首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following tissue injury, a complex and coordinated wound healing response comprising coagulation, inflammation, fibroproliferation and tissue remodelling has evolved to nullify the impact of the original insult and reinstate the normal physiological function of the affected organ. Tissue fibrosis is thought to result from a dysregulated wound healing response as a result of continual local injury or impaired control mechanisms. Although the initial insult is highly variable for different organs, in most cases, uncontrolled or sustained activation of mesenchymal cells into highly synthetic myofibroblasts leads to the excessive deposition of extracellular matrix proteins and eventually loss of tissue function. Coagulation was originally thought to be an acute and transient response to tissue injury, responsible primarily for promoting haemostasis by initiating the formation of fibrin plugs to enmesh activated platelets within the walls of damaged blood vessels. However, the last 20 years has seen a major re-evaluation of the role of the coagulation cascade following tissue injury and there is now mounting evidence that coagulation plays a critical role in orchestrating subsequent inflammatory and fibroproliferative responses during normal wound healing, as well as in a range of pathological contexts across all major organ systems. This review summarises our current understanding of the role of coagulation and coagulation initiated signalling in the response to tissue injury, as well as the contribution of uncontrolled coagulation to fibrosis of the lung, liver, kidney and heart. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

2.
Fibrosis is a highly conserved wound healing response and represents the final common pathway of virtually all chronic inflammatory injuries. Over the past 3 decades detailed analysis of hepatic extracellular matrix synthesis and degradation using approaches incorporating human disease, experimental animal models and cell culture have highlighted the extraordinarily dynamic nature of tissue repair and remodelling in this solid organ. Furthermore emerging studies of fibrosis in other organs demonstrate that basic common mechanisms exist, suggesting that bidirectionality of the fibrotic process may not solely be the preserve of the liver. In this review we will examine the cellular and molecular mechanisms that govern extracellular matrix degradation and fibrosis resolution, and highlight how manipulation of these processes may result in the development of effective anti-fibrotic therapies. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

3.
组织纤维化是器官组织内纤维结缔组织增多而实质细胞减少的一类疾病,组织损伤导致的慢性炎症反应是纤维化形成的根本原因. 脂氧素是体内重要的内源性促炎症消退介质,兼具抗炎和促炎症消退双重作用,对多种炎症细胞和炎症相关基因有显著的负性调节作用,为炎症反应的重要“刹车信号”. 脂氧素可以促进炎症及时消退而防止其蔓延为慢性炎症,因此,它极有可能在抑制纤维化的形成中起到至关重要的作用.近年来,随着对脂氧素研究的不断深入,其抗纤维化作用日益凸显,成为极有价值的抗纤维化潜在药物.  相似文献   

4.
Fibrosis or scarring of diverse organs and tissues is considered as a pathologic consequence of a chronically altered wound healing response which is tightly linked to inflammation and angiogenesis. The recruitment of immune cells, local proliferation of fibroblasts and the consecutive accumulation of extracellular matrix proteins are common pathophysiological hallmarks of tissue fibrosis, irrespective of the organ involved. Chemokines, a family of chemotactic cytokines, appear to be central mediators of the initiation as well as progression of these biological processes. Traditionally chemokines have only been considered to play a critical role in orchestrating the influx of immune cells to sites of tissue injury. However, within the last years, further aspects of chemokine biology including fibroblast activation and angiogenesis have been deciphered in tissue fibrosis of many different organs. Interestingly, certain chemokines appear to mediate common effects in liver, kidney, lung, and skin of various animal models, while others mediate tissue specific effects. These aspects have to be kept in mind when extrapolating data of animal studies to early human trials. Nevertheless, the further understanding of chemokine effects in tissue fibrosis might be an attractive approach for identifying novel therapeutic targets in chronic organ damage associated with high morbidity and mortality. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

5.
The molecule serotonin (5-hydroxytryptamine or 5-HT) is involved in numerous biological processes both inside and outside of the central nervous system. 5-HT signals through 5-HT receptors and it is the diversity of these receptors and their subtypes that give rise to the varied physiological responses. It is clear that platelet derived serotonin is critical for normal wound healing in multiple organs including, liver, lung heart and skin. 5-HT stimulates both vasoconstriction and vasodilation, influences inflammatory responses and promotes formation of a temporary scar which acts as a scaffold for normal tissue to be restored. However, in situations of chronic injury or damage 5-HT signaling can have deleterious effects and promote aberrant wound healing resulting in tissue fibrosis and impaired organ regeneration. This review highlights the diverse actions of serotonin signaling in the pathogenesis of fibrotic disease and explores how modulating the activity of specific 5-HT receptors, in particular the 5-HT2 subclass could have the potential to limit fibrosis and restore tissue regeneration. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

