首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AimsWe hypothesized that arachidonic acid produced by anandamide breakdown contributes to the vascular effects of anandamide.Main methodsIsolated, pressurized rat skeletal muscle arteries, which possess spontaneous myogenic tone, were treated with anandamide, arachidonic acid, capsaicin (vanilloid receptor agonist), WIN 55-212-2 (cannabinoid receptor agonist), URB-597 (FAAH inhibitor), baicalein (lipoxygenase inhibitor), PPOH (cytochrome P450 inhibitor), and indomethacin (cyclooxygenase inhibitor). Changes in the arteriolar diameter in response to the various treatments were measured. To assess the effect of anandamide metabolism, anandamide was applied for 20 min followed by washout for 40 min. This protocol was used to eliminate other, more direct effects of anandamide in order to reveal how anandamide metabolism may influence vasodilation.Key findingsAnandamide at a low dose (1 μM) evoked a loss of myogenic tone, while a high dose (30 μM) not only attenuated the myogenic response but also evoked acute dilation. Both of these effects were inhibited by the FAAH inhibitor URB-597 and were mimicked by arachidonic acid. The CB1 and CB2 agonist R-WIN 55-212-2 and the vanilloid receptor agonist capsaicin were without effect on the myogenic response. The inhibition of the myogenic response by anandamide was blocked by indomethacin and PPOH, but not by baicalein or removal of the endothelium. FAAH expression in the smooth muscle cells of the blood vessels was confirmed by immunohistochemistry.SignificanceAnandamide activates the arachidonic acid pathway in the microvasculature, affecting vascular autoregulation (myogenic response) and local perfusion.  相似文献   

2.
Docosahexaenoic acid (DHA), the n-3 essential fatty acid that is highly enriched in the brain, increases neurite growth and synaptogenesis in cultured mouse fetal hippocampal neurons. These cellular effects may underlie the DHA-induced enhancement of hippocampus-dependent learning and memory functions. We found that N-docsahexaenoylethanolamide (DEA), an ethanolamide derivative of DHA, is a potent mediator for these actions. This is supported by the observation that DHA is converted to DEA by fetal mouse hippocampal neuron cultures and a hippocampal homogenate, and DEA is present endogenously in the mouse hippocampus. Furthermore, DEA stimulates neurite growth and synaptogenesis at substantially lower concentrations than DHA, and it enhances glutamatergic synaptic activities with concomitant increases in synapsin and glutamate receptor subunit expression in the hippocampal neurons. These findings suggest that DEA, an ethanolamide derivative of DHA, is a synaptogenic factor, and therefore we suggest utilizing the term 'synaptamide'. This brief review summarizes the neuronal production and actions of synaptamide and describes other N-docosahexaenoyl amides that are present in the brain.  相似文献   

3.
AimsRecently, we demonstrated that peripheral antinociception induced by δ opioid receptor is dependent of Ca2 +-activated Cl? channels (CaCCs). Because opioid and cannabinoid receptors share some common mechanisms of action, our objective was to identify a possible relationship between CaCCs and the endocannabinoid system.Main methodsTo induce hyperalgesia, rat paws were treated with intraplantar prostaglandin E2 (PGE2, 2 μg). Nociceptive thresholds to pressure (grams) were measured using an algesimetric apparatus 3 h following injection. Probabilities were calculated using ANOVA/Bonferroni's test, and values that were less than 5% were considered to be statistically significant.Key findingsAdministration of the cannabinoid agonist CB1 anandamide (12.5, 25 and 50 μg/paw) and the cannabinoid agonist CB2 PEA (5, 10 and 20 μg/paw) decreased the PGE2-induced hyperalgesia in a dose-dependent manner. The possibility of the higher doses of anandamide (50 μg) and PEA (20 μg) having a central or systemic effect was excluded because the administration of the drug into the contralateral paw did not elicit antinociception in the right paw. As expected, the antinociceptive effects induced by anandamide and PEA were blocked by the CB1 and CB2 receptor antagonists AM251 and AM630, respectively. The peripheral antinociception was induced by anandamide but not PEA and was dose-dependently inhibited by the CaCC blocker niflumic acid (8, 16 and 32 μg).SignificanceThese results provide the first evidence for the involvement of CaCCs in the peripheral antinociception induced by activation of the CB1 cannabinoid receptor.  相似文献   

