首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The redox potential "jump" recorded earlier for aerobic Escherichia coli and Bacillus subtilis cultures passing to the stationary phase was shown to result from a rise in the content of SH-compounds in the medium and on the cell surface. The effect was absent from anaerobic cultures as well as aerobic E. coli cells treated with the protonophore CICCP. Apparently, the elevated content of SH-compounds outside the cell upon starvation is part of the process which leads to a shift in the ratio between low-molecular-mass thiols and disulfides (towards disulfides inside the cell and towards thiols outside the cell) and is associated with a drop in the intracellular pH. Therefore, the entire metabolism of the cell can change as a result of reactions with the SH-groups of functionally significant compounds when the cell enters the stationary phase upon starvation.  相似文献   

2.
The redox potential (Eh) of the rumen fluid of goats varied from -145 to -190 mV and the corresponding rH values from 6.3 to 8.6. The redox potential values of the rumen fluid were influenced by changes in pH. The most oxidizing Eh values --and at the same time the lowest rH and pH values--were observed after a feeding ration containing readily available carbohydrates. No relationship was found between the fermentation rate and the redox potential. The association between the oxidation reduction state and the metabolic activity is best expressed by the rH values. In in vitro experiments, a higher pH or the addition of cysteine or sodium sulphide moved the redox potential of the rumen fluid towards more reducing values. A shift towards more oxidizing values occurred after acidification of the medium, or after the action of heavy metal ions or atmospheric O2. Various other compounds, including bubbling of the rumen fluid with hydrogen, had little or no effect. SH-groups probably play an important role in the formation of the negative redox potential in rumen fluid.  相似文献   

3.
Dynamics of Eh, pH, pO2 and optical density in E. coli cultures under glucose and ammonium exhaustion were studied. It has been shown that changes in the redox potential accompanying the exhaustion of these substances in aerobic cultures are the leaps by their character and reflect the physiological state of cells and changes in the structure of cell surface. A relationship between the changes in the redox potential and in the electrochemical potential of H ions (delta mu H) is suggested.  相似文献   

4.
Erythrocyte membrane potential was recorded via measurement of pH of the incubation medium in presence ofprothonophore. The increase of intracellular calcium concentration in presence of calcium ionophore A23187 and addition of the artificial redox-system ascorbate-phenazine methosulfate led to membrane hyperpolarization due to opening of Ca(2+)-activated potassium channels that are regulated by multiple signaling pathways. The opening of the Ca(2+)-activated potassium channels in presence of artificial redox-system ascorbate-phenazine methosulfate is mediated at least by two mechanisms including an increase in affinity of channels to calcium ions and involvement of the protein SH-groups and the components of the respiratory circuit which have beer found in erythrocyte membrane.  相似文献   

5.
Oxidative stress causes cellular injury that is thought to be due to increased cytosolic cation levels. Disturbances of a variety of mechanisms which normally maintain intracellular anion/cation homeostasis, occur during oxidative stress. Reactivity of the SH- groups essential for oubain-resistant Na(+)-Li(+) exchange by N-ethylmaleimide (NEM) and selenite was studied in human erythrocytes. In addition, the reactivity of the substances on SH- groups and Li(+) influx have been studied as a function of pH of the medium. The results show that NEM induces an irreversible inhibition of Li(+) influx. It diminishes progressively with the increasing pH of the medium. Whereas we obtain increasing intracellular Li(+) concentration with the rising selenite concentration in the medium. The maximum effect with this substance is reached at about pH 8.0. We can state that the -SH reagents (NEM and selenite) studied behave differently: NEM inhibits Li(+) influx by modifying the essential SH-groups of the membrane proteins in such a way that the exchange is reduced, whereas it maintains the Na(+) permeability almost unaltered. The slight increase in intracellular Na(+) induced by selenite suggests that the oxidative changes in the intracellular sulphydryl groups may constitute an important mechanism for the regulation of the intracellular cations.  相似文献   