6.
Chronic injury often triggers maladaptive wound healing responses leading to the development of tissue fibrosis and subsequent organ malfunction. Inflammation is a key component of the wound healing process and promotes the development of organ fibrosis. Here, we review the contribution of Toll-like receptors (TLRs) to wound healing with a particular focus on their role in liver, lung, kidney, skin and myocardial fibrosis. We discuss the role of TLRs on distinct cell populations that participate in the repair process following tissue injury, and the contribution of exogenous and endogenous TLR ligands to the wound healing response. Systemic review of the literature shows that TLRs promote tissue repair and fibrosis in many settings, albeit with profound differences between organs. In particular, TLRs exert a pronounced effect on fibrosis in organs with higher exposure to bacterial TLR ligands, such as the liver. Targeting TLR signaling at the ligand or receptor level may represent a novel strategy for the prevention of maladaptive wound healing and fibrosis in chronically injured organs. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

7.
Pathogens and sterile insults both result in an inflammatory response. A significant part of this response is mediated by cytosolic machinery termed as the inflammasome which results in the activation and secretion of the cytokines interleukin-1β (IL-1β) and IL-18. Both of these are known to result in the activation of an acute inflammatory response, resulting in the production of downstream inflammatory cytokines such as tumor necrosis factor (TNF-α), interferon-gamma (IFN-γ), chemotaxis of immune cells, and induction of tissue injury. Surprisingly this very acute inflammatory pathway is also vital for the development of a full fibrogenic response in a number of organs including the lung, liver, and skin. There is evidence for the inflammasome having a direct role on tissue specific matrix producing cells such as the liver stellate cell, and also indirectly through the activation of resident tissue macrophage populations. The inflammasome requires stimulation of two pathways for full activation, and initiating stimuli include Toll-like receptor (TLR) agonists, adenosine triphosphate (ATP), particulates, and oxidative stress. Such a role for an acute inflammatory pathway in fibrosis runs counter to the prevailing association of TGF-β driven anti-inflammatory and pro-fibrotic pathways. This identifies new therapeutic targets which have the potential to simultaneously decrease inflammation, tissue injury and fibrosis. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

8.
Fibrosis is a major cause of morbidity and mortality worldwide. Currently, therapeutic options for tissue fibrosis are severely limited, and organ transplantation is the only effective treatment for end-stage fibrotic disease. However, demand for donor organs greatly outstrips supply, and so effective anti-fibrotic treatments are urgently required. In recent years, the integrin family of cell adhesion receptors has gained prominence as key regulators of chronic inflammation and fibrosis. Fibrosis models in multiple organs have demonstrated that integrins have profound effects on the fibrotic process. There is now abundant in vivo data demonstrating critical regulatory roles for integrins expressed on different cell types during tissue fibrogenesis. In this review, we will examine the ways in which integrins regulate these processes and discuss how the manipulation of integrins using function blocking antibodies and small molecule inhibitors may have clinical utility in the treatment of patients with a broad range of fibrotic diseases. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

9.
Cystic Fibrosis (CF) is the most common lethal genetic recessive disorder, with a carrier frequency of 1 in 27 among North American Caucasians. Mitogen-activated protein kinases (MAPKs) and pro-inflammatory cytokines have crucial functions in the innate immune response of epithelial cells. They determine the inflammation status and the host response to pathogenic infections. However, in CF, bacterial-driven inflammation leads to tissue destruction, reduction in lung function and mortality. Recognition of invading pathogens is mediated in part by Toll-like receptors (TLR) activation of intracellular signalling cascade leading to cytokines’ synthesis. The protein kinase Tumour Progression Locus 2 (TPL2) is a key molecule in relaying inflammatory stimuli to ERK1/ERK2 MAPKs. In this review, we summarized the recent findings on TPL2 signalling and how TPL2 can contribute to the excessive inflammation found in CF. Pharmacologically targeting this kinase could have a significant benefit for CF patients dealing with chronic bacterial infections such as Pseudomonas aeruginosa.This article is part of a Directed Issue entitled: Cystic Fibrosis: From o-mics to cell biology, physiology, and therapeutic advances.  相似文献   