4.
Mammalian lipoxygenases (LOX) have been implicated in cell differentiation and in the pathogenesis of inflammatory, hyperproliferative and neurological diseases. Although the reaction specificity of mammalian LOX with n  6 fatty acids (linoleic acid, arachidonic acid) has been explored in detail little information is currently available on the product patterns formed from n  3 polyenoic fatty acids, which are of particular nutritional importance and serve as substrate for the biosynthesis of pro-resolving inflammatory mediators such as resolvins and maresins. Here we expressed the ALOX15 orthologs of eight different mammalian species as well as human ALOX12 and ALOX15B as recombinant his-tag fusion proteins and characterized their reaction specificity with the most abundantly occurring polyunsaturated fatty acids (PUFAs) including 5,8,11,14,17-eicosapentaenoic acid (EPA) and 4,7,10,13,16,19-docosahexaenoic acid (DHA). We found that the LOX isoforms tested accept these fatty acids as suitable substrates and oxygenate them with variable positional specificity to the corresponding n  6 and n  9 hydroperoxy derivatives. Surprisingly, human ALOX15 as well as the corresponding orthologs of chimpanzee and orangutan, which oxygenates arachidonic acid mainly to 15S-H(p)ETE, exhibit a pronounced dual reaction specificity with DHA forming similar amounts of 14- and 17-H(p)DHA. Moreover, ALOX15 orthologs prefer DHA and EPA over AA when equimolar concentrations of n  3 and n  6 PUFA were supplied simultaneously. Taken together, these data indicate that the reaction specificity of mammalian LOX isoforms is variable and strongly depends on the chemistry of fatty acid substrates. Most mammalian ALOX15 orthologs exhibit dual positional specificity with highly unsaturated n  3 polyunsaturated fatty acids.  相似文献   

5.
AimsThe effects of several potassium (K+) channel blockers were studied to determine which K+ channels are involved in peripheral antinociception induced by the cannabinoid receptor agonist, anandamide.Main methodsHyperalgesia was induced by subcutaneous injection of 250 μg carrageenan into the plantar surface of the hind paw of rats. The extent of hyperalgesia was measured using a paw pressure test 3 h following carrageenan injection. The weight in grams (g) that elicited a nociceptive response, paw flexion, during the paw pressure test was used as the nociceptive response threshold.Key findingsDoses of 50, 75, and 100 ng of anandamide elicited a dose-dependent antinociceptive effect. Following a 100 ng dose of anandamide no antinociception was observed in the paw that was contralateral to the anandamide injection site, which shows that anandamide has a peripheral site of action. Pretreatment with 20, 40 and 80 μg AM251, a CB1 receptor antagonist, caused a dose-dependent decrease in anandamide-induced antinociception, suggesting that the CB1 receptor is directly involved in anandamide effect. Treatment with 40, 80 and 160 μg glibenclamide, an ATP-sensitive K+ channel blocker, caused a dose-dependent reversal of anandamide-induced peripheral antinociception. Treatment with other K+ channel antagonists, tetraethylammonium (30 μg), paxilline (10 μg) and dequalinium (50 μg), had no effect on the induction of peripheral antinociception by anandamide.SignificanceThis study provides evidence that the peripheral antinociceptive effect of the cannabinoid receptor agonist, anandamide, is primarily caused by activation of ATP-sensitive K+ channels and does not involve other potassium channels.  相似文献   

6.
Excessive energy intake leads to fat overload and the formation of lipotoxic compounds mainly derived from the saturated fatty acid palmitate (PAL), thus promoting insulin resistance (IR) in skeletal muscle. N  3 polyunsaturated fatty acids (n  3PUFA) may prevent lipotoxicity and IR. The purpose of this study was to examine the differential effects of n  3PUFA on fatty acid metabolism and insulin sensitivity in muscle cells. C2C12 myotubes were treated with 500 μM of PAL without or with 50 μM of alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) for 16 h. PAL decreased insulin-dependent AKT activation and glucose uptake and increased the synthesis of ceramides and diglycerides (DG) derivatives, leading to protein kinase Cθ activation. EPA and DHA, but not ALA, prevented PAL-decreased AKT activation but glucose uptake was restored to control values by all n  3PUFA vs. PAL. Total DG and ceramide contents were decreased by all n  3PUFA, but only EPA and DHA increased PAL β-oxidation, decreased PAL incorporation into DG and reduced protein kinase Cθ activation. EPA and DHA emerge as better candidates than ALA to improve fatty acid metabolism in skeletal muscle cells, notably via their ability to increase mitochondrial β-oxidation.  相似文献   