6.
Redox regulation and carbohydrate recognition are potent molecular mechanisms which can contribute to platelet aggregation in response to various stimuli. The purpose of this study is to investigate the relationship between these mechanisms and to examine whether cell surface glycocalyx and cell stiffness of human platelets are sensitive to the redox potential formed by glutathione. To this end, human platelets were treated with different concentrations (0.05 μM to 6 mM) and ratios of reduced or oxidized glutathione (GSH or GSSG), and platelet morphological, mechanical, and functional properties were determined using conventional light microscopy, atomic force microscopy, and lectin-induced cell aggregation analysis. It was found that lowering the glutathione redox potential changed platelet morphology and increased platelet stiffness as well as modulated nonuniformly platelet aggregation in response to plant lectins with different carbohydrate-binding specificity including wheat germ agglutinin, Sambucus nigra agglutinin, and Canavalia ensiformis agglutinin. Extracellular redox potential and redox buffering capacity of the GSSG/2GSH couple were shown to control the availability of specific lectin-binding glycoligands on the cell surface, while the intracellular glutathione redox state affected the general functional ability of platelets to be aggregated independently of the type of lectins. Our data provide the first experimental evidence that glutathione as a redox molecule can affect the mechanical stiffness of human platelets and induce changes of the cell surface glycocalyx, which may represent a new mechanism of redox regulation of intercellular contacts.  相似文献   

7.
The SH-groups in Escherichia coli membrane vesicles, prepared from cells grown in fermentation conditions on glucose at slightly alkaline pH, have a role in the F0F1-ATPase operation. The changes in the number of these groups by ATP are observed under certain conditions. In this study, copper ions (Cu2+) in concentration of 0.1 mM were shown to increase the number of SH-groups in 1.5- to 1.6-fold independent from K+ ions, and the suppression of the increased level of SH-groups by ATP was determined for Cu2+ in the presence of K+. Moreover, the increase in the number of SH-groups by Cu2+ was absent as well as the inhibition in ATP-dependent increasing SH-groups number by Cu2+ lacked when vesicles were treated with N-ethylmaleimide (NEM), specific thiol-reagent. Such an effect was not observed with zinc (Zn2+), cobalt (Co2+), or Cu+ ions. The increased level of SH-groups was observed in the hycE or hyfR mutants with defects in hydrogenases 3 or 4, whereas the ATP-dependent increase in the number of these groups was determined in hycE not in hyfR mutants. Both changes in SH-groups number disappeared in the atp or hyc mutants deleted for the F0F1-ATPase or hydrogenase 3 (no activity of hydrogenase 4 was detected in the hyc mutant used). A direct effect of Cu2+ but not Cu+ on the F0F1-ATPase is suggested to lead to conformational changes or damaging consequences, increasing accessible SH-groups number and disturbing disulfide-dithiol interchange within a protein-protein complex, where this ATPase works with K+ uptake system or hydrogenase 4 (Hyd-4); breaks in disulfides are not ruled out.  相似文献   

8.
9.
Incubation of rabbit alveolar macrophages in hypo-osmotic solutions transiently increases cell volume and inhibits membrane internalization, resulting in an increase in surface receptor number. Since recent reports suggest that hypo-osmotic treatment decreases intracellular pH, and that reduced pH inhibits receptor internalization, pH was measured in hypo-osmotically treated macrophages. We found that cells incubated in iso-osmotic solutions of pH less than 7.2 exhibited a decrease in intracellular pH upon exposure to hypo-osmotic solutions, while cells in iso-osmotic solutions of pH greater than 7.2 had an increase in pH upon exposure to hypo-osmotic solutions. The relative increase in surface receptor number was unaffected by the initial pH or by the direction of change in pH. Incubation of cells in high K+/low Na+ hypotonic buffers induced a persistent increase in cell volume and surface receptor number. Cell volume and surface receptor number fell to baseline values after restoration of isotonicity by the addition of hypertonic sucrose. These manipulations had little effect on intracellular pH. We conclude that the inhibition of membrane internalization observed in cells exposed to hypo-osmotic solutions is independent of changes in intracellular pH. The inhibition of internalization observed in this system may be due directly to forces produced as a consequence of cell swelling.  相似文献   

