. Further esterase activity assays indicated that the enzyme induced by MMP has higher affinity than that by DMP for the substrate p-nitrophenyl acetate. Our results indicated that complete degradation of DMP by this marine microorganism may involve a new biochemical pathway.  相似文献   

9.
Two cold-adapted lipases (Lipase-A and Lipase-B in the paper) of mesophilic Geotrichum sp. SYBC WU-3 were purified by using (NH4)2SO4 fractionation, chromatography separation on a DEAE-cellulose-32 column and a Sephadex G100 column. The molecular mass of Lipase-A and Lipase-B were determined to be approximately 41.1 and 35.8 kDa, respectively by SDS-PAGE. The optimum temperature for the activity of Lipase-A was found to be 20 °C, and that of Lipase-B was 15 °C. Lipase-A and Lipase-B had good stability when temperature was below 40 °C. Both the optimum pH for the activity of the lipases was 9.5. Lipase-A retained about 80% of its activity when pH was between 3 and 6 and Lipase-B maintained over 80% activity in the pH range of 3–8. The two lipases showed hydrolysis efficiency to various p-nitrophenyl esters, but they were more active with shorter p-nitrophenyl esters (C2 and C4).  相似文献   

10.
《Process Biochemistry》2007,42(7):1150-1154
The gene encoding a family 5 endoglucanase, cel5A, was cloned from the moderate thermophile Bacillus licheniformis strain B-41361. The primary structure of the translated cel5A gene predicts a 49 amino acid putative secretion signal and a 485 residue endoglucanase consisting of an N-terminal family 5 catalytic domain and C-terminal family 3 cellulose binding domain. The endoglucanase portion of the gene was expressed in Escherichia coli, but soluble activity in cell lysates was due to a truncated enzyme with an apparent mass of 42 kDa, the equivalent of the predicted catalytic domain. Insoluble protein renatured from inclusion bodies was protected against truncation, yielding an active holoenzyme (rCel5A) with apparent mass of 62 kDa. The recombinant rCel5A was optimally active at 65 °C and pH 6.0, but retained only 10% activity after 1 h incubation at this temperature. At 55 °C, rCel5A had a broad pH range for activity and stability, with greater than 75% relative activity from pH 4.5–7.0, and retaining greater than 80% relativity activity across the range pH 4.5–8.0 following 1 h incubation at 55 °C. It readily hydrolyzed pNPC, carboxymethylcellulose, barley β-glucan, and lichenan, but despite binding to cellulose, had only weak activity against avicel. Hydrolysis products from soluble polysaccharides included glucose, cellobiose, cellotriose, and cellotetraose. The catalytic properties, broad pH range and thermostability of the recombinant B. licheniformis endoglucanase may prove suitable for industrial applications.  相似文献   

11.
The enzymatic route for biodiesel production has been noted to be cost ineffective due to the high cost of biocatalysts. Reusing the biocatalyst for successive transesterification cycles is a potential solution to address such cost inefficiency. However, when organic solvent like methanol is used as acyl-acceptor in the reaction, the biocatalyst (lipase) gets severely inactivated due to the inhibitory effect of undissolved methanol in the reaction medium. Thus, organic solvent–tolerant lipase is highly desirable for enzymatic transesterification. In response to such desirability, a lipase (LS133) possessing aforesaid characteristic was extracted from Streptomyces sp. CS133. Relative molecular mass of the purified LS133 was estimated to be 39.8 kDa by SDS-PAGE. Lipase LS133 was stable in pH range 5.0–9.0 and at temperature lower than 50 °C while its optimum lipolytic activity was achieved at pH 7.5 and 40 °C. It showed the highest hydrolytic activity towards long chain p-nitrophenyl palmitate with Km and Vmax values of 0.152 mM and 270.2 mmol min?1 mg?1, respectively. It showed non-position specificity for triolein hydrolysis. The first 15 amino acid residues of its N-terminal sequence, AIPLRQTLNFQAXYQ, were noted to have partial similarity with some of the previously reported microbial lipases. Its catalytic involvement in biodiesel production process was confirmed by performing enzymatic transesterification of vegetable oils with methanol.  相似文献   