7.
Studies reporting blood levels of the omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), were systematically identified in order to create a global map identifying countries and regions with different blood levels. Included studies were those of healthy adults, published in 1980 or later. A total of 298 studies met all inclusion criteria. Studies reported fatty acids in various blood fractions including plasma total lipids (33%), plasma phospholipid (32%), erythrocytes (32%) and whole blood (3.0%). Fatty acid data from each blood fraction were converted to relative weight percentages (wt.%) and then assigned to one of four discrete ranges (high, moderate, low, very low) corresponding to wt.% EPA + DHA in erythrocyte equivalents. Regions with high EPA + DHA blood levels (> 8%) included the Sea of Japan, Scandinavia, and areas with indigenous populations or populations not fully adapted to Westernized food habits. Very low blood levels (≤ 4%) were observed in North America, Central and South America, Europe, the Middle East, Southeast Asia, and Africa. The present review reveals considerable variability in blood levels of EPA + DHA and the very low to low range of blood EPA + DHA for most of the world may increase global risk for chronic disease.  相似文献   

8.
Developing a strain with high docosahexaenoic acid (DHA) yield and stable fermenting-performance is an imperative way to improve DHA production using Aurantiochytrium sp., a microorganism with two fatty acid synthesis pathways: polyketide synthase (PKS) pathway and Type I fatty acid synthase (FAS) pathway. This study investigated the growth and metabolism response of Aurantiochytrium sp. CGMCC 6208 to two inhibitors of enoyl-ACP reductase of Type II FAS pathway (isoniazid and triclosan), and proposed a method of screening high DHA yield Aurantiochytrium sp. strains with heavy ion mutagenesis and pre-selection by synergistic usage of cold stress (4 °C) and FAS inhibitors (triclosan and isoniazid). Results showed that (1) isoniazid and triclosan have positive effects on improving DHA level of cells; (2) mutants from irradiation dosage of 120 Gy yielded more DHA compared with cells from 40 Gy, 80 Gy treatment and wild type; (3) DHA contents of mutants pre-selected by inhibitors of enoyl-ACP reductase of Type II FAS pathway (isoniazid and triclosan)at 4 °C, were significantly higher than that of wild type; (4) compared to the wild type, the DHA productivity and yield of a mutant (T-99) obtained from Aurantiochytrium sp. CGMCC 6208 by the proposed method increased by 50% from 0.18 to 0.27 g/Lh and 30% from 21 to 27 g/L, respectively. In conclusion, this study developed a feasible method to screen Aurantiochytrium sp. with high DHA yield by a combination of heavy-ion mutagenesis and mutant-preselection by FAS inhibitors and cold stress.  相似文献   

9.
Previous studies suggested that women synthesise docosahexaenoic acid (DHA) more efficiently from their precursors than men. This study investigated the relationship between diet, platelet phospholipids fatty acids and gender. Dietary intake and platelet phosphatidyl-choline (PC) and phosphatidylethanolamine (PE) fatty acids were determined in Caucasian 40 men and 34 women. Absolute and %energy intakes of arachidonic acid (AA), eicosapentaenoic acid (EPA), and DHA, and the ratios of total n-6/n-3 PUFA and linoleic/alpha-linolenic acids did not differ between the sexes. However, women had higher DHA in PC (1.19 vs 1.05 wt%, p<0.05) and PE (3.62 vs 3.21 wt%, p<0.05) than men. Also EPA (1.10 vs 0.93 wt%, p<0.05) was higher in women's PE. Conversely, men had elevated AA and total n-6 fatty acids in PC. The higher platelet DHA levels and lower platelet AA/EPA and AA/DHA ratios in women of child-bearing age compared with men, may lead to less platelet aggregation and vaso-occlusion.  相似文献   