10.
Vasilian A  Trchunian A 《Biofizika》2008,53(2):281-293
Based on the available literature data on a decrease in the redox potential of medium to low negative values and a decrease in pH during the growth of sugar-fermenting anaerobic bacteria, it was concluded that these processes cannot be described by the theory of redox potential. A theory was developed according to which the regulation of bacterial metabolism is accomplished through changes in the redox potential. The theory considers the redox potential as a factor determining the growth of anaerobic bacteria, which is regulated by oxidizers and reducers. The assumption is put forward that, under anaerobic conditions, bacteria are sensitive to changes in the redox potential and have a redox taxis. The effect of the redox potential on the transport of protons and other substances through membranes and the activity of membrane-bound enzymes, including the proton F1-F0-ATPase, whose mechanisms of action involve changes in the proton conductance of the membrane, the generation of proton-driving force, and dithiol-disulfide transitions in proteins was studied.  相似文献   

11.
The cytochromes c2 of the Rhodospirillaceae show a much greater variation in redox potential and its pH dependence than the mitochondrial cytochromes c that have been studied. It is proposed that the range of redox potential for cytochromes c2 functioning as the immediate electron donor to photo-oxidised bacteriochlorophyll may be 345-395 mV at pH 5. Closely related cytochromes c2 with different redox potentials show patterns of amino acid substitution which are consistent with changes in hydrophobicity near the haem being at least a partial determinant of redox potential. More distantly related cytochromes are difficult to compare because of the large number of amino acid substitutions and the probability that there are subtle changes in overall peptide chain folding. The redox potential versus pH curves can be analysed in terms of either one ionisation in the oxidised form or two in the oxidised form and one in the reduced. The pK in the oxidised form at higher pH values can be correlated with the pK for the disappearance or shift of the near infrared absorption band located near 695 nm. The structural bases of these ionisations are not known but the possible involvement of the haem propionate residues is discussed.  相似文献   

12.
The distribution of salicylic acid between the intracellular and extracellular phases has been used to estimate the intracellular pH in the Ehrlich cell and Escherichia coli. The validity of the method was established by: (i) comparison of the results obtained with salicylic acid with those obtained with 5,5-dimethyloxazolidine-2,4-dione; (ii) by following changes of the apparent intracellular pH under circumstances in which such changes are predictable, e.g., the addition of weak acids or proton conductors to the incubation medium during incubation at acidic pH; (iii) by comparison of the apparent intracellular pH changes with the uptake of H+ by the cells estimated from the changes of the medium pH. Optimal results are obtained with this indicator when the extracellular pH is below 5.5, because in this case the indicator is to a sufficient extent in its penetrating form, so that its movement can reflect intracellular pH changes occurring in less than 30 s. When the intracellular pH falls below 5.2 measurable binding of salicylic acid to the intracellular material of the Ehrlich cell takes place, but above this pH no binding has been found. The Ehrlich cell and cells of Escherichia coli behaved similarly under various experimental circumstances tested, but striking difference were found in the inherent permeability of the membrane to H+ and in the changes in this parameter by lowering the temperature to 2 degrees C.  相似文献   

13.
Because of the interest in understanding and optimizing secretion of proteins from mammalian cells, reliable and more reproducible methods are needed to monitor the external redox potential of animal cells in suspension culture. An improved off-line method was established that greatly reduces the typically long response time of redox electrodes in cell culture media and improves the standardization of redox probes. In addition, the dependence of medium redox potential on dissolved oxygen concentrations and pH was investigated using cell-free medium. Off-line as well as on-line redox potential measurements were then applied to spinner or bioreactor cultures of murine hybridoma cells. Serum containing or protein-free medium were used. The time dependence of the experimentally determined external redox potential was found to be affected not only by oxygen, pH, and medium composition. but to a significant extent by the rate of generation of reductants by hybridoma cells. The observed specific rate of medium reduction by generation of reductants (mV h–1 viable cell–1) decreased during exponential growth while cell number increased from 2×105 viable cells ml–1 to 3.5×106 viable cells ml–1. This rate, however, was essentially constant at –7.3 mV h–1±3.7 mV h–1 per 1010 viable cells during growth under conditions of constant dissolved oxygen tension and constant pH. Using these observations, the quantity of reductants synthesized and secreted into the medium by viable hybridoma cells was estimated to be approximately 1.3 mole h–1 per 1010 viable hybridoma cells. The time course of specific monoclonal antibody secretion rate did not correlate with changes in the external oxidation/reduction potential in either serum containing or protein-free medium.  相似文献   