12.
l-Arabinose isomerase (EC 5.3.1.4, l-AI) mainly catalyzes the reversible aldose–ketose isomerization between l-arabinose and l-ribulose. l-AIs can also catalyze other reactions, such as the conversion of d-galactose to d-tagatose. In this study, the araA gene encoding l-AI was PCR-cloned from Thermoanaerobacterium saccharolyticum NTOU1 and then expressed in Escherichia coli. The recombinant l-AI was purified from the cell-free extract using nickel nitrilotriacetic acid metal-affinity chromatography. The purified enzyme showed an optimal activity at 70 °C and pH 7–7.5. The enzyme was stable at pHs ranging from 6.5 to 9.5 and the activity was fully retained after 2 h incubation at 55–65 °C. The low concentrations of divalent metal ions, either 0.1 mM Mn2+ or 0.05 mM Co2+, could improve both catalytic activity and thermostability at higher temperatures. The recombinant T. saccharolyticum NTOU1 l-AI has the lowest demand for metal ions among all characterized thermophilic l-AIs. This thermophilic l-AI shows a potential to be used in industry to produce d-tagatose from d-galactose.  相似文献   

13.
A novel organic solvent-stable and thermotolerant lipase gene (designated ostl28) was cloned from a metagenomic library and overexpressed in Escherichia coli BL21 (DE3) in soluble form. OSTL28 contained 262 amino acids with relative molecular mass 30.1 kDa and isoelectric point 9.7. The optimum pH and temperature of the OSTL28 were 7.5 and 60 °C, respectively. OSTL28 was stable in the pH range of 4.5–9.5 and at temperatures below 65 °C. The enzyme could hydrolyze a wide range of ρ-nitrophenyl esters, but its best substrate is ρ-nitrophenyl laurate with the highest activity of 236 U/mg (54,000 U/L). The recombinant OSTL28 was highly resisted to organic solvents, especially glycerol and methanol. The metal ions, with the exception of Hg2+ and Ag+, did not have any influence on enzyme activity, whereas non-ionic surfactants and Al3+ slightly activated the enzyme. These features indicate that it is a potential biocatalyst for biodiesel production.  相似文献   

14.
Lipases are the most attractive enzymes for use in organic chemical processes. In our previous studies, a lipase from Rhizopus chinensis CCTCC M20102 was found to have very high ability of esterification of short-chain fatty acids with ethanol. In this study, we reported the cloning and expression of the lipase gene from R. chinensis in Pichia pastoris and characterization of the recombinant lipase. The lipase gene without its signal sequence were cloned downstream to the alpha-mating factor signal and expressed in P. pastoris GS115 under the control of AOX1 promoter. In the induction phase, two bands of 37 kDa and 30 kDa proteins could be observed. The amino-terminal analysis showed that the 37-kDa protein was the mature lipase (30 kDa) attached with 27 amino acid of the carboxy-terminal part of the prosequence (r27RCL). The pH and temperature optimum of r27RCL and mRCL were pH 8.5 and 40 °C, and pH 8 and 35 °C, respectively. The stability, reaction kinetics and effects of metal ions and other reagents were also determined. The chain length specificity of r27RCL and mRCL showed highest activity toward p-nitrophenyl hexanoate or glyceryl tricaproate (C6) and p-nitrophenyl acetate or glyceryl triacetate (C2), respectively. This property is quite rare among lipases and gives this new lipase great potential for use in the field of biocatalysis.  相似文献   

15.
The purification and characterization of an extracellular α-l-arabinofuranosidase (α-l-AFase) from Chaetomium sp. was investigated in this report. The α-l-AFase was purified to homogeneity with a purification fold of 1030. The purified α-l-AFase had a specific activity of 20.6 U mg?1. The molecular mass of the enzyme was estimated to be 52.9 kDa and 51.6 kDa by SDS–PAGE and gel filtration, respectively. The optimal pH and temperature of the enzyme were pH 5.0 and 70 °C, respectively. The enzyme was stable over a broad pH range of 4.0–10.0 and also exhibited excellent thermostability, i.e., the residual activities reached 75% after treatment at 60 °C for 1 h. The enzyme showed strict substrate specificity for the α-l-arabinofuranosyl linkage. The Km and Vmax values for p-nitrophenyl (pNP)-α-l-arabinofuranoside were calculated to be 1.43 mM and 68.3 μmol min?1 mg?1 protein, respectively. Furthermore, the gene encoding α-l-AFase was cloned and sequenced and found to contain a catalytic domain belonging to the glycoside hydrolase (GH) family 43 α-l-AFase. The deduced amino acid sequence of the gene showed the highest identity (67%) to the putative α-l-AFase from Neurospora crassa. This is the first report on the purification, characterization and gene sequence of an α-l-AFase from Chaetomium sp.  相似文献   