10.
The phospholipid (PL) fatty acyl chain (FA) composition (mol%) was determined in the kidney, liver, lung and brain of 8 avian species ranging in body mass from 150 g (Japanese quail, Coturnix coturnix japonica) to 19 kg (turkey, Meleagris gallopavo). In all organs except the brain, docosahexaenoic acid (C22:6 n3, DHA) was found to show a negative allometric scaling (allometric exponent: B = ? 0.18; ? 0.20 and ? 0.24, for kidney, liver and lung, respectively). With minor inter-organ differences, smaller birds had more n3 FAs and longer FA chains in the renal, hepatic and pulmonary PLs. Comparing our results with literature data on avian skeletal muscle, liver mitochondria and kidney microsomes and divergent mammalian tissues, the present findings in the kidney, liver and lung PLs seem to be a part of a general relationship termed “membranes as metabolic pacemakers”. Marked negative allometric scaling was found furthermore for the tissue malondialdehyde concentrations in all organs except the brain (B = ? 0.17; ? 0.13 and ? 0.05, respectively). In the liver and kidney a strong correlation was found between the tissue MDA and DHA levels, expressing the role of DHA in shaping the allometric properties of membrane lipids.  相似文献   

11.
Fatty acid amide hydrolase (FAAH) is the main enzyme responsible for the hydrolysis of the endocannabinoid anandamide (arachidonoyl ethanolamide, AEA) to arachidonic acid (AA) and ethanolamine (EA). Published FAAH activity assays mostly employ radiolabeled anandamide or synthetic fluorogenic substrates. We report a stable isotope liquid chromatography–tandem mass spectrometry (LC–MS/MS) assay for specific, sensitive, and high-throughput capable FAAH activity measurements. The assay uses AEA labeled with deuterium on the EA moiety (d4-AEA) as substrate and measures the specific reaction product tetradeutero-EA (d4-EA) and the internal standard 13C2-EA. Selected reaction monitoring of m/z 66  m/z 48 (d4-EA) and m/z 64  m/z 46 (13C2-EA) in the positive electrospray ionization mode after liquid chromatographic separation on a HILIC (hydrophilic interaction liquid chromatography) column is performed. The assay was developed and thoroughly validated using recombinant human FAAH (rhFAAH) and then was applied to human blood and dog liver samples. rhFAAH-catalyzed d4-AEA hydrolysis obeyed Michaelis–Menten kinetics (KM = 12.3 μM, Vmax = 27.6 nmol/min mg). Oleoyl oxazolopyridine (oloxa) was a potent, partial noncompetitive inhibitor of rhFAAH (IC50 = 24.3 nM). Substrate specificity of other fatty acid ethanolamides decreased with decreasing length, number of double bonds, and lipophilicity of the fatty acid skeleton. In human whole blood, we detected FAAH activity that was inhibited by oloxa.  相似文献   

12.
The natural food for Atlantic salmon (Salmo salar) in freshwater has relatively lower levels of omega  3 (n  3) long-chain polyunsaturated fatty acids (LC-PUFA) than found in prey for post-smolt salmon in seawater. Land-locked salmon such as the Gullspång population feed exclusively on freshwater type lipids during its entire life cycle, a successful adaptation derived from divergent evolution. Studying land-locked populations may provide insights into the molecular and genetic control mechanisms that determine and regulate n  3 LC-PUFA biosynthesis and retention in Atlantic salmon. A two factorial study was performed comparing land-locked and farmed salmon parr fed diets formulated with fish or rapeseed oil for 8 weeks. The land-locked parr had higher capacity to synthesise n  3 LC-PUFA as indicated by higher expression and activity of desaturase and elongase enzymes. The data suggested that the land-locked salmon had reduced sensitivity to dietary fatty acid composition and that dietary docosahexaenoic acid (DHA) did not appear to suppress expression of LC-PUFA biosynthetic genes or activity of the biosynthesis pathway, probably an evolutionary adaptation to a natural diet lower in DHA. Increased biosynthetic activity did not translate to enhanced n  3 LC-PUFA contents in the flesh and diet was the only factor affecting this parameter. Additionally, high lipogenic and glycolytic potentials were found in land-locked salmon, together with decreased lipolysis which in turn could indicate increased use of carbohydrates as an energy source and a sparing of lipid.  相似文献   