14.
15.
The pH in the neighborhood of membranes generating a protonmotive force   总被引:2,自引:0,他引:2  
The chemiosmotic mechanism provides a way whereby energy inherent in a chemical combustion process is extracted and transduced: first into the energy of electron X volts of the electron redox system and second into proton X volts as protons are forced to leave the interior of the cell, creating an electro-chemical protonic potential (the protonmotive force). Here we consider the distribution of potential and pH across the membrane and the phases bathing the membrane in more detail. The distribution of hydrogen ions parallel to the surface is also described. It is shown that the voltage and pH gradients due to the proton extrusion occur near to the membrane (approximately 2 nm). This implies that the pH is much lower immediately outside the membrane than in the cytoplasm or in usual neutral growth or isotonic media. It provides a link between the points of view of Mitchell and Williams. It requires that literature models for the role of the protonmotive force in the maintenance of wall thickness in Gram-positive organisms, the adhesion of microbes to surfaces, and the transport of auxin in plants be modified.  相似文献   

16.
In vitro and in vivo studies support the involvement of connexin 43-based cell-cell channels and hemichannels in cell death propagation induced by ischemia-reperfusion. In this context, open connexin hemichannels in the plasma membrane have been proposed to act as accelerators of cell death. Progress on the mechanisms underlying the cell permeabilization induced by ischemia-reperfusion reveals the involvement of several factors leading to an augmented open probability and increased number of hemichannels on the cell surface. While open probability can be increased by a reduction in extracellular concentration of divalent cations and changes in covalent modifications of connexin 43 (oxidation and phosphorylation), increase in number of hemichannels requires an elevation of the intracellular free Ca2+ concentration. Reversal of connexin 43 redox changes and membrane permeabilization can be induced by intracellular, but not extracellular, reducing agents, suggesting a cytoplasmic localization of the redox sensor(s). In agreement, hemichannels formed by connexin 45, which lacks cytoplasmic cysteines, or by connexin 43 with its C-terminal domain truncated to remove its cysteines are insensitive to reducing agents. Although further studies are required for a precise localization of the redox sensor of connexin 43 hemichannels, modulation of the redox potential is proposed as a target for the design of pharmacological tools to reduce cell death induced by ischemia-reperfusion in connexin 43-expressing cells.  相似文献   

17.
When Pisaster, Asterias, or Thyone sperm are treated with the ionophore A23187 or X537A, an acrosomal reaction similar but not identical to a normal acrosomal reaction is induced in all the sperm. Based upon the response of the sperm, the acrosomal reaction consists of a series of temporally related steps. These include the fusion of the acrosomal vacuole with the cell surface, the polymerization of the actin, the alignment of the actin filaments, an increase in volume, an increase in the limiting membrane, and changes in the shape of the nucleus. In this report, we have concentrated on the first two steps in this sequence. Although fusion of the acrosomal vacuole with the cell surface requires Ca++, we found that the polymerization of actin instead appears to be dependent upon an increase in intracellular pH. This conclusion was reached by applying to sperm A23187, X537A, or nigericin, ionophores which all carry H+ at high affinity, yet vary in their affinity for other cations. When sperm are suspended in isotonic NaCl, isotonic KCl, calcium-free seawater, or seawater, all at pH 8.0, and the ionophore is added, the actin polymerizes explosively and an efflux of H+ from the cell occurs. However, if the pH, of the external medium is maintained at 6.5, the presumed intracellular pH, no effect is observed. And, finally, if egg jelly is added to sperm (the natural stimulus for the acrosomal reaction) at pH 8.0, H+ is also released. On the basis of these observations and those presented in earlier papers in this series, we conclude that a rise in intracellular pH induces the actin to disassociate from its binding proteins. Now it can polymerize.  相似文献   