16.
A xylanase produced by Thermomyces lanuginosus 195 by solid state fermentation (SSF) was purified 9.3-fold from a crude koji extract, with a 7.6% final yield. The purified xylanase (with an estimated mass of 22 kDa by SDS-PAGE) retained 18% relative activity when treated for 10 min at 100 °C and approximately 90% relative activity when incubated at pH values ranging from 6 to 10. Xylanase activity in the purified preparation was significantly enhanced following treatment with manganese and potassium chlorides (p < 0.05) but significantly reduced by calcium, cobalt and iron (p < 0.05). The purified enzyme was also shown to be exclusively xylanolytic. The gene encoding xylanase activity from T. lanuginosus 195 was functionally expressed by Pichia pastoris. MALDI-ToF mass spectrometry and zymography were employed to confirm functional recombinant expression. Maximum xylanase titres were achieved following 120 h induction of the recombinant culture, yielding 26.8 U/mL. Achieving functional protein expression facilitates future efforts to optimise the cultivation conditions for heterologous xylanase production.  相似文献   

17.
《Process Biochemistry》2014,49(4):668-672
Porcine pancreatic lipase (PPL) was chemically modified with various functional ionic liquids (ILs) to increase its catalytic performance in water-miscible IL. Catalytic activity and thermostability were tested with a p-nitrophenyl palmitate (pNPP) hydrolysis reaction. The native enzyme lost 18% of its initial activity in 0.4 M [MMIm][MeSO4], whereas the activities of all the modified enzymes increased. The [HOOCBMIm][Cl] modification led to a 2-fold increase in activity in 0.3 M [MMIm][MeSO4] than in aqueous. All the modified enzymes exhibited higher thermostability compared with the native enzyme at high temperature. In particular, the [HOOCBMIm][Cl] modification led to a 6-fold increase in thermostability at 60 °C. Conformational changes were confirmed by fluorescence spectroscopy and circular dichroism spectroscopy to elucidate the mechanism of catalytic performance alteration.  相似文献   

18.
Carbonic anhydrases (CAs, EC 4.2.1.1) belonging to α-, β-, γ- and ζ-classes and from various organisms, ranging from the bacteria, archaea to eukarya domains, were investigated for their esterase/phosphatase activity with 4-nitrophenyl acetate, 4-nitrophenyl phosphate and paraoxon as substrates. Only α-CAs showed esterase/phosphatase activity, whereas enzymes belonging to the β-, γ- and ζ-classes were completely devoid of such activity. Paraoxon, the metabolite of the organophosphorus insecticide parathione, was a much better substrate for several human/murine α-CA isoforms (CA I, II and XIII), with kcat/KM in the range of 2681.6–4474.9 M?1 s?1, compared to 4-nitrophenyl phosphate (kcat/KM of 14.9–1374.4 M?1 s?1).  相似文献   

19.
Feruloyl esterases (Faes) are a subclass of the carboxylic esterases that hydrolyze the ester bonds between ferulic acid and polysaccharides in plant cell walls. Until now, the biochemical characteristics of FAEs from Bacillus spp. have not been reported. In this study, a strain with high activity of FAEs, Bacillus amyloliquefaciens H47 was screened from 122 Bacillus – type strains. Finally, three FAEs (BaFae04, BaFae06, and BaFae09) were identified. Comparing with other bacterial FAEs, these novel FAEs exhibited low sequence identities (less than 30%). The profiles of 52 esterase substrates showed that the three FAEs had a broad substrate spectrum and could effectively hydrolyze several common FAE substrates, such as methyl ferulate, ethyl caffeate, methyl p-coumarate, methyl sinapate, and chlorogenic acid. Furthermore, the three FAEs also can release ferulic acid from destarched wheat bran. They showed maximal activity with an optimal pH of 8.0 at 30 °C, 35 °C, and 40 °C, respectively. BaFae04 showed high stability in the temperature range of 25–60 °C for 1 h and retained 59% of its activity at 60 °C. The present study displays some useful characteristics of FAEs for potential industrial application and contributes to our understanding of FAEs.  相似文献   

20.
《Process Biochemistry》2007,42(6):988-994
A lipase from Bacillus cereus C71 was purified to homogeneity by ammonium sulfate precipitation, followed by Phenyl-Sepharose chromatography, DEAE ion exchange chromatography and CIM® QA chromatography. This purification procedure resulted in a 1092-fold purification of lipase with 18% yield. The molecular mass of the purified enzyme was determined to be approximately 42 kDa by SDS-PAGE and mass spectrometer. The lipase was stable in the pH range of 8.5–10.0, with the optimum pH 9.0. The enzyme exhibited maximum activity at 33 °C and retained 92% of original activity after incubation at 35 °C for 3 h. The protein hydrolyzed p-nitrophenyl esters with acyl chain lengths between C4 and C12. Enzyme activity was strongly inhibited in the presence of Cu2+ and Zn2+ but promoted by non-ionic surfactants. The lipase demonstrated higher enantioselectivity toward R-isomer of ethyl 2-arylpropanoate than the commercial lipases, and can be used potentially as a catalyst to prepare optically pure pharmaceuticals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号