13.
Docosahexaenoic acid (DHA) is important for brain function, and can be obtained directly from the diet or synthesized in the body from α-linolenic acid (ALA). Debate exists as to whether DHA synthesized from ALA can provide sufficient DHA for the adult brain, as measures of DHA synthesis from ingested ALA are typically <1% of the oral ALA dose. However, the primary fate of orally administered ALA is β-oxidation and long-term storage in adipose tissue, suggesting that DHA synthesis measures involving oral ALA tracer ingestion may underestimate total DHA synthesis. There is also evidence that DHA synthesized from ALA can meet brain DHA requirements, as animals fed ALA-only diets have brain DHA concentrations similar to DHA-fed animals, and the brain DHA requirement is estimated to be only 2.4–3.8 mg/day in humans. This review summarizes evidence that DHA synthesis from ALA can provide sufficient DHA for the adult brain by examining work in humans and animals involving estimates of DHA synthesis and brain DHA requirements. Also, an update on methods to measure DHA synthesis in humans is presented highlighting a novel approach involving steady-state infusion of stable isotope-labeled ALA that bypasses several limitations of oral tracer ingestion. It is shown that this method produces estimates of DHA synthesis that are at least 3-fold higher than brain uptake rates in rats.  相似文献   

14.
15.
Several long chain N-acylethanolamines, including the proposed endogenous ligands of cannabinoid receptors, anandamide (N-arachidonoylethanolamine, C20:4 NAE) and N-palmitoylethanolamine (C16:0 NAE), as well as some of their putative biosynthetic precursors, the N-acyl-phosphatidylethanolamines, were found in lipid extracts of five species of bivalve molluscs, including Mytilus galloprovincialis, commonly used as sea food. The amounts of these metabolites, the most abundant being C16:0 NAE and N-stearoylethanolamine, appeared to increase considerably when mussels were extracted 24 h post-mortem, but were not significantly affected by boiling the tissue prior to extraction. In particulate fractions of homogenates from Mytilus, where the existence of a highly selective cannabinoid receptor with an immunomodulatory function has been previously described, an enzymatic activity capable of catalyzing the hydrolysis of C20:4 NAE amide bond, and displaying similar pH dependency and inhibitor sensitivity profiles as the recently characterized `fatty acid amide hydrolase' was found. The enzyme Km and Vmax for C20:4 NAE were 29.6 μM and 73 pmol/mg protein/min, respectively. These findings support the hypothesis that C20:4 NAE, never reported before in the phylum Mollusca, may be a mollusc physiological mediator, and suggest that edible bivalves may be a dietary, albeit limited, source of C16:0 NAE, whose anti-inflammatory properties, when administered orally in amounts higher than those reported here, have been previously reported.  相似文献   

16.
Marine microorganisms are a potential source of enzymes with structural stability, high activity at low temperature and unique substrate selectivity. Thraustochytrids are marine heterotrophic microbes, well known for the production of omega-3 fatty acids. In this study the effect of Tween 80 as a carbon source was investigated with regard to biomass, lipase and lipid productivity in Schizochytrium sp. S31. Tween 80 (1%) and 120 h of incubation were the optimum condition period for biomass, lipid and lipase productivity in a stirred tank reactor. The yields obtained were 0.9 g L−1 of biomass, 300 mg g−1 of lipid and 39 U/g of lipase activity. Sonication was optimised in terms of time and acoustic power to maximise the yield of extracted lipase. The extracted lipase from Schizochytrium S31 was observed to hydrolyse long chain polyunsaturated fatty acids DHA and EPA.  相似文献   

17.
Omega-3 index is a relatively new concept, defined as the sum of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) expressed as a percentage of the total fatty acids in red blood cell membranes. This index reflects medium to long-term intake of omega-3 polyunsaturated fatty acids and could be a useful tool in epidemiological studies. The standard technique used for fatty acid analysis and quantification has been gas chromatography (GC) with flame ionization detection. This method is robust and has good precision and sensitivity. However, a major disadvantage is inability to confirm spectrometrically the identity of fatty acids detected, which is important especially in complex biological samples. The current study measures omega-3 index in 12 healthy human volunteers using GC-mass spectrometry (MS). Both the intra-assay and day-to-day variations were well within 5% with linearity of response extending to a concentration of 250 μg/ml (830 μmol/L) of EPA. The limit of detection of EPA was 0.36 μg/ml (1.2 μmol/L). About 25 fatty acids were consistently detected in red blood cells from healthy volunteers including cis and trans isomers. The omega-3 index ranged from 2.4% to 6.2% among the 12 volunteers examined and there was no difference between samples taken in the fasting and postprandial states. EPA and DHA concentrations ranged from 3.53 to 105.89 μg/ml (11.7–350 μmol/L) and 12.19 to 214.42 μg/ml (37.1–652.7 μmol/L), respectively. Thus a GC–MS method has been developed for measuring the omega-3 index. Further studies are required to determine the role of this index as a predictor of disease.  相似文献   