18.
Microfluorimetry of single cells could help to analyze their morphology and function state during changes of gas environment. It is very important to have a possibility of the cell visual control during hypoxia and collection of dynamic fluorimetric data in digital form. The effects of short-term pO2 decrease were studied. For estimating the effects of hypoxia and reoxygenation we used the mice peritoneal macrophages, which are very sensitive to physical, chemical and regulatory stimuli. A special small chamber for fluorimetric measurements during pO2 changes, was developed. The level of active oxygen forms, intracellular pH, and cell membrane instability were investigated during replacement of air by nitrogen or argon (of the basal level decreased to 20% of basic level) and in subsequent reoxygenation. The increase of active oxygen forms was shown during 30 min of hypoxia and their level continued to rise immediately after reoxygenation. A short-term decrease and subsequent increase of pO2 in the medium led to an increase of intracellular pH level. The shifts of measured cell indices were stabilized after 30-40 min of pO2 changes thus suggesting a fast comprehension of countermeasure cell mechanisms. No macrophages with membrane disorders were found despite the rise of the active oxygen forms level during hypoxia and reoxygenation in vitro. There were no significant differences between nitrogen and argon used for replacement of air in the medium. The data obtained suggest a high resistance of macrophages against pO2 changes and an involvement of the antioxidative mechanisms for cell protection especially during reoxygenation period.  相似文献   

19.
《Biofizika》2005,50(4):680-683
It was shown that the proton conductivity of Enterococcus hirae ATCC9790 membrane increases three times as pH of the growth medium decreases from 8.5 to 5.5. The changes in proton conductivity are interrelated to the values of membrane and redox potentials of the cell, which in turn vary depending on the pH value of growth medium. The energy-dependent H+ efflux for cells fermenting sugar (the glucose) decreases 1.5 times as pH decreases from 8.5 to 5.5; in this case, the N,N'-dicyclohexylcarbodiimide at lower pH values suppresses the H+ efflux more intensively than at higher pH values, the H+ efflux nonsensitive to N,N'-dicyclohexylcarbodiimide being practically unchanged. The H+ efflux in the ATPase mutant MS116 is significantly (approximately 3 times) lower than that in the precursor strain and does not depend on pH. The results show that the proton conductivity of the membrane of this bacterium depends on pH of the growth medium. It is possible that the energy-dependent H+ efflux through F1F0-ATPase is interrelated with membrane proton conductivity.  相似文献   

20.
The distribution of salicylic acid between the intracellular and extracellular phases has been used to estimate the intracellular pH in the Ehrlich cell and Escherichia coli. The validity of the method was established by: (i) comparison of the results obtained with salicylic acid with those obtained with 5,5-dimethyloxazolidine-2,4-dione; (ii) by following changes of the apparent intracellular pH under circumstances in which such changes are predictable, e.g., the addition of weak acids or proton conductors to the incubation medium during incubation at acidic pH; (iii) by comparison of the apparent intracellular pH changes with the uptake of H+ by the cells estimated from the changes of the medium pH. Optimal results are obtained with this indicator when the extracellular pH is below 5.5, because in this case the indicator is to a sufficient extent in its penetrating form, so that its movement can reflect intracellular pH changes occurring in less than 30 s. When the intracellular pH falls below 5.2 measurable binding of salicylic acid to the intracellular material of the Ehrlich cell takes place, but above this pH no binding has been found.The Ehrlich cell and cells of Escherichia coli behaved similarly under various experimental circumstances tested, but striking differences were found in the inherent permeability of the membrane to H+ and in the changes in this parameter by lowering the temperature to 2°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号