10.
Although cytokines and cytotoxic T lymphocytes (CTL) are among the predominant mechanisms of host defense against viral pathogens, they can induce an inflammatory response that often leads to tissue injury. Hepatitis C virus (HCV) infection, a major cause of liver-related disease, results in the induction of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), and CTL activity, followed by liver injury. Although inflammation facilitates the wound healing process, chronic persistence over several decades results in scar accumulation, fibrosis and often cirrhosis. This review summarizes biological data implicating a cause-and-effect relationship between TNF-alpha levels and the progression of fibrosis in chronic HCV infections, in contrast to the role of TNF-alpha in hepatitis B virus infections. Furthermore, an overview of therapeutic approaches to halting the inflammatory cascade in individuals with chronic HCV, including the use of agents to reduce the level of TNF-alpha, is presented.  相似文献   

11.
现代研究发现脂肪组织的功能不仅仅只是储存以及释放脂类,还作为人体的内分泌腺,在维持机体代谢平衡方面具有重要的作用。而肥胖状态时脂肪组织的分泌功能紊乱,炎症因子与脂肪因子分泌失衡,打破了机体的代谢平衡。更糟糕的是,脂肪组织形成慢性低度炎症以及缺氧微环境,引起胶原的异常沉积,脂肪组织纤维化,从而破坏脂肪组织正常功能,可能进一步导致糖尿病以及肿瘤的产生。因此,本文主要概述肥胖引起的慢性炎症和缺氧微环境通过分泌炎症因子、上调缺氧诱导因子的表达,进而改变脂肪细胞外基质的组成,最终促进脂肪纤维化的发生的机制。  相似文献   

12.
Fibrosis is characterized by excessive extracellular matrix deposition and is the pathological outcome of repetitive tissue injury in many disorders. The accumulation of matrix disrupts the structure and function of the native tissue and can affect multiple organs including the lungs, heart, liver, and skin. Unfortunately, current therapies against the deadliest and most common fibrosis are ineffective. The pathogenesis of fibrosis is the result of aberrant wound healing, therefore, the microvasculature plays an important role, contributing through regulation of leukocyte recruitment, inflammation, and angiogenesis. Further exacerbating the condition, microvascular endothelial cells and pericytes can transdifferentiate into matrix depositing myofibroblasts. The contribution of the microvasculature to fibrotic progression makes its cellular components and acellular products attractive therapeutic targets. In this review, we examine many of the cytokine, matrix, and cellular microvascular components involved in fibrosis and discuss their potential as targets for fibrotic therapies with a particular focus on developing nanotechnologies.  相似文献   

13.
The causes of fibrosis, or the inappropriate wound healing, that follows chronic intestinal inflammation are not well defined and likely involve the contributions of multiple cellular mechanisms. As other articles in this series confirm, inflammatory cytokines clearly play a role in driving cell differentiation to the myofibroblast phenotype, promoting proliferation and extracellular matrix deposition that are characteristic of fibrotic tissue. However, controlling the balance of cytokines produced and process of myofibroblast differentiation appears to be more complex. This review considers ways in which hyaluronan, an extracellular matrix component that is remodeled during the progression of colitis, may provide indirect as well as direct cues that influence the balancing act of intestinal wound healing.  相似文献   

14.
《Epigenetics》2013,8(9):987-993
Fibrosis of any tissue is characterized by excessive extracellular matrix accumulation that ultimately destroys tissue architecture and eventually abolishes normal organ function. Although much research has focused on the mechanisms underlying disease pathogenesis, there are still no effective antifibrotic therapies that can reverse, stop or delay the formation of scar tissue in most fibrotic organs. As fibrosis can be described as an aberrant wound healing response, a recent hypothesis suggests that the cells involved in this process gain an altered heritable phenotype that promotes excessive fibrotic tissue accumulation. This article will review the most recent observations in a newly emerging field that links epigenetic modifications to the pathogenesis of fibrosis. Specifically, the roles of DNA methylation and histone modifications in fibrotic disease will be discussed.  相似文献   

15.
Fibrosis of any tissue is characterized by excessive extracellular matrix accumulation that ultimately destroys tissue architecture and eventually abolishes normal organ function. Although much research has focused on the mechanisms underlying disease pathogenesis, there are still no effective antifibrotic therapies that can reverse, stop or delay the formation of scar tissue in most fibrotic organs. As fibrosis can be described as an aberrant wound healing response, a recent hypothesis suggests that the cells involved in this process gain an altered heritable phenotype that promotes excessive fibrotic tissue accumulation. This article will review the most recent observations in a newly emerging field that links epigenetic modifications to the pathogenesis of fibrosis. Specifically, the roles of DNA methylation and histone modifications in fibrotic disease will be discussed.  相似文献   