18.
Anandamide (N -arachidonoylethanolamine) was the first ligand to be identified as an endogenous ligand of the G-protein coupled cannabinoid CB1 receptor. Subsequently, two other fatty acid ethanolamides, N -homo- gamma -linolenylethanolamine and N -7,10,13,16-docosatetraenylethanolamine were identified as endogenous cannabinoid ligands. A fatty acid ester, 2-arachidonoylglycerol (2-AG), and a fatty acid ether, 2-arachidonyl glyceryl ether also have been isolated and shown to be endogenous cannabinoid ligands. Recent studies have postulated the existence of carrier-mediated anandamide transport that is essential for termination of the biological effects of anandamide. A membrane bound amidohydrolase (fatty acid amide hydrolase, FAAH), located intracellularly, hydrolyzes and inactivates anandamide and other endogenous cannabinoids such as 2-AG. 2-AG has also been proposed to be an endogenous CB2 ligand. Structure-activity relationships (SARs) for endocannabinoid interaction with the CB receptors are currently emerging in the literature. This review considers cannabinoid receptor SAR developed to date for the endocannabinoids with emphasis upon the conformational implications for endocannabinoid recognition at the cannabinoid receptors.  相似文献   

19.
This study examined the effects of substituting fish oil and fish meal with a blend of alpha-linolenic acid (ALA, 18:3 n ? 3) rich vegetable oils (14%, w/w) and defatted poultry meal (34%, w/w) in a formulated diet, on growth and tissue fatty acid profiles in barramundi fingerlings. Results indicated that on average, while the ALA levels of the barramundi liver and fillet increased with increasing dietary ALA, there was no corresponding increase in the levels of the omega-3 (n ? 3) long chain polyunsaturated fatty acid (LCPUFA). Compared to fish consuming a commercial feed, which contained fish meal and fish oil, fish on the ALA diets grew slower, had a lower feed intake and lower n ? 3 LCPUFA levels in the tissues. Hepatic mRNA expression of Δ6 desaturase (FADS2) and elongase (ELOVL5/2) was ~ 10 fold and ~ 3 fold higher, respectively, in all the ALA dietary groups, relative to those fed the commercial feed. However, the level of expression of the two genes was not different between fish fed differing ALA levels. These data demonstrate that increasing the ALA level of the diet is not an appropriate strategy for replacing marine sources of n ? 3 LCPUFA in barramundi. It was also noted, however, that within the different ALA dietary groups there was a large amount of variation between individual fish in their tissue DHA levels, suggesting a significant heterogeneity in their capacity for conversion of ALA and/or retention of n ? 3 LCPUFA. When dietary ALA intakes were greater than 0.8% en, tissue DHA levels were inversely related to ALA intake, suggesting that high intake of dietary ALA may inhibit DHA synthesis.  相似文献   

20.
The synthesis of the omega-3 long-chain polyunsaturated fatty acids (LCPUFA)  eicosapentaenoic acid (EPA; 20:5n− 3) and docosahexaenoic acid (DHA; 22:6n  3) from dietary α-linolenic acid (ALA; 18:3n  3) requires three desaturation and three elongation steps in vertebrates. The elongation of EPA to docosapentaenoic acid (DPA; 22:5n  3) can be catalysed by the elongase enzymes Elovl5 or Elovl2, but further elongation of DPA to 24:5n  3, the penultimate precursor of DHA, is limited to Elovl2, at least in mammals. Elovl5 enzymes have been characterised from seventeen fish species but Elovl2 enzymes have only been characterised in two of these fish. The essentiality of Elovl2 for DHA synthesis is unknown in fish. This study is the first to identify an Elovl2 in rainbow trout (Oncorhynchus mykiss) and functionally characterise the Elovl5 and Elovl2 using a yeast expression system. Elovl5 was active with C18–20 PUFA substrates and not C22 PUFA. In contrast, Elovl2 was active with C20–22 PUFA substrates and not C18 PUFA. Thus, rainbow trout is dependent on Elovl2 for DPA to 24:5n  3 synthesis and ultimately DHA synthesis. The expression of elovl5 was significantly higher than elovl2 in liver. Elucidating this dependence on Elovl2 to elongate DPA and the low elovl2 gene expression compared with elovl5 are critical findings in understanding the potential for rainbow trout to synthesize DHA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号