16.
Tumor-promoting inflammation is one of the hallmarks of cancer. It has been shown that cancer development is strongly influenced by both chronic and acute inflammation process. Progress in research on inflammation revealed a connection between inflammatory processes and neoplastic transformation, the progression of tumour, and the development of metastases and recurrences. Moreover, the tumour invasive procedures (both surgery and biopsy) affect the remaining tumour cells by increasing their survival, proliferation and migration. One of the concepts explaining this phenomena is an induction of a wound healing response. While in normal tissue it is necessary for tissue repair, in tumour tissue, induction of adaptive and innate immune response related to wound healing, stimulates tumour cell survival, angiogenesis and extravasation of circulating tumour cells. It has become evident that certain types of immune response and immune cells can promote tumour progression more than others. In this review, we focus on current knowledge on carcinogenesis and promotion of cancer growth induced by inflammatory processes.  相似文献   

17.
Myofibroblasts combine the matrix-producing functions of fibroblasts and the contractile properties of smooth muscle cells. They are the main effectors of fibrosis in all tissues and make a major contribution to other aspects of the wound healing response, including regeneration and angiogenesis. They display the de novo expression of α-smooth muscle actin. Myofibroblasts, which are absent from the normal liver, are derived from two major sources: hepatic stellate cells (HSCs) and portal mesenchymal cells in the injured liver. Reliable markers for distinguishing between the two subpopulations at the myofibroblast stage are currently lacking, but there is evidence to suggest that both myofibroblast cell types, each exposed to a particular microenvironment (e.g. hypoxia for HSC-MFs, ductular reaction for portal mesenchymal cell-derived myofibroblasts (PMFs)), expand and exert specialist functions, in scarring and inflammation for PMFs, and in vasoregulation and hepatocellular healing for HSC-MFs. Angiogenesis is a major mechanism by which myofibroblasts contribute to the progression of fibrosis in liver disease. It has been clearly demonstrated that liver fibrosis can regress, and this process involves a deactivation of myofibroblasts, although probably not to a fully quiescent phenotype. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

18.
Mechanisms of fibrosis: therapeutic translation for fibrotic disease   总被引:2,自引:0,他引:2  
Fibrosis is a pathological feature of most chronic inflammatory diseases. Fibrosis, or scarring, is defined by the accumulation of excess extracellular matrix components. If highly progressive, the fibrotic process eventually leads to organ malfunction and death. Fibrosis affects nearly every tissue in the body. Here we discuss how key components of the innate and adaptive immune response contribute to the pathogenesis of fibrosis. We also describe how cell-intrinsic changes in important structural cells can perpetuate the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix-producing myofibroblasts. Finally, we highlight some of the key mechanisms and pathways of fibrosis that are being targeted as potential therapies for a variety of important human diseases.  相似文献   

19.
This paper reviews hypotheses about roles of angiogenesis in the pathogenesis of inflammatory disease in two organs, the synovial joint and the lung. Neovascularisation is a fundamental process for growth and tissue repair after injury. Nevertheless, it may contribute to a variety of chronic inflammatory diseases, including rheumatoid arthritis, osteoarthritis, asthma, and pulmonary fibrosis. Inflammation can promote angiogenesis, and new vessels may enhance tissue inflammation. Angiogenesis in inflammatory disease may also contribute to tissue growth, disordered tissue perfusion, abnormal ossification, and enhanced responses to normal or pathological stimuli. Angiogenesis inhibitors may reduce inflammation and may also help to restore appropriate tissue structure and function.  相似文献   

20.
Fibrosis is a physiological process of tissue repair that turns into pathological when becomes chronic, damaging the functional structure of the tissue. In this review we outline the current status of extracellular vesicles as modulators of the fibrotic process at different levels. In adipose tissue, extracellular vesicles mediate the intercellular communication not only between adipocytes, but also between adipocytes and other cells of the stromal vascular fraction. Thus, they could be altering essential processes for the functionality of adipose tissue, such as adipocyte hypertrophy/hyperplasia, tissue plasticity, adipogenesis and/or inflammation, and ultimately trigger fibrosis. This process is particularly important in obesity, and may eventually, influence the development of obesity-associated alterations. In this regard, obesity is now recognized as an independent risk factor for the development of chronic kidney disease, although the role of extracellular vesicles in this connection has not been explored so far. Nonetheless, the role of extracellular vesicles in the onset and progression of renal fibrosis has been highlighted due to the critical role of fibrosis as a common feature of kidney diseases. In fact, the content of extracellular vesicles disturbs cellular signaling cascades involved in fibrosis in virtually all types of renal cells. What is certain is that the study of extracellular vesicles is complex, as their isolation and manipulation is still difficult to reproduce, which complicates the overview of their physiopathological effects. Nevertheless, new strategies have been developed to exploit the potential of extracellular vesicles and their cargo, both as biomarkers and as therapeutic tools to prevent the progression of fibrosis towards an irreversible